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Abstract

In this paper, we compare optimality conditions for the least square
measurement and the (generalized) pretty good measurement for the
minimum-error discrimination problem and obtain the optimal
measurement for an ensemble of geometrically uniform states by
applying the least square measurement.

1. Introduction and Problem Setting

In this paper, we study and compare the optimality conditions for the
least square measurement (LSM) given in [2, 3] and the pretty good
measurement (PGM) given in [4, 5] for the minimum error discrimination
problem (cf. [1, 6]). We will show that the optimal PGM or generalized PGM
gives the optimal LSM.
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Suppose that Alice wants to transform classical information to Bob using
a quantum mechanical channel. Alice prepares a quantum state from a
collection of known states and sends the state to Bob. Bob detects the
information by using an appropriate measurement. A major assumption in
this game is that both parties make a prior arrangement concerning the
ensemble of quantum states. If the quantum states are mutually orthogonal,
then Bob apply an optimal orthogonal measurement that will determine the
state correctly with probability one. But if the prepared states are not
orthogonal, then there is no measurement for Bob to distinguish perfectly
between them. Thus the problem for Bob is to construct a measurement
optimized to distinguish between nonorthogonal pure quantum states.

Formally, we may formulate the optimization problem in the following
way. Let H be a d-dimensional Hilbert space. In preparation, we have an

ensemble P = {pj, |wi){vi |}?:1, where |y1), ..., |wq) constitutes linearly
independent pure states in 7 and span{|yy), ..., |wq )} = H. The probabilities

P, -, Pg IS referred as a priori probability, p; >0 and i p; =1. Alice
i=1

choose a quantum state using the probability distribution {p;} and sends it to

Bob and then Bob must figure out the state using an appropriate

measurement, which minimizes the probability of a detection error. More

explicitly, we seek the positive operator valued measurement (POVM) with

elements {E;, E,, ..., Eq} that maximizes the probability of success

d
ps = D pi{wilEilvi)
i=1
d
subject to E; > 0 for all i and Z E; = Id. Equivalently, we seek the matrix Z
i=1
that minimizes Tr Z subject to Z > pj| ;i) (yj| for all i. The duality problem

can be summarized as follows:

Max ps = MinTr Z.
& @
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If {E; }?:1 is an element of the optimal POVM, then for some Hermitian

matrix Z,
d
D pidwilEilwi) =Trz
i=1

and hence it satisfies
(Z - pilwi)(wiDEi = Ei(Z - pi|wi)(wi|) = 0.

d
Summing over i and using the relation Z E; = Id, we have
i=1

d
Z = piEilwi)(vil
=

d
= pilwi) (il E.
i=1
Thus we get the following relations:
Ej(pjlwid{wjl- pilwi)(wil)Eji =0

and
d
D ooilwi(wilE = pjlvi){yjl.
=

From this we have

Theorem 1 [5]. An optimal d-POVM {E; }?:1 satisfies the relations

@ Ej(pilwi){vjl-pilwi){wi)E =0,

d
) 2 pilwi)(wilEi = pjlwj) (il
i1



522 Eunsang Kim and Tae Ryong Park

2. The Least Square Measurements

In this section, we study the least square measurements for minimum-
error discrimination problem discussed in Section 1, following [2] and [3].

For a preparation, let P = {p;, | i) (i |}~f':1 be an ensemble of linearly

independent pure states in d-dimensional Hilbert space Hq such that Hy =

d
span{\ui}f':l and let p = > pj|wi)(wj|. Then the least square measurement
i=1

consists of the measurement operators {E; }i‘":1 such that Ej = |p;) (|, where

1
i) = pip 2| wi).
Note that
1 1

d d 1 1
Dol il =D pip 2wi)(vilp 2 =1d
i=1 i=1
Theorem 2. Let P = {pj, | wi)(v;j |}i0':1 be an ensemble of quantum states

d
with prior probabilities {pi}?zl and let p = > pi|yj)(yj|. The least square
i=1
21
measurement {Ej = |u;){u; |}i0':1 with 1) = +/pip 2|w;) maximizes the

probability of success if, for each i,
1

Pifuilwi) = picwilp 2|wj) =C,
where C is a constant independent of i.

