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Abstract

In this paper, we propose a data-driven test for assessing the
appropriateness of heteroscedastic nonlinear regression models by using
local linear regression smoothers in which no boundary-corrected
kernels are needed to resolve boundary effects. The method is proposed
for selecting a bandwidth by using the asymptotically optimal bandwidth
under the parametric null model. This selection method leads to the
data-driven test that has a limiting normal distribution under the null
hypothesis and is consistent against any fixed alternative. The resulting
test can be applied to testing the lack of fit of a postulated generalized
linear model and is compared to some existing tests. We will apply
esterase radioimmunoassay data to demonstrate the practical use of the
proposed test.

1. Introduction

In recent years, nonparametric regression techniques have rapidly
become popular tools for testing the validity of postulated parametric

regression models. For example, see Fowlkes [11], Cox et al. [5], Barry
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and Hartigan [2], le Cessie and van Houwelingen [17], Muller [22],
Eubank and Hart [8], Hardle and Mammen [12], Stute [24], Zheng [27],
Dette [7], Li [18], Alcala et al. [1], Fan et al. [10], and Horowitz and
Spokoiny [16], Fowlkes [11] compared parametric and nonparametric
(nearest-neighbor) fits to define residuals for testing the adequacy of
binary logistic regression models; however, Fowlkes did not propose a
formal test statistic for testing the hypothesis. The kernel smoothing
method proposed by le Cessie and van Houwelingen [17] used a weighted
sum of the smoothed standardized residuals as the goodness-of-fit
measure for binary logistic regression models. In addition, Cox et al. [5],
Barry and Hartigan [2], Eubank and Hart [8], and Hirdle and Mammen
[12] proposed methods that use kernel or series-type smoothers to assess
the lack of fit of parametric models for which the usual smoothing
parameter asymptotics do not apply. In this paper, we will focus on the
situation in which this is not the case, and smoothing parameters can be
expressed in a standard, asymptotic manner. As will be seen in Section 2,
the large-sample properties of the proposed test are substantially
different from others that have been previously discussed in the

literature.

Li [18] proposed a data-driven test statistic based on the comparison of
parametric and nonparametric Gasser-Miiller kernel fits for testing the
lack of fit of heteroscedastic nonlinear regression models. In Li’s test, the
problems of boundary effects are resolved by using boundary-corrected
kernels as design points in the boundary regions. This test is applied to
assess the linearity of the logit link in the logistic regression models and
that of the log link in the Poisson regression models. In contrast to Li’s [18]
work, the present paper proposes a data-driven test statistic based on the
comparison of parametric and local-linear kernel (LLK) fits in which no
boundary-corrected kernels are needed for the local-linear fitting as design
points in the boundary regions. Alcala et al. [1] also used LLK smoothers,
but they did not provide a practical guideline for bandwidth selection in
their test statistic. Local-linear smoothers have the attractive property of
automatic boundary correction; the order of the bias at the boundary
automatically remains the same as that in the interior. Another

attractive property is that local-linear smoothers can adapt to various
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types of designs such as random and fixed designs or highly clustered
and nearly uniform designs. For a more detailed discussion of the
advantages of local polynomial smoothers, see Fan and Gijbels [9],
Bowman and Azzalini [3], and Hart [14]. The simulation study of an
unequally spaced design, which is presented in Section 4, demonstrates
that the proposed test is superior to the one proposed by Li [18].
However, both tests have essentially the same power when applied to an
equally spaced design.

In this paper, we will study the case in which the smoothing
parameter asymptotics can apply under the null model and the random
errors are heteroscedastic. Assume that we have responses Y;,, at design

points ¢;, following the model:
Yin = m(tin)+ Ein> i=1..,n, (1)
where m is a smooth, unknown regression function, and ¢;,’s are random

errors with zero expectation and finite variance var(e;,) = 62(t;,), i =
1, ..., n. Without loss of generality, we assume that the design points

s - byy are generated by a design density fon [0, 1] via the relation
t.
Iom f(¢)dt = i/n. In the present paper, our main interest is to test the

following parametric hypothesis:

Hy : m() = m(-; 90), 2

where m(-; ) is a specific nonlinear function of 0 = (61, ..., Op)T €0
< R?, which is an unknown vector of p parameters to be estimated, and
where, under the null model, var(e;,) = Gz(tin; 0), i=1,..n, for

02(0; 0), a known function. This is not an unrealistic case; for example,

this situation occurs when testing a postulated parametric generalized
linear model (GLM). In Section 5, we present a real data set to illustrate
the practical use of our methodology.

