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Abstract

Cox’s proportional hazards model has so far been the most popular

model for the regression analysis of censored survival data. This model

has also been extended to the general additive-multiplicative hazard

model. In this paper, we apply empirical likelihood ratio method to this

model and derive the limiting distribution of the empirical likelihood

ratio. Based on the result, we construct a confidence region for the

regression parameter. Simulation studies are conducted to evaluate the

performance of the proposed method.

1. Introduction

Recently, survival analysis has received a lot of attention and
experienced tremendous growth in medical studies. We are interested in
the regression model for the survival rate incorporating information from
the covariates which allows us to quantify the relationship between the
failure time and a set of explanatory variables. Cox [1] proportional
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hazards model has been considered as a major tool for regression analysis

of survival data. Under this model, the covariates ( )⋅Z  have

multiplicative effects on the hazard function. Cox [1, 2] introduced a
semiparametric approach for the proportional hazards model which has
contributed tremendously to clinical trial studies.

However, the proportional hazards assumption may not be
appropriate for some data analyses in medical research, the additive risk
model [3] provides a useful alternative to Cox’s proportional hazards
model for studying the association between failure time and risk factors
through hazard functions. This valuable model for the analysis of
survival data seems simple and easy to interpret for medical researchers.
In some applications, we should consider models which allow certain
covariates to have both the additive and multiplicative effects. To
enhance the modeling capability, a general additive-multiplicative
hazard model [4, 5] has been proposed:

( ) { ( )} ( ) { ( )},; 000 tXhttWgZt TT γλ+β=λ (1.1)

where ( )TTT XWZ ,=  is a p-vector of covariates, ( )TTT
000 , γβ=θ  is a

p-vector of unknown regression parameters, g and h are known link

functions and 0λ  is an unspecified baseline hazard function.

Empirical likelihood (EL) method, first introduced by Thomas and
Grunkemeier [9], is a powerful nonparametric method. They applied the
method to survival probabilities estimated by the Kaplan-Meier curve
which can be obtained as a nonparametric maximum likelihood estimate
of the survival function from censored data. Owen [6, 7] introduced
empirical likelihood confidence regions for the mean of a random vector
based on independent and identical complete data. Since then, the
empirical likelihood has been widely applied to statistical models to make
inference. Recent work includes Qin and Jing [8], Zhao and Hsu [10],
among others.

In the present article, we focus on model (1.1), make full use of the
estimating function provided by Lin and Ying [4], and find one tractable
likelihood-ratio based confidence region for the unknown regression
parameters. Our approach does not require to estimate the limiting
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covariance matrices; instead one carries out a constrained maximization
of the empirical likelihood, which can be done reliably by Newton-
Raphson method. Moreover, the EL confidence region is adapted to the
data set and reflects the nature of the underlying data and hence give a
more representative way to make inferences about the parameter of
interest. The proposed confidence region and main asymptotic result are
presented in Section 2. In Section 3, we conduct simulation to investigate
the performance of the empirical likelihood method in terms of coverage
probability. Proof is given in the Appendix.

2. Main Results

2.1. Preliminaries

Let T denote the failure time and C denote the censoring time.

Suppose that data consist of n independent samples of ( ),,, iii ZX δ

where ( ) ( ).,,min iiiiii CTICTX ≤=δ=  Let ( ) ( )tXItN iii ≤δ=  be a

counting process for the ith subject, which indicates that the failure time

of the ith subject is observed up to time t. Let ( ) ( )tXItY ii ≥=  denote the

predictable indicator process indicating whether or not the ith subject is

at risk just before time t. ( )⋅iZ  is the covariate process for the ith subject.

Let τ satisfy ( ) .0>τ>iXP

We denote

( ) ( ) ( ) [ { ( )} { ( )} ( )]∫ λγ+β−=θ
t

i
T

i
T

iii dsssXhsWgsYtNtM
0

0 .,

Let ( )tDi ,θ  be a p-dimensional predictable process, which is a smooth

function of iZ  and θ not involving .0λ  Lin and Ying [4, 5] proposed the

following estimating function:

( ) ( ) [ ( ) ( ) { ( )}∑ ∫
=

τ
β−θ=θ

n

i
i

T
iii dssWgsYsdNsDS

1 0
,

( ) { ( )} ( )]sdsXhsY i
T

i ,ˆ
0 θΛγ−

{ ( ) ( )}[ ( ) ( ) { ( )} ]∑ ∫
=

τ
β−θ−θ=

n

i
i

T
iii dssWgsYsdNsDsD

1 0
,,
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{ ( ) ( )} ( )∑ ∫
=

τ
θθ−θ=

n

i
ii sdMsDsD

1 0
,,,, (2.1)

with

( )
( ) { ( )} ( )

( ) { ( )}
.

,

,

1

1

∑

∑

=

=

γ

θγ

=θ
n

i
i

T
i

n

i
ii

T
i

tXhtY

tDtXhtY

tD

2.2. EL confidence region

Now consider empirical likelihood approach. It is clear that

( )[ ] 00 =θSE  from the estimating equation (2.1) since the ( )tMi ,0θ  is a

martingale. For ,1 ni ≤≤  we define

( ) ( )
( ) ( )∫

τ
θ







α
α

−θ=
0

0
0

1
0, ,,

ˆ
ˆ

, tdM
t
t

tDW iiin (2.2)

where ( ) ( ) ( ) ( ( ))∑ γθ=α ⊗−
i i

T
i

r
ir tXhtYtDnt 00

1 ,ˆ  with ,10 =⊗a  .1 aa =⊗

Therefore, an empirical likelihood at the true value 0θ  is given by

( ) .0,0,1:sup
1 1

,0












=≥==θ ∏ ∑ ∑
= =

n

i

n

j
jnjiii WppppL

Thus, the empirical likelihood ratio at the 0θ  is defined by

( ) .0,0,1:sup
1 1

,0












=≥==θ ∏ ∑ ∑
= =

n

i

n

j
jnjiii WpppnpR

By using Lagrange multipliers, we have

( ) ( )∑
=

λ+=θ−
n

i
in

TWR
1

,0 ,1log2log2

where ( )Tpλλ=λ ...,,1  satisfies the equation

∑
=

=
λ+

n

i in
T

in

W

W
n

1 ,

, .0
1

1
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Denote

{ ( ) ( )} ( )∑ ∫
=

τ ⊗−
∞→ θ−θ=Γ

n

i
iin tdNtDtDn

1 0

2
00

1 .,,lim (2.3)

Assume that Γ is positive definite. Suppose that ( ),tg  ( ),th  and ( )t0λ

are continuous and covariate vector iZ  is time-invariant and bounded.

Now, we state our main result and explain how it can be used to

construct confidence region for θ.

Theorem 2.1. Under above conditions, we have ( )0log2 θ− R

converges to chi-squared distribution with p degrees of freedom.

Then, an asymptotic ( )%1100 α−  confidence region for θ is given by

{ ( ) ( )},log2: 2 αχ≤θ−θ= pRR (2.4)

where ( )αχ2
p  is the upper α-quantile of the chi-squared distribution with

p degrees of freedom.

3. Simulation Study

In this section we investigate the performance of the proposed
empirical likelihood (EL) confidence region in terms of coverage
probability.

Let ( ) xxg =  and ( ) .xexh =  Consider a simple general additive-

multiplicative model with 10 =β  and .10 =γ  The model is

( ) ( ) ( ),0
tXetWZt λ+=|λ (3.1)

where ( ) ( ) ( )( ) ., TtXtWtZ =

Let T denote failure time, C denote the censoring time. Censoring

rate is approximately 30%, 50%, and 70%, respectively. The sample size n

is chosen to be 50, 70, and 100, respectively. W and X are drawn from

uniform distribution ( ).1,0U  Suppose W and X are independent uniform

variables, and n random samples are selected for iW  and ,iX
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respectively. To simulate failure time ,iT  we assume model (3.1) in which

10 =λ  has an Exponential (1) distribution. Censoring time iC ’s are

drawn from the uniform distribution ( ),,0 kU  where k is chosen to get a

desired censoring rate which is chosen to be 30%, 50%, and 70%,
respectively. Finally, simulated observations from the above general

additive-multiplicative model are ( )iii ZY δ,,  for ,...,,1 ni =  where

( ) ( ),,,,min iiiiii XWZCTY ==  and ( ).iii CTI ≤=δ

Such simulation is repeated 1,000 times to generate simulated data.
Then, the coverage probabilities for the empirical likelihood methods
based on these 1,000 simulated data sets are simply the proportions of
these data sets which satisfy the inequalities (2.4). The nominal

confidence level 1 – α is taken to be 0.90, 0.95, and 0.99, respectively. The

simulation results are presented in Table 3.1.

Table 3.1. EL coverage probabilities for ( )Tγβ=θ ,  at three

significant levels

Censoring
Rate

Sample Size

(n)

%901 =α− %951 =α− %991 =α−

50 0.858 0.923 0.952

30% 70 0.869 0.932 0.969

100 0.874 0.940 0.975

50 0.861 0.909 0.973

50% 70 0.862 0.932 0.973

100 0.884 0.933 0.976

50 0.846 0.910 0.975

70% 70 0.863 0.932 0.978

100 0.881 0.942 0.984
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From Table 3.1, we make the following observations.

1. Generally, at each nominal level, the coverage accuracy for the

empirical likelihood method increases as the sample size n increases.

2. The empirical likelihood method works well at three different

censoring rates.

3. The coverage probabilities of empirical likelihood method appear to

be close to the nominal levels especially with moderate sample size

( ).100=n

Thus, the proposed approach can be applied to this model and leads to

reasonable results.

Appendix

Proof of Theorem 2.1. Let

( ) ( )
( ) ( )∫

τ
θ









α
α

−θ=
0

0
0

1
0 ,,, tdM

t
t

tDW iii

where

( ) ( ( ) ( ) ( ( ))) .1,0,, 00 =γθ=α ⊗ rtXhtYtDEt i
T

i
r

ir

For any ,pRa ∈  we have [ ( ( ) ( )) ] ( ),10ˆsup 2
000 =α−ατ≤≤ ttnEt  and

[ ( ( ) ( )) ] ( ).10ˆsup 2
000 =α−ατ≤≤ tatanE TT

t  Following the proof of Lemma 2

of Qin and Jing [8], we have for each i

( ( )) ( )
( )

( )
( ) ( ) [ { ( )}∫

τ
β








α
α

−
α
α

=−
0

0

2

0

1

0

12
, ˆ

ˆ
tWgtY

t
ta

t
ta

EWWaE i
T

i

TT

iin
T

{ ( )} ( )]dtttXh i
T

00 λγ+

( )
( )

( )
( )∫

τ









α
α

−
α
α

≤
0

2

0

1

0

1
ˆ

ˆ
dt

t
ta

t
ta

EM
TT

( ),10=
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where in the second step we use the fact ( ),0 tλ  ( ),tg  and ( )th  are

continuous and iZ  are bounded and ( ) [ { ( )} { ( )}tXhtWgtY i
T

i
T

i 000 γ+β≤

( )] ,0 Mt ≤λ  here M is a constant.

Applying the same argument as that in Qin and Jing [8], we get

∑
=

Γ→
n

i

PT
inin nWW

1
,,    and   ( ).max 21

,1 noW Pinni =≤≤

From Lin and Ying [4], it is obvious that ( )∑
=

− Γ→
n

i

D

in NWn
1

,
21 .,0

Combining these results, we conclude Theorem 2.1 by the argument of
Owen [7].
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