Proof. Suppose that pj{u; | i) = C and we will find a Hermitian matrix
Z such that

(1) Z = pj|wi)(wi| foralli,

@) (Z = wi){wiD[mi){mi] = 0.
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Define Z = C+/p. Then since p (ui | wi) = C, each eigenvalue of the matrix

1 1
pip *|wi){wi|p 4 takes the value 0 or C and hence

1 1
pip 4lwi){wilp 4 <C-1d.

Now we get
11 1
pilwid(wil = pip4(p #|wi)(wilp 4)p4 <Cyp =2
This proves Z > pj|y;)(y;| forall i. Since

1

Z i) (wi Dri = (olp = |wid(wi e 2[wi)
= afyi) —alyi) =0,

we have (Z —|w;){w;|)uiui = 0, which proves the theorem. O

3. The Generalized Pretty Good Measurements

In this section, we study the generalized pretty good measurements
which is defined in [5], see also [6]. We will find the optimality condition for
the problem of minimum-error discrimination and we discuss a special case,
which is called pretty good measurement studied in [4], and we show that the
optimality condition for this case is equivalent to the least square
measurements discussed in Section 2.

Let P ={pi, |wi)(vi |}i0':1 be an ensemble of quantum states and let

Q ={a;, | vi) (i |}i0':1 be another ensemble of quantum states with prior

d
probability {g; }idzl. For the ensemble Q, let py = > di wi) (vi| and define
i=1
1 21
Ei = dipg?|wi){wilpq?.
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Then it is easy to see that E; are well-defined and E; > O for each i. Also,

we have
d d 1 1
ZEI quq lwi) \V||Pq
i=1 i=1
14 1
_quZQ||\V| \|’||Pq
i=1
O
= pquqpq2 = Id

Theorem 3. Let P = {p;, | vi ) {vi |}f':l and Q = {q;, | vi)(vi |}?:1 be two

d
ensembles of linearly independent pure states and let p, = > pj| i) (vi|
i=1
1 1

d 1 1
and pq = > 0| wi)(v;|. Define E; = gipq?|wi)(w;|pq?. Then the POVM
i1

{Ei}f':l is optimal for the minimum-error discriminant problem if
1
Pi{wilpg?|wi) = C foralli.
Proof. We will show that the elements E; of measurement satisfy the
conditions given in Theorem 1.

d
Let Z =3 pilwi){wi|E;. Then
i-1

d 1 1

Z = pilwi)(wilaing2|wi) (wilpg?
i=1

d _1 1
= picilwi)(wilpg 2l wi) (wi lpg?
i1
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d 1
= C Y ailwi){vilpg?
=

1
=Cpgp 2 =Cy/pg-

1
Thus Z is Hermitian if pj(y;|pq?| ;) is constant.

Since Z =C Pq

1
Pi(wi 1Z Y wi) = pidwi|C Ypg 2 wi)

1 R
=c pi(wilpg?|wi)

C=1

1
C

This is equivalentto Z = pj| wi){wj|.

525

O

In Theorem 3, if P = Q, then the condition for optimality in the pretty

good measurement is simply the same as the one in the least square
measurement given in Theorem 2. In other words, the generalized pretty

good measurement implies the least square measurement.

Let P = {pj, | wi) (wi |}f':1 be an ensemble of linearly independent pure

d
states in 7 as above and let p = > pj|w;i)(yi|- For an orthonormal basis

i=1

{i}?:1 for the Hilbert space H, the Gram matrix associated with the ensemble

is given by

d
S = -Zw/ pi P (wilw ) )il

i, j=1
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or

(i[S]5) = Sij = Y PiPj{Wilwj)-

Define
d
Y= /pilyi) or M =Z\/p_i|\|/i><i|'
i=1

Then we may write p and S in terms of the matrix M as follows:

MQ_

pilvi) (v |
:@mwo J{i i) (v |J

and

S = Jpipjvilvj)li)i
¥

[gmwwi 'J{im‘“””}

= M*M.
By the singular value decomposition, there are unitaries U and V such that
M =UDV™,
where D = diag(Aq, X5, ..., Aq) is the diagonal matrix with diagonal entries
Aj are non-negative real numbers. We have then
p=MM* =UD?U* and S =M*M =VD?*
or equivalently

Jp =UDU™ and +/S =VDV™,
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Now we may reformulate Theorem 3 using the Gram matrix in the
following way:

Theorem 4. Let P = {p;, | i) (Vi |}?':1 and Q = {q;, | vi) (i |}f':1 be

d
two ensembles of linearly independent pure states and let p, = > pi| wi ) (v
i=1
d 1 1
and pg = > qi| wi)(v;l. Define E; = dipg?| wi) (v |pq?. Then the POVM

i=1
{E; }f':l is optimal for the minimum-error discriminant problem if p; =
GiC
(i[Vsli)

Proof. Note that

for all i.

1 1
di{wilp 2lw)=(i[M"p 2MJi)
— (ilvDU*uD~U*uDV/i)
= (i[VDV i)
= (i|Vs]i).

1 1
Thus if pi (i lp 2|wi) = C. then (yilp 2|y;) =~ and hence
p.

L e |
aifwilp 2lvi) = L5 = (13S]i)

and the result follows. O
4. Geometrically Uniform States

Let G = {Ui}?:_ol be a finite abelian group of unitary matrices. For

simplicity, we let Uy = Id and since G is a group, for all i, U;" = Ui‘l =Uj
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for some j € {0, 1, ..., d —1}. Also, for all i, j, UiU; =Uy € G forsomek e

{0,1,..,d —1}. Theset S = {p; = U;pU;" |U; e G} is called a geometrically
uniform (GU) states set generated by the group G with a single generator p.
Also, one may define a GU states set in the following way. A quantum state

{p, _q Is a GU set if there is a symmetry represented by a unitary

transformation U such that
piaa=UpU", UM™=1 fori=12..,m

For example, let Hq be a d-dimensional Hilbert space and let {| x,, )}ﬂ;é be

an orthonormal basis for Hy. Define

& 2mi
U= > exp|—m || Xn){Xm| (1)
2]

then U is a unitary transformation on Hy and

d-1 .
2mi
= exp[T mn} | Xm ) (X |-
m=0

This shows that the set G={U" :Um}?n;lo is a group of unitary

transformations. Let
lwo) = chlxn>’ Ch e R
Then by definition of U, we have

Ulyg) = chexp[@n} n)

Using the relation we define the state |yy) as follows: for all k e
{0,1,...,d -1},
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k
U o) - ch exp) 220k ) = ¢ @
d-1
We now consider an ensemble P = { i v |} of linearly
i=0
independent pure states in Hy and the ensemble will be referred as GU
d-14
ensemble. Let p = ZE|‘Vi><Wi |. Then we have
i=0

p= Z lwi){wi ZU|\V0> {wolUi

and
d-1,
pU =ZEUi|Wo><\Vo|UiUk
i=0
d-1,
—Ukz Uil wo){wo|UiUx
i= O

—Ukz Ujlwo)(wolUj

=Ukp
_1
thus U, and p commute and hence p 2 commutes with Uj forall j. The

least square measurement operators are Ej = | ) (u| with

1
|ui) = J—p |\|f.> fp 2Uj| o). ®)

Now we apply these measurements to the GU ensemble associated with
the group G = {U™ = }d defined in (1). For the GU states, by (3) we

define
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1 1 2mi .
i)=—= > —expl—nj || X,)- 4
= g 2 P 22 1) @
In order to show that the measurement defined by |Mj> given in (4) is

optimal, we only have to show that %(pi |yj) is constant by Theorem 2 or

Theorem 3. From the definition of p; in (3) and y;j in (2), we have
1 G 2mi 2mi
ilwi) =—= ) —exp|———nj |cyexp| — nj [{Xn | X
(uilwi) ﬁn;cn p[ ; J}n p[d J}<n| n)

==

Thus, dl(ui |yi) is constant and hence E; = |p;){u;| are optimal.
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