To test whether the null hypothesis H, is false, we measure the

distance between the parametric and nonparametric fits and use this
distance to test the postulated parametric model. Therefore, we must find
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a parametric estimator m(8) = (m(ty,,; 0), ..., m(t,,; )" of m(0,), where

A

0 is an estimator of 0, and provide a local linear regression estimator

A A A T T :
my, = (my(t,), ..., my(t,,)) for m = (m(t,), ..., m(t,,))" , where h is a

bandwidth or smoothing parameter. Thus, we have the following fit-
comparison type of test statistic 73, for Hy:

Ty = [y —m@) > = (g tin) — mltins 0)7- 3)
i1

The proposed test statistic can provide omnibus, across-the-design
comparisons of a fit under the null model and a local-linear fit that
should be closer to the true mean function when H, is false. A

parametric estimation of m(0;) and a local linear regression estimation

of m will be discussed in detail in the next section.

The remainder of the paper is organized as follows. Section 2 is an
investigation of the behavior of a data-driven version of the test statistic
T}, in (3) and shows its asymptotic normality under H, after appropriate

centering and scaling. The resulting test is consistent against any fixed
nonpolynomial alternative. In Section 3, we discuss how the proposed
data-driven test statistic can be applied to testing the lack of fit of a
postulated parametric GLM model. In Section 4, we study the finite-
sample behavior of the proposed test by generating Poisson data. We also
compare the power of the proposed test with those of Li [18], Hardle and
Mammen [12] and Alcala et al. [1] in the simulation studies by
considering simulations of both an equally spaced design and an
unequally spaced design. Section 5 illustrates the practical use of the
proposed methodology. Finally, the proofs and required conditions are
presented in the Appendix.

2. The Proposed LLK-based Test

To give more details about the data-driven version of 7}, in (3), we
will first introduce how to obtain a parametric estimator of 65 and how

to provide a local linear regression estimator of m; we will then describe
the large-sample properties of the proposed test.
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We can use the quasi-likelihood estimator 0 for 0y, which is the

solution of the following weighted least-squares:
0 = argminy (Y, - m(0))" X7(0)(Y, - m(9)),

where Y, = (Yi,, ... ¥,,)] and X(0) = diag{cZ(t;,; 0), ..., 52(t,n; 0)).

Therefore, 0 is the solution of the following quasi-likelihood estimation

equation:

AT(0)27'(0)[Y, - m(8)] = 0,

where  A(0) = (a(ty,; 0), ..., a(t,,; (-)))T for al(t;,; 0) = om(t;,; 0)/00.
According to Seber and Wild [23, p. 44], 0 is a v/n -consistent estimator
of 035. Under H; and using conditions (C2) and (C3) given in the
Appendix and a Taylor’s expansion with the Cauchy-Schwarz inequality,

one can show that 0 satisfies

m(8) - m(8y) = P(By )&, + 1y, @)
T T .
where g, = (1, - €pn) > Ty = (ps - Tyn) > @ random vector with
| = -1/2
max|ry | = 0,(n"77), (5)

and P(8,) = A(0y)[AT(00)Z 71 (05)A0y)] AT (0,)Z71(0,) satisfies

| POz, |* = 0,(0). ©
For a detailed proof of (4), see Li [18].

Now, to obtain an LLK estimator mj of m, assume the existence of
the second derivative of the regression function m(t) at the point z. Then,

approximate m(t) locally by using a polynomial of order p = 2 that is
m(t) ~ m(z) + m'(z)(¢ - 2) = (1, (t — z))B,, where B, = (m(z), m'(z))". Thus,
at the point z, the LLK estimator mj,(z) of m(z) is equal to e1T B., where

e; = (1, 0)7 is the 2x1 vector, and B, is the solution of the following
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weighted least-squares:

A

B, = argmin[}z (Y, - Xsz)TKz;h(Yn -X.B.),

where X, = [(¢, — z)]fl]lgign.lgjgg is an n x 2 design matrix, and K.,

= diag{K}(t,, — 2), ..., Kj(t,,, — 2)} is an n x n diagonal matrix of kernel
weights in which K, denotes the rescaling K(-) = K(/h)/h of the

kernel function K. This function is symmetric about zero and supported
on [-1,1]; the bandwidth A is used to control the size of the local

neighborhood. Let S, :X;FKZ;hXZ, and assume that S,., 1is

nonsingular. One can then have the solution ﬁz = S;;thZKZ; Y, by

using weighted least-squares theory. Thus, the LLK estimator of m(z) is
’hh(z) = e,ITS;;thng;hYn’ (7)

As a result, the LLK estimator of m is mj;, = S,Y,,, and the associated

smoother matrix S; can be expressed as

Tgq-1 T
€1 Stln; hthKtm; h
S, = : . ®)

Tg-1 T
(] Stnn; hthK

tans P
Note that when p =1, the estimator my(z) in (7) becomes the

Nadaraya-Watson estimator. Now, under H( and & of exact order n Y5

and by Lemma 1, which are given in the Appendix, one can see that the

expected squared error for the estimator across the design is as follows:

E|S,Y, - m(8) ||2 ~ C(89)/h + nh*Jy{m(:; 8p)} 9
with

C(0,) = J 01 o2(t; 0,)dt j _llKQ(u)du
and

it 00) = { [ s 0F ) 10



TESTING LACK OF FIT FOR HETEROSCEDASTIC ... 35

1
for m'(t; 0y) = 0°ml(t; 0o)/ot? and py = -[—1 u?K(u)du. If we now assume
that J7{m(-; 0g)} > 0, then the asymptotically optimal bandwidth can be
obtained by minimizing (9) with respect to & as follows:

1/5
hopt = hOpt(eo) - {%} ’ (11)

-1/5

which decays to zero at the exact rate n~7/°. From (10), we can see that

the condition Ji{m(-; 05)} >0 1is equivalent to the null regression
function m(-; 8p), which is not a polynomial of order 2. Furthermore, the

only unknown in %,,,(8p) in (11) is the parameter vector 8y; therefore,
under H(, one can obtain the estimator ﬁopt = hopt(é) of hyp(89) by

replacing 0, with the quasi-likelihood estimator 0. As a result, we have

the following data-driven test statistic:

T~

; Y, - m(6) . (12)

opt - " Sflopt

Now, we will focus on the limiting distribution of Tﬁ after recentering

opt
and rescaling.
Let
2 A1 . 2
Talm(: 0) = £2 [ {m(s; 09)ofs: 09) - w7 (0)2700) X200 ),
where
1
¥(0) = [ a(t 00)m'(t: 00) (1)
and

(0) = [ falt; 00)a” (; 00 o?(: 00)} 01t

Then, we can state the main result of T};
opt
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Theorem 1. Let

T, —tr[(S; -P®)(S; —P®O)IO)] - nhgydyim(-; )}
7. _ opt opt opt (]_3)

tot a8y, ~PO)'(S; - PO)ZOIF} + dnhgyeTyim(; 0}

If conditions (C1) through (C6), which are given in the Appendix, hold,
then

D
1) Z; — N(0,1) under H,,
h 0
opt

(ii) if Hy is false, then the test statistic Z;  satisfies P(Z}AL > q,)
opt opt

— 1 as n - o for any sequence q,, = o(n1/5).

In the theorem, we can see that the test obtained by rejecting H if

Z; exceeds the 100(1 — a)th percentile of the standard normal
opt

distribution is an asymptotic 100(1 — a)% test for H{ and is consistent

against any fixed alternative.
3. Application to GLM

In this section, we will illustrate how the proposed test statistic can
be used to assess the validity of a postulated parametric GLM. In the
GLM setting, the random variables Y;, have a probability density

function or mass function of the following form:

f(Yins Sin) = eXp{yi”ng_d))b(Si”) + c(Yins ¢)}, i=1,.., n

Here the 9;,’s are the parameters of interest, and a(-), b(-), and c(-) are

the functions of known form with the dispersion parameter ¢. For details,
see McCullagh and Nelder [20]. Let 9;, = g{E(Y;,)} = g{m(¢;,)} for g(),

which is a known, monotonic, differentiable-link function. Now, we

consider the following null hypothesis:
Hy : g{m(); = n(:; 0),

where n(; 0) is a known functional form apart from the vector of
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parameters 0, then under H,, we have mf(t,;0)=2">'(9;,), and

62(t;,; ) = a($)b"(9;,), which is a function of 8 only. Therefore, testing
Hy : g{m()} = n(-; 0) is equivalent to testing the following hypothesis:

Hy:m() =g '{n(; 0)).
This illustrates that testing H( is a special case of testing the lack of fit

of heteroscedastic nonlinear regression models.

In the GLM setting, we find that the maximum-likelihood estimator
of 0 is the solution of AT(0)X7'(8)[Y, - m(8)] = 0; therefore, the

maximum-likelihood and quasi-likelihood estimators coincide in the
setting. As a result, the test statistic Z i proposed in Theorem 1 can be
opt

applied.

4. Simulation

In this section, we will present the Monte Carlo results for the
Poisson regression models to compare the power performance of the
proposed LLK-based test with that of the nonparametric boundary-
corrected kernel (NK)-based test by Li [18], the HM test, which is based
on the distance between a kernel nonparametric fit and a kernel-
smoothed parametric fit, by Hardle and Mammen [12], and the ACG test
by Alcala et al. [1] by considering the case in which n(¢; 0) = 6; + 04t is a

simple linear predictor of 0 = (0, 05)/. Two design types will be

considered: one is an equally spaced design in which design points
L, =(2i-1)/2n,i=1,..,n for n =100 or 200, and the other is an

unequally spaced design in which design points with a sample size of 100

or 200 were generated only once from UJ[0, 1] and then used throughout

all of the simulations. Theorem 1 provides a rough idea of the stochastic

behavior of Z}; , but if the sample is small or moderate, the normal
opt

approximation does not work well; see, e.g., Hirdle and Mammen [12].
Therefore, in the simulation studies, we will use the wild bootstrap
related to the proposals of Wu [26] as an alternative to the normal
asymptotic method.
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To generate bootstrap data, we first define standardized residuals on
the linear predictor scale on the basis of the suggestion of Davison and
Hinkley (6) as follows:

g(yin) - