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Abstract

In this paper, we propose a data-driven test for assessing the

appropriateness of heteroscedastic nonlinear regression models by using

local linear regression smoothers in which no boundary-corrected

kernels are needed to resolve boundary effects. The method is proposed

for selecting a bandwidth by using the asymptotically optimal bandwidth

under the parametric null model. This selection method leads to the

data-driven test that has a limiting normal distribution under the null

hypothesis and is consistent against any fixed alternative. The resulting

test can be applied to testing the lack of fit of a postulated generalized

linear model and is compared to some existing tests. We will apply

esterase radioimmunoassay data to demonstrate the practical use of the

proposed test.

1. Introduction

In recent years, nonparametric regression techniques have rapidly

become popular tools for testing the validity of postulated parametric

regression models. For example, see Fowlkes [11], Cox et al. [5], Barry
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and Hartigan [2], le Cessie and van Houwelingen [17], Müller [22],

Eubank and Hart [8], Härdle and Mammen [12], Stute [24], Zheng [27],

Dette [7], Li [18], Alcalá et al. [1], Fan et al. [10], and Horowitz and

Spokoiny [16], Fowlkes [11] compared parametric and nonparametric

(nearest-neighbor) fits to define residuals for testing the adequacy of

binary logistic regression models; however, Fowlkes did not propose a

formal test statistic for testing the hypothesis. The kernel smoothing

method proposed by le Cessie and van Houwelingen [17] used a weighted

sum of the smoothed standardized residuals as the goodness-of-fit

measure for binary logistic regression models. In addition, Cox et al. [5],

Barry and Hartigan [2], Eubank and Hart [8], and Härdle and Mammen

[12] proposed methods that use kernel or series-type smoothers to assess

the lack of fit of parametric models for which the usual smoothing

parameter asymptotics do not apply. In this paper, we will focus on the

situation in which this is not the case, and smoothing parameters can be

expressed in a standard, asymptotic manner. As will be seen in Section 2,

the large-sample properties of the proposed test are substantially

different from others that have been previously discussed in the

literature.

Li [18] proposed a data-driven test statistic based on the comparison of

parametric and nonparametric Gasser-Müller kernel fits for testing the

lack of fit of heteroscedastic nonlinear regression models. In Li’s test, the

problems of boundary effects are resolved by using boundary-corrected

kernels as design points in the boundary regions. This test is applied to

assess the linearity of the logit link in the logistic regression models and

that of the log link in the Poisson regression models. In contrast to Li’s [18]

work, the present paper proposes a data-driven test statistic based on the

comparison of parametric and local-linear kernel (LLK) fits in which no

boundary-corrected kernels are needed for the local-linear fitting as design

points in the boundary regions. Alcalá et al. [1] also used LLK smoothers,

but they did not provide a practical guideline for bandwidth selection in

their test statistic. Local-linear smoothers have the attractive property of

automatic boundary correction; the order of the bias at the boundary

automatically remains the same as that in the interior. Another

attractive property is that local-linear smoothers can adapt to various
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types of designs such as random and fixed designs or highly clustered

and nearly uniform designs. For a more detailed discussion of the

advantages of local polynomial smoothers, see Fan and Gijbels [9],

Bowman and Azzalini [3], and Hart [14]. The simulation study of an

unequally spaced design, which is presented in Section 4, demonstrates

that the proposed test is superior to the one proposed by Li [18].

However, both tests have essentially the same power when applied to an

equally spaced design.

In this paper, we will study the case in which the smoothing
parameter asymptotics can apply under the null model and the random
errors are heteroscedastic. Assume that we have responses inY  at design

points int  following the model:

( ) ,...,,1, nitmY ininin =ε+= (1)

where m is a smooth, unknown regression function, and inε ’s are random

errors with zero expectation and finite variance ( ) ( ),var 2
inin tσ=ε  =i

....,,1 n  Without loss of generality, we assume that the design points

nnn tt ...,,1  are generated by a design density f on [ ]1,0  via the relation

( )∫ =int
nidttf

0
.  In the present paper, our main interest is to test the

following parametric hypothesis:

( ) ( ),;:0 θ⋅=⋅ mmH (2)

where ( )θ;⋅m  is a specific nonlinear function of ( ) Θθ ∈θθ= T
p...,,1

,pR⊂  which is an unknown vector of p parameters to be estimated, and

where, under the null model, ( ) ( ),;var 2 θinin tσ=ε  ,...,,1 ni =  for

( ),;2 θ⋅σ  a known function. This is not an unrealistic case; for example,

this situation occurs when testing a postulated parametric generalized
linear model (GLM). In Section 5, we present a real data set to illustrate
the practical use of our methodology.

To test whether the null hypothesis 0H  is false, we measure the

distance between the parametric and nonparametric fits and use this
distance to test the postulated parametric model. Therefore, we must find
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a parametric estimator ( ) ( ( ) ( ))Tnnn tmtm θθθ ˆ;...,,ˆ;ˆ
1=m  of ( ),0θm  where

θ̂  is an estimator of ,0θ  and provide a local linear regression estimator

( ( ) ( ))Tnnhnhh tmtm ˆ...,,ˆˆ 1=m  for ( ) ( )( ) ,...,,1
T

nnn tmtm=m  where h is a

bandwidth or smoothing parameter. Thus, we have the following fit-
comparison type of test statistic hT  for :0H

( ) ( ( ) ( ))∑
=

−=−=
n

i
ininhhh tmtmT

1

22 .ˆ;ˆˆˆ θθmm (3)

The proposed test statistic can provide omnibus, across-the-design
comparisons of a fit under the null model and a local-linear fit that
should be closer to the true mean function when 0H  is false. A

parametric estimation of ( )0θm  and a local linear regression estimation

of m will be discussed in detail in the next section.

The remainder of the paper is organized as follows. Section 2 is an
investigation of the behavior of a data-driven version of the test statistic

hT  in (3) and shows its asymptotic normality under 0H  after appropriate

centering and scaling. The resulting test is consistent against any fixed
nonpolynomial alternative. In Section 3, we discuss how the proposed
data-driven test statistic can be applied to testing the lack of fit of a
postulated parametric GLM model. In Section 4, we study the finite-
sample behavior of the proposed test by generating Poisson data. We also
compare the power of the proposed test with those of Li [18], Härdle and
Mammen [12] and Alcalá et al. [1] in the simulation studies by
considering simulations of both an equally spaced design and an
unequally spaced design. Section 5 illustrates the practical use of the
proposed methodology. Finally, the proofs and required conditions are
presented in the Appendix.

2. The Proposed LLK-based Test

To give more details about the data-driven version of hT  in (3), we

will first introduce how to obtain a parametric estimator of 0θ  and how

to provide a local linear regression estimator of m; we will then describe
the large-sample properties of the proposed test.
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We can use the quasi-likelihood estimator θ̂  for ,0θ  which is the

solution of the following weighted least-squares:

( )( ) ( ) ( )( ),argminˆ 1 θθθθ θ mYmY −−= −
n

T
n ∑

where ( )Tnnnn YY ...,,1=Y  and ( ) { ( ) ( )}.;...,,;diag 2
1

2 θθθ nnn tt σσ=∑

Therefore, θ̂  is the solution of the following quasi-likelihood estimation

equation:

( ) ( ) ( )[ ] ,1 0mYA =−− θθθ n
T ∑

where ( ) ( ) ( )( )Tnnn tt θθθ ;...,,;1 aaA =  for ( ) ( ) .;; θθθ ∂∂= inin tmta

According to Seber and Wild [23, p. 44], θ̂  is a n -consistent estimator

of .0θ  Under 0H  and using conditions (C2) and (C3) given in the

Appendix and a Taylor’s expansion with the Cauchy-Schwarz inequality,

one can show that θ̂  satisfies

( ) ( ) ( ) ,ˆ
00 nn rPmm +=− εθθθ (4)

where ( ) ( ) ,...,,,...,, 11
T

nnnn
T

nnnn rr=εε= rε  a random vector with

( ),max 21
1

−
≤≤

= nor pinni
(5)

and ( ) ( ) [ ( ) ( ) ( )] ( ) ( )0
1

0
1

00
1

000 θθθθθθθ −−−= ∑∑ TT AAAAP  satisfies

( ) ( ).12
0 pn O=εθP (6)

For a detailed proof of (4), see Li [18].

Now, to obtain an LLK estimator hm̂  of m, assume the existence of

the second derivative of the regression function ( )tm  at the point z. Then,

approximate ( )tm  locally by using a polynomial of order 2=p  that is

( ) ( ) ( ) ( ) ( )( ) ,,1 zztztzmzmtm β−≡−′+≈  where ( ) ( )( ) ., T
z zmzm ′=β  Thus,

at the point z, the LLK estimator ( )zmhˆ  of ( )zm  is equal to ,ˆ
1 z
Tβe  where

( )T0,11 =e  is the 12 ×  vector, and zβ̂  is the solution of the following
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weighted least-squares:

( ) ( ),argminˆ
; zznhz

T
zznz z

βββ β XYKXY −−=

where [( ) ] 21;1
1

≤≤≤≤
−−= jni

j
inz ztX  is an 2×n  design matrix, and hz;K

( ) ( ){ }ztKztK nnhnh −−= ...,,diag 1  is an nn ×  diagonal matrix of kernel

weights in which hK  denotes the rescaling ( ) ( ) hhKKh ⋅=⋅  of the

kernel function K. This function is symmetric about zero and supported

on [ ];1,1−  the bandwidth h is used to control the size of the local

neighborhood. Let ,;; zhz
T
zhz XKXS =  and assume that hz;S  is

nonsingular. One can then have the solution nhz
T
zhzz YKXS ;

1
;

ˆ −=β  by

using weighted least-squares theory. Thus, the LLK estimator of ( )zm  is

( ) .ˆ ;
1
;1 nhz

T
zhz

T
h zm YKXSe −= (7)

As a result, the LLK estimator of m is ,ˆ nhh YSm =  and the associated

smoother matrix hS  can be expressed as

.

;
1

;1

;
1

;1 111





















=

−

−

ht
T
tht

T

ht
T
tht

T

h

nnnnn

nn

KXSe

KXSe

S (8)

Note that when ,1=p  the estimator ( )zmhˆ  in (7) becomes the

Nadaraya-Watson estimator. Now, under 0H  and h of exact order 51−n

and by Lemma 1, which are given in the Appendix, one can see that the
expected squared error for the estimator across the design is as follows:

( ) ( ) ( ){ }01
4

0
2

0 ;~ θθθ ⋅+− mJnhhCE nh mYS (9)

with

( ) ( ) ( )∫ ∫−σ=
1

0

1

1

2
0

2
0 ; duuKdttC θθ

and

( ){ } ( ) ( ) 4;; 2
2

1

0

2
001 µ







 ′′=⋅ ∫ dttftmmJ θθ (10)
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for ( ) ( ) 2
0

2
0 ;; ttmtm ∂∂=′′ θθ  and ( )∫−=µ

1

1
2

2 .duuKu  If we now assume

that ( ){ } ,0; 01 >⋅ θmJ  then the asymptotically optimal bandwidth can be

obtained by minimizing (9) with respect to h as follows:

( ) ( )
( ){ } ,

;4

51

01

0
0 





⋅
== θ

θθ
mnJ

C
hh optopt (11)

which decays to zero at the exact rate .51−n  From (10), we can see that

the condition ( ){ } 0; 01 >⋅ θmJ  is equivalent to the null regression

function ( ),; 0θ⋅m  which is not a polynomial of order 2. Furthermore, the

only unknown in ( )0θopth  in (11) is the parameter vector ;0θ  therefore,

under ,0H  one can obtain the estimator ( )θ̂ˆ
optopt hh =  of ( )0θopth  by

replacing 0θ  with the quasi-likelihood estimator .θ̂  As a result, we have

the following data-driven test statistic:

( ) .ˆ 2
ˆˆ θmYS −= nhh optopt

T (12)

Now, we will focus on the limiting distribution of 
opthT ˆ  after recentering

and rescaling.

Let

( ){ } ( ) ( ) ( ) ( ) ( )
( ) ( )∫ 








σ
−σ′′µ

=⋅ −
1

0

2

0

0
0

1
000

2
2

02 ,
;
;

;;
4

; dssf
s
s

ssmmJ T
θ
θθΩθΨθθθ a

where

( ) ( ) ( ) ( )∫ ′′=
1

0
000 ,;; dttftmt θθθΨ a

and

( ) { ( ) ( ) ( )} ( ) .;;; 0
2

1

0
000 dttfttt T θθθθΩ σ= ∫ aa

Then, we can state the main result of .ˆ
opthT
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Theorem 1. Let

[( ( )) ( ( )) ( )] { ( )}

[ {[( ( )) ( ( )) ( )] } { ( )}]
.

ˆ;ˆ4ˆˆˆtr2

ˆ;ˆˆˆˆtr

21
2

42
ˆˆ

1
4

ˆˆˆ
ˆ

θθθθ

θθθθ

⋅+−−

⋅−−−−
=

mJhn

mJhnT
Z

opth
T

h

opth
T

hh
h

optopt

optoptopt

opt ∑

∑

PSPS

PSPS
(13)

If conditions (C1) through (C6), which are given in the Appendix, hold,

then

 (i) ( )1,0ˆ NZ
D

hopt
→  under ,0H

(ii) if 0H  is false, then the test statistic 
opthZ ˆ  satisfies ( )nh qZP

opt
≥ˆ

1→  as ∞→n  for any sequence ( ).51noqn =

In the theorem, we can see that the test obtained by rejecting 0H  if

opthZ ˆ  exceeds the ( )th1100 α−  percentile of the standard normal

distribution is an asymptotic ( )%1100 α−  test for 0H  and is consistent

against any fixed alternative.

3. Application to GLM

In this section, we will illustrate how the proposed test statistic can
be used to assess the validity of a postulated parametric GLM. In the

GLM setting, the random variables inY  have a probability density

function or mass function of the following form:

( ) ( )
( ) ( ) ....,,1,,exp; niyc

a
by

yf in
ininin

inin =






 φ+

φ
ϑ−ϑ

=ϑ

Here the inϑ ’s are the parameters of interest, and ( ) ( ),, ⋅⋅ ba  and ( )⋅c  are

the functions of known form with the dispersion parameter φ. For details,

see McCullagh and Nelder [20]. Let ( ){ } ( ){ }ininin tmgYEg ==ϑ  for ( ),⋅g

which is a known, monotonic, differentiable-link function. Now, we
consider the following null hypothesis:

( ){ } ( ),;:0 θ⋅η=⋅mgH

where ( )θ;⋅η  is a known functional form apart from the vector of



w
w

w
.p

ph
m

j.c
om

TESTING LACK OF FIT FOR HETEROSCEDASTIC … 37

parameters ,θ  then under ,0H  we have ( ) ( ),; inin btm ϑ′=θ  and

( ) ( ) ( ),;2
inin bat ϑ′′φ=σ θ  which is a function of θ  only. Therefore, testing

( ){ } ( )θ;:0 ⋅η=⋅mgH  is equivalent to testing the following hypothesis:

( ) ( ){ }.;: 1
0 θ⋅η=⋅ −gmH

This illustrates that testing 0H  is a special case of testing the lack of fit

of heteroscedastic nonlinear regression models.

In the GLM setting, we find that the maximum-likelihood estimator

of θ  is the solution of ( ) ( ) ( )[ ] ;1 0mYA =−− θθθ n
T ∑  therefore, the

maximum-likelihood and quasi-likelihood estimators coincide in the

setting. As a result, the test statistic 
opthZ ˆ  proposed in Theorem 1 can be

applied.

4. Simulation

In this section, we will present the Monte Carlo results for the
Poisson regression models to compare the power performance of the
proposed LLK-based test with that of the nonparametric boundary-
corrected kernel (NK)-based test by Li [18], the HM test, which is based
on the distance between a kernel nonparametric fit and a kernel-
smoothed parametric fit, by Härdle and Mammen [12], and the ACG test

by Alcalá et al. [1] by considering the case in which ( ) tt 21; θ+θ=η θ  is a

simple linear predictor of ( ) ., 21
Tθθ=θ  Two design types will be

considered: one is an equally spaced design in which design points

( ) ninitin ...,,1,212 =−=  for 100=n  or 200, and the other is an

unequally spaced design in which design points with a sample size of 100

or 200 were generated only once from [ ]1,0U  and then used throughout

all of the simulations. Theorem 1 provides a rough idea of the stochastic

behavior of ,ˆ
opthZ  but if the sample is small or moderate, the normal

approximation does not work well; see, e.g., Härdle and Mammen [12].

Therefore, in the simulation studies, we will use the wild bootstrap

related to the proposals of Wu [26] as an alternative to the normal
asymptotic method.
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To generate bootstrap data, we first define standardized residuals on
the linear predictor scale on the basis of the suggestion of Davison and
Hinkley (6) as follows:

( ) ( ( ))

( ( )) ( ( )) ( )
,...,,1,

1var
ˆ

ˆˆˆ
2

ˆ
ni

stmtmg

tmgyg

iihinhinh

inhin
Lin

optoptopt

opt =
−′

−
=ε

where iihopt
s ˆ  is the ith diagonal element of the LLK smoother matrix

.ˆ
opthS  Let ∗εin  denote the bootstrap residuals generated based on the

residuals ( ( )) ( ( )) .ˆvarˆ ˆ
21

ˆ Lininhinhin tmtmg
optopt

ε′=ε  Let iF̂  be an arbitrary

distribution such that (i) ( ) ,0ˆ =ε∗inFi
E  (ii) ( ) ,ˆ22

ˆ ininFi
E ε=ε∗  and (iii)

( ) .ˆ33
ˆ ininFi

E ε=ε∗  We use a two-point distribution satisfying the

aforementioned three conditions to generate the residuals ,∗εin  more

specifically, ( ) 251ˆ −ε=ε∗ inin  with probability ( ) ,1055 +  and =ε∗in

( ) 251ˆ +εin  with probability ( ) ;1055 −  see Liu [19] for other

constructions. We can then compute the wild-bootstarp test statistic
∗
∗
opth

Z ˆ  in the same manner that we compute the LLK-based test statistic

.ˆ
opthZ

We can obtain the ( )α−1 -quantile, ,∗αz  by using the Monte Carlo

approximation of ∗
opthZ ˆ  and reject the null hypothesis if .ˆ

∗
α> zZ

opth
 The

nominal level 05.0=α  for all tests was used in our simulations. We

conducted 1,000 replications for each configuration of the experiment,
and we performed the bootstrap resampling 100 times for each sample.

To give a fair comparison, we also employed the wild-bootstrap algorithm

to approximate the finite-sample distributions of the NK-based test
statistic, the HM test statistic, and the ACG test statistic.

The 0H  that we wanted to test was

( ) ( ) ( ),;exp: 210 θtmttmH =θ+θ= (14)
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and the data were generated from models with the following mean
functions:

( ) ( )2
21exp,; tttm β+θ+θ=βθ (15)

for ,875.2...,,125.0,0=β  and ;100=n  ,25.2...,,125.0,0=β  and =n

200  for the equally spaced design; ,0.3...,,125.0,0=β  and ;100=n

,75.2...,,125.0,0=β  and 200=n  for the unequally spaced design.

When ,0=β  the generating model (15) becomes the null model (14), and

the generating model (15) provides alternatives that become farther from

the null model as β  increases.

To compute the LLK-based test statistic ,ˆ
opthZ  we used the

Epanechnikov kernel; to compute the NK-based test statistic, we used
the Epanechnikov kernel and associated second-order boundary-corrected

kernel from Müller [21]. Hence, let ( ),ˆ,0ˆ
3 θm=θ  and ( ).ˆ,1ˆ

4 θm=θ  Then,

in our simulations, the data-driven bandwidth { ( )34
ˆˆ15.0ˆ θ−θ=opth

{ ( )}} 51
12

ˆ;ˆ θ⋅θ mJn  with { ( )} ( ),ˆˆˆ005.0ˆ; 2
3

2
4

3
21 θ−θθ=⋅ θmJ  and { ( )} =⋅ θ̂;2 mJ

{ ( ) ( ) ( ) ( )},ˆˆˆ3ˆˆˆ01.0 13
3

3
4

3
2 θΨθΩθΨ −−θ−θθ T  where ( ) ( ( ),ˆˆˆ5.0ˆ 2

3
2
42 θ−θθ=θΨ

[( ) ]) ,ˆˆ1ˆ225.0 2
3

2
42

Tθ+θ−θ  and

( )
( ) [( ) ]

[( ) ] [( ) ]
.

ˆˆ2ˆ2ˆˆˆˆ1ˆˆ

ˆˆ1ˆˆˆˆˆ
ˆ

342
2
2

3
2342

2
2

342
2

234
1

2













θ−θ+θ−θθθ+θ−θθ

θ+θ−θθθ−θθ
=

−−

−−

θΩ

The matrix ( )θ̂P  can be obtained by using ( ) ( ( ),ˆ;ˆ; θθ inin tmt =a

( )) ,ˆ; T
inin tmt θ  and ( ) { ( ) ( )}.ˆ;...,,ˆ;diagˆ

1 θθθ nnn tmtm=∑  We computed the

HM test statistic by using a local constant (Nadaraya-Watson) smoother
and the ACG test statistic by using a local linear smoother with the
quartic kernel as Härdle and Mammen, and Alcalá et al. used in their
papers. However, they did not provide a practical guideline for bandwidth
selection in their test statistics in applications, so we chose smoothing

parameters such that when 0H  is true, the empirical-rejection

probabilities of the two tests do not differ from the nominal level 0.05 at a
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significance level of 0.01, when the two test statistics are computed
through simulations.

For each sample, the values of the LLK-based, NK-based, HM, and
ACG test statistics for testing 0=β  in (15) were computed and compared

with the approximated 0.95-quantiles of their bootstrap distributions.
The empirical powers of the equally spaced design are shown in Figure 1;
the power performance of the NK-based and LLK-based tests is
essentially the same, and the LLK-based test outperforms the HM test
with chosen values of smoothing parameter 0.05 and 0.016 for sample
size 100 and 200, respectively. More specifically, for 100=n  when 0H  is

false and ,875.1...,,875.0,75.0=β  the power of the proposed LLK-based

test is much higher than that of the HM test, and the difference between
the powers of the two tests is significant at the significance level of 0.01.
For ,200=n  the power of the proposed LLK-based test is significantly

higher than that of the NK-based test at the significance level of 0.01
when 0H  is false and .875.1...,,5.0,375.0=β

For the unequally spaced design, the empirical powers are plotted in
Figure 2. When 0H  is true, all tests have empirical-rejection

probabilities close to the nominal level 0.05, and none of the empirical-
rejection probabilities differs from the nominal level 0.05 at the 0.01
significance level. The proposed LLK-based test outperforms both the
NK-based test and the HM test with chosen values of smoothing
parameter 0.055 for 100=n  and 0.02 for .200=n  Specifically for

,100=n  when 0H  is false, the power of the LLK-based test is

significantly higher than that of the NK-based test, when
,75.1...,,375.1,25.1=β  and that of the HM test, when

,375.2...,,625.0,5.0=β  at the 0.01 significance level. For ,200=n

when 0H  is false, the power of the proposed LLK-based test is

significantly higher than that of the NK-based test, when ,625.0,5.0=β

,25.2...,  and the proposed LLK-based test has significantly higher power

than the HM test, when ,875.1...,,5.0,375.0=β  at the 0.01 significance

level. This finding illustrates the advantage of local-linear fitting and
shows that the proposed LLK-based test is preferable to the NK-based
test when the design points are unequally spaced. Furthermore, in the
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LLK-based test, specific boundary-corrected kernels are not needed to
resolve boundary effects.

The power performance of the LLK-based test is slightly better than
that of the ACG test with selected bandwidths 0.145 for 100=n  and

0.138 for 200=n  for equally spaced design and with selected

bandwidths 0.130 for 100=n  and 0.115 for 200=n  for unequally

spaced design. Furthermore, the proposed LLK-based test is more
practical than the ACG test, because no practical guideline for bandwidth
selection was provided in the ACG test.

5. Real-life Example

In this section, we illustrate the practical use of the proposed LLK-
based test statistic with the esterase radioimmunoassay (RIA) data set
(Carroll and Ruppert [4, p. 46]) and include the NK-based test statistic by
Li [18]. The data consist of RIA assessment of esterase levels in 106
samples; the level of radioactivity is the response, and the concentration

of esterase is the covariate. The data are shown in Figure 3; the t variable

is used to denote the concentration of esterase rescaled so that all points

fall within the interval [ ].1,0

To investigate the relationship between the concentration of esterase
and the RIA count, we consider fitting a log-linear model whose linear

predictor is a polynomial of order p as follows:

( )( ) ( )θ,log:0 ttmH η= (16)

for ( ) ., 1
21

−θ++θ+θ=η p
pttt θ  We first wish to assess the validity of

the following parametric log-linear model to the data set:

( ) ,,: 2110 ttH θ+θ=η θ (17)

and ( ) ( )tt 21
2 exp θ+θφ=σ  under .10H  The value of the proposed

LLK-based test statistic 
opthZ ˆ  for 10H  is 10.48 and that of the NK-based

test statistic by Li [18] for 10H  is 4.77. The 0.95-quantile of the bootstrap

distribution approximating the sample distribution of the LLK-based test

statistic under 10H  in (17) is 3.44; that of the NK-based test statistic is
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1.99. Therefore, the two bootstrap tests rejected the postulated
parametric model at the significance level 0.05, which suggests that
according to both test statistics, the proposed log-linear model in (17)
cannot fit the data set well.

We now fit the data set by the following log-linear model:

( ) ,,: 2
32120 tttH θ+θ+θ=η θ (18)

and ( ) ( )2
321

2 exp ttt θ+θ+θφ=σ  under .20H  The observed LLK-based

test statistic for the model in (18) is 0.92, and the approximated
0.95-quantile of the sample distribution of the LLK-based test statistic
under 20H  in (18) is 1.71 from the bootstrap distribution. The observed

NK-based test statistic is –0.462, and the 0.95-quantile of the bootstrap
distribution approximating the sample distribution of the NK test
statistic under 20H  in (18) is 0.91. As a result, the two bootstrap tests do

not reject the proposed log-linear model in (18), which suggests that the
parametric model fits the data set well enough. The parametric,
LLK-based and NK-based fits are given in Figure 3, in which the fitted

parametric log-linear model is ( ) ( ).65.257.465.4expˆ; 2tttm −+=θ

Appendix

To prove Theorem 1 given in Section 2, we need some required
conditions and a series of lemmas. The arguments of the proof of the
theorem are similar to those of Theorem 2.1 in Li [18]. Hence, we will
give only a brief sketch of the proof. We will give the lemmas and the
proofs of the lemmas after the proof of the Theorem. To begin, let us first
outline the following required conditions:

(C1) ( ) ( ) ( ) ( ),lim 11 θΩθθθ =−−

∞→
AA ∑T

n
n  which is nonsingular, uniformly

in ,0 ΘΘ ⊂∈θ  where 0Θ  is an open neighborhood of ,0θ  and Θ is a

compact region.

(C2) ( ) j
t

tm θθ
Θθ

∂∂
∈

;supsup
0

 is bounded for ....,,1 pj =

(C3) ( ) ( ) 0;;suplim
0

0
=|∂∂−∂∂ =→ θθθθ

θθθθ jj
t

tmtm  for ....,,1 pj =
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(C4) ( ) ( ) 22 ;; ttmtm ∂∂=′′ θθ  is Lipschitz continuous of order ζ in t for

.Θ∈θ

(C5) ( ) j
t

tm θθ
θ

∂′′∂
∈

;supsup
0Θ

 is bounded for ....,,1 pj =

(C6) 120

1
max δ+

≤≤
εinni

E  is bounded for some .01 >δ

Proof of Theorem 1. Using Lemma 1, the Cauchy-Schwarz

inequality, ( ) ( ),12
0 pn O=εθP  ( ),max 21

1
−

≤≤ = nor pinni  and 2
nhεS

( ),1−= hOp  one can rewrite 
opthT ˆ  in (12) as

( ( )) ( ( )) ( ) ( )0ˆ0ˆ
2

0ˆˆ 2 θθεεθ mSIPSPS
optoptoptopt h

T
h

T
nnhh

T −−−−=

( ){ } ( ).;ˆ 101
01

4 nomJhn popt +⋅+ θ (19)

Furthermore, by using Lemmas 1 through 3, Chebychev’s inequality, and
Slutsky’s Theorem, we can express (19) as

[( ( )) ( ( )) ( )] { ( )}θθθθ ˆ;ˆˆˆˆtr 1
4

ˆˆˆ ⋅−−−− mJhnT opth
T

hh optoptopt
∑PSPS

( )∑ ∑
≠ =

+ε−εε=
ji

n

i
pinijninhij Ow

opt
1

; ,12 (20)

where 
opthijw ;  is the ( )ji, -element of ,

optopt h
T
h SS  and kn  is the kth

element of ( ( )) ( ) ( ).00 θθ mSIPS
optopt h

T
hn −−=L  Therefore, by using

Lemma 5 and the Central Limit Theorem in Heyde and Brown [15], we
can show that

( ),1,02
1

; Nvw
D

n
ji

n

i
ininjninhij opt

→












ε−εε∑ ∑

≠ =

(21)

where {[( ( )) ( ( )) ( )] } ( ) ,4tr2 2
0

212
000

2
nh

T
hn optopt

v Lθθθθ ∑∑ +−−= PSPS

which is  51n  because of Lemmas 1 and 4. Finally, by using Lemmas 3

and 4, we can estimate 2
nv  consistently by {[( ( )) ( −−

optopt h
T

h ˆˆ
ˆtr2 SPS θ
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( )) ( )] } { ( )},ˆ;ˆ4ˆˆ
2

42 θθθ ⋅+ mJhn opt∑P  and by using Slutsky’s theorem, the

proof can be finished from (20) and (21).

The arguments of the proof of consistency are similar to those
presented in Li [18]; therefore, the proof is omitted.

Lemma 1. If 1 5,h n−  then

(i) [ ( )] ( ) ( )∫ ∫−σ
1

0

1

1
2

0
2

0 ,;~tr hduuKdtth
T
h θθ∑SS

(ii) [( ( )) ( ( )) ( )] ( ) ( )∫ ∫−σ∑−−
1

0

1

1
2

0
2

000 ,;~tr hduuKdtth
T

h θθθθ PSPS

(iii) ( ) ( ) ( ){ } ( ),; 4
01

42
0 nhomJnhh +⋅=− θθmSI

(iv) { ( )} ( ){ } ( ),;ˆ; 101
011

−=⋅−⋅ nomJmJ pθθ

(v) {[ ( )] } ( ) ( )∫ ∫−
∗σ

1

0

2

2
2

0
42

0 ,;~tr hdzzKdtth
T
h θθ∑SS  where ( ) =∗ zK

( ) ( )∫− −
1

1
duuzKuK  is the convolution kernel with support on [ ],2,2−

and

(vi) {[ ( )( ) ( )( ) ( )] } {[ ( )] } ( ).1trtr 2
0

2
000 Oh

T
hh

T
h +∑=−− θθθθ SSPSPS ∑

Proof. Let [ ] ,1,0;;;; ≤≤+== jjhttht
T
tht ininininin

sXKXS  ,...,,1 ni =

( )⋅nF  be the empirical distribution for the design, and ( ) ( )∫=
t

dssftF
0

.

Set ,hhh UBLBB ∪=  where { },: httLBh <=  and { },1: httUBh −>=

( )∫−=µ
1

1
,duuKur

r  ( )∫ α−α− =µ
1

, ,
ii

duuKur
r  and ( )∫

α

−α =µ i
i

duuKur
r 1, .

Using ( ) ( ) ( ),sup 1−=− nOtFtFnt  one can show that

( ) ( )∑
=

−−=
n

innh
r

innrht ttKtts
in

1
;;

( ) ( ) ( ),1, Onhotfnh r
trin

r
in

++µ= (22)
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where 
intr,µ  is rµ  if ,hin Bt ∉  

ir α−µ ,  if hin LBt ∈  (i.e., ,ht iin α=

),10 <α≤ i  or 
ir αµ ,  if hin UBt ∈  (i.e., ,1 ht iin α−=  ).10 <α≤ i

Therefore, htin ;S  can be expressed as

( ) ( ){ },11; otnf
inin tinht += HHMS (23)

where { },,1diag h=H  and 
intM  is [ ] 1,0 ≤≤+µ= jjM  if ,hin Bt ∉  

iα−M

[ ] 1,0; ≤≤α−+µ= jj i
 if ,ht iin α=  or [ ] 1,0; ≤≤α+α µ= jj ii

M  if .1 ht iin α−=

Let ( ) ,;0;; ininininin ththt
T
tht XKKXS θ∑=∗  [ ] ,1,0 ≤≤+

∗ ν= jjM  =∗
α− i

M

[ ] ,1,0; ≤≤α−+ν jj i
 and [ ] ,1,0; ≤≤α+

∗
α ν= jj ii

M  where ( )∫−=ν
1

1
2 ,duuKur

r

( )∫ α−α− =ν
1 2

, ,
ii

duuKur
r  and ( )∫

α

−α =ν i
i

duuKur
r 1

2
, .  Because ( )tFntsup

( ) ( ),1−=− nOtF  we can show that

( ) ( ) ( ){ },11; 0
21

; ottfnh
inin tininht +σ= ∗−∗ HHMS θ (24)

where ∗
intM  is ∗M  if ,hin Bt ∉  ∗

α− i
M  if ,ht iin α=  or ∗

αi
M  if

.1 ht iin α−=  The proof of (i) can be finished by using the cyclic property

of the trace, (23), (24), and ( ) ( ) ( ).sup 1−=− nOtFtFnt

Let ( )0θijp  be the ( )ji, -element of ( )0θP  and hijs ;  be that of .hS

One can then obtain the following facts:

( ) ( ),max 1
0,

−= nOpijji
θ (25)

( ) ( ) ( ) ( ) ( ),;maxmax;max 1
0

2
0,0

2
0,

−=σ≤σ nOtptp jnjijjijnijji
θθθθ  and (26)

( ) ( ).max1maxmax
1

; jjjj

n

j
jhiji

dOOdds =≤∑
=

(27)

Then, using ( ) ( ) ( ) ( ) ( ) ( ) ( ),0000000 θθθθθθθ TT PPPP ∑∑∑ ==  (25) through

(27), and the cyclic property of the trace, the proof of (ii) is finished.
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(iii) By applying a Taylor’s expansion to ( ),0θm  the ith-component of

( )0θmSh  is

( )0;
1

;1 θmKXSe ht
T
tht

T
ininin

−

( ) ( ) ( ) ( ).,;
2
1; 2

3;;2;;
1

;100 hosstmtm T
hththt

T
inin ininin

+′′+= −Seθθ (28)

Thus, by (22), the ith-component of ( ) ( )0θmSI h−  is

( ) ( ) ( ){ }.11,;
2
1

,3,2
1

10
2 otmh T

ttt
T

in ininin
+µµ′′− −Meθ (29)

Consequently, because ( ) ( ) ( ),sup 1−=− nOtFtFnt  we can obtain the

desired result from (29).

(iv) The proof is immediately done because ( ),ˆ 21
0

−=− nOpθθ  and

( ) ( ) ( ) ( ) ( )∫ ∫ −+′′=′′
1

0

1

0
212

0
2 .;ˆ; nOdttftmdttftm pθθ

(v and vi) Let ∗∗∗ = hhh UBLBB ∪  for { }httLBh 2: <=∗  and =∗
hUB

{ }.21: htt −>  Let [ ] .; h
T
hhijh w SSW ==  Then, for n sufficiently large,

by using the result in (23), a Taylor’s expansion and ( ) ( ) =− tFtFntsup

( ),1−nO  one can show

( ) ( ) ( )

( ) ( )

( )





















>−

≤−∉

∈∉∉∈

∈∉∉∈




+








 −

∈∈






=

∗

∗∗∗∗

∗∗∗∗

∗

∗∗

.2if,0

,2satisfiesand,,

,and,and

,and,andif,1

,,or,if,1

;

htt

httBtt

UBtBtBtUBt

LBtBtBtLBt
nh

o
tnhf
h

tt
K

UBttLBtt
nh

O

w

jnin

jninhjnin

hjnhinhjnhin

hjnhinhjnhin
jn

jnin

hjninhjnin

hij

This proof can be done by using the above fact, the cyclic property of the

trace, (25) through (27), and ( ) ( ) ( ).sup 1−=− nOtFtFnt

Lemma 2. If conditions (C5) and (C6) hold, then

(i) ( ( )) [( ( )) ( ( )) ( )]00ˆ0ˆ
2

0ˆ tr θθθεθ ∑PSPSPS −−−−
optoptopt h

T
hnh
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( ( )) [( ( )) ( ( )) ( )] ( ),tr 101
000

2
0 noph

T
hnh optoptopt

=−−+−− θθθεθ ∑PSPSPS

(ii) ( ( )) ( ) ( ) ( ( ))Th
T
nh

T
h

T
n optoptopt

00ˆ0ˆ θθθε PSmSIPS −−−− ε

( ) ( ) ( ),101
0 nophopt

=− θmSI

and

(iii) ( ) ( ) ( ) ( ) ( ).101
00ˆˆ noph

T
h

T
nh

T
h

T
n optoptoptopt

=−−− θεθε mSISmSIS

Proof. (i) First note that ( ) ( )21ˆ −=− nOhhh poptoptopt  by using a

Taylor’s expansion and (C5). To finish the proof, we use a partitioning

argument similar to one used in Härdle et al. [13]. Since ( −opthP ˆ

) 1→≤ γ−nhh optopt  for ,21<γ  we need to consider only those values

of h falling in { }.: γ−≤−= nhhhhH optoptn  Let 
21,; hhrjw  be the

( )jr, -element of ( ( )) ( ( )) ( ( )) ( ( )).0000 2211
θθθθ PSPSPSPS −−−−− h

T
hh

T
h

Then, for ,, 21 nHhh ∈  one can show that ( )2
121,; 21

nhhhOw hhrj −=

uniformly in r, j by using (23) and the Mean Value Theorem. The

remainder of the proof can be finished by using the moment condition

(C6) and the inequality (8) from Whittle [25].

The arguments of proving (ii) and (iii) are similar to those for (i), so it

is omitted.

Lemma 3. If ( ),ˆ 21
0

−=− nOpθθ  then

 (i) [( ( )) ( ( )) ( )] [( ( )) ( −−−−−
optoptoptopt h

T
hh

T
h ˆ0ˆˆˆ trˆˆˆtr SPSPSPS θθθθ ∑

( )) ( )] ( ),101
00 nop=θθ ∑P  and

(ii) {[( ( )) ( ( )) ( )] } {[( ( )) (
optoptoptopt h

T
hh

T
h ˆ0ˆ

2
ˆˆ trˆˆˆtr SPSPSPS θθθθ −−−− ∑

( )) ( )] } ( ).1012
00 nop=− θθ ∑P

Proof. The proof can be done by using ( ),ˆ 21
0

−=− nOpθθ  ( ) −θ̂A

( ) ( ) ( ) ( ) ( ),ˆ, 23
0

21
0

−− =−= nOnO pp θθθ PPA  and (27).
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Lemma 4. If 1 5h n−  and conditions (C1) and (C4) hold, then

 (i) ( )( ( )) ( ) ( ) { ( )} ( ),; 101
02

42
000

21 nomJnhh
T

h +⋅=−− θθθθ mSIPS∑
and

(ii) { ( )} ( ){ } ( ).1;ˆ; 022 pomJmJ =⋅−⋅ θθ

Proof. (i) First, using (29), condition (C1), and ( ) ( ) =− tFtFntsup

( ),1−nO  one can show that ( ) ( ) ( ) ( ) ( )0
1

2
2

00 2 θθθ −µ−=− ∑hh
T mSIP

( ) ( ) ( ) ( ) ( ),2
00

1
0

1
0 hon T +′′−− θθθΩθ mAA  where ( ) ( ( ),; 010 θθ ntm ′′=′′m

( )) .;..., 0
T

nntm θ′′  By using (23), (C4), and ( ) ( ) ( ),sup 1−=− nOtFtFnt  it

can be shown that the ith element of ( )0θmS ′′T
h  is ( ) ( )ζ+′′ hOtm in 0; θ  if

∗∉ hin Bt  or ( )1O  if .∗∈ hin Bt  Hence, the ith element of ( ) ( )0θmSIS h
T
h −

is ( ) ( )2
02

2 2; hotmh in +′′µ− θ  if ∗∉ hin Bt  or ( )2hO  otherwise. Finally, the

proof can be finished by using ( ) ( ) ( ),sup 1−=− nOtFtFnt  (C4), and

( ) ( ) ( ) ( ).1
000

1 −− +=′′ nOn T θΨθθ mA

(ii) The proof is immediately finished because ( ).ˆ 21
0

−=− nOpθθ

Lemma 5. Let ,2
1
1 ; nkn

k
j knjnhkjkn vwU

opt
ε




 −ε= ∑ −

=
 where kn  is

the kth element of ( ( )) ( ) ( ),00 θθ mSIPS
optopt h

T
hn −−=L  and =2

nv

{[( ( )) ( ( )) ( )] } ( ) .4tr2 2
0

212
000 nh

T
h optopt

Lθθθθ ∑∑ +−− PSPS  Then,

under (C6) for 10 ≤δ<  as ,∞→n

 (i) ∑ =
δ+ →n

k knUE
1

22 ,0  and

(ii) ( ) ,01
1

1 1
2 →−|

δ+

= −∑n
k kknUEE ε

where ( )Tnknk ,111 ...,, −− εε=ε  for ....,,1 nk =

Proof. We take 1=δ  to establish this lemma.

(i) First note that 2 1 5
nv n  because of Lemmas 1 and 4. We can
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express knU  as ,knknknknkn LQU ε+ε=  where ∑ −
=

ε= 1
1 ; ,2

k
j njnhkjkn vwQ

opt

and ,2 nknkn vL −=  then using ( ),1; opthkj nhOw
opt

=  which was given

in Lemma 1, the moment condition (C6), and ( ),2
optkn hO=  it can be

seen that [( ) ] ( )∑ =
=εn

k knkn oQE
1

4 ,1  and [( ) ] ( )∑ =
=εn

k knkn oLE
1

4 .1

Hence, the proof of (i) is complete.

(ii) Using Lemma 1, we can write 2
nv  as ( ),12

3
2
2

2
1

2 Ovvvv nnnn +++=

where ( )∑ =
σ=

n
k knhkkn twv

opt1 0
42

;
2
1 ,;2 θ  ∑ ∑=

−
=

=
n
k

k
j hkjn opt

wv
2

1
1

2
;

2
2 4

( ) ( ),;; 0
2

0
2 θθ jnkn tt σσ  and ( )∑ =

σ= n
k knknn tv

1 0
222

3 .;4 θ  In addition,

( )
2

1 1
2 1



 −|∑ = −

n
k kknUEE ε  can be expressed as

( )
2

1
1

2 1











−ε|∑

=
−

n

k
kknUEE

( ) ( )
2

1
0

222 ;











σ+= ∑

=

n

k
knknkn tLQE θ

( ) ( ) ( )























σ












σ++ ∑∑

==

n

i
ininin

n

k
knknkn tLQtLQE

1
0

2

1
0

222 ;;4 θθ

( ) ( ) ( )∑∑
==

++σ−











σ+

n

k
knknkn

n

k
knknkn LQEttLQE

1

2
0

2
2

1
0

2 .1;2;4 θθ (30)

Because

( ) ( ) ( ),1; 422
2

2
1

2

1 0
22 ovvvtQE nnn

n

k knkn ++=



 σ∑ =

θ

( ) ( ) ( ),1; 22
2

2
11 0

22 ovvvtQE nnn
n

k knkn ++=



 σ∑ =

θ

and ( ) ,; 22
31 0

22
nn

n
k knkn vvtL =σ∑ =

θ  the first term of (30) is ( ).11 o+  Using
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( )2
optkn hO=  and ( )opthkj nhOw

opt
1; =  and knowing that only ( )optnhO

nonzero 
opthkjw ;  exists for any fixed j, we can show that the third term of

(30) is ( ).1o  Using the Cauchy-Schwarz inequality and the above result

shows that the second term of (30) is also ( ).1o  Finally, the proof can be

finished by demonstrating that ( ) ( ) ( )∑ =
+=+σn

k knknkn oLQEt
1

2
0

2 .11; θ

Figure 1. Comparison of the Poisson empirical power function among the local-linear kernel

(LLK)-based test, nonparametric boundary-corrected kernel (NK)-based test, Härdle and

Mammen test, and Alcalá et al. test for the null model ( ) ttm 21log θ+θ=  and

alternative models ( ) 2
21log tttm β+θ+θ=  based on the nominal level 0.05.
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Figure 2. Comparison of the Poisson empirical power function among the
local-linear kernel (LLK)-based test, nonparametric boundary-corrected
kernel (NK)-based test, Härdle and Mammen test, and Alcalá et al. test

for the null model ( ) ttm 21log θ+θ=  and alternative models ( ) 1log θ=tm

2
2 tt β+θ+  based on the nominal level 0.05.
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Figure 3. Parametric ( ( ) ( )),65.257.465.4expˆ, 2tttm −+=θ  local-linear

kernel (LLK)-based fit, and nonparametric boundary-corrected kernel
(NK)-based fit for the esterase radioimmunoassay data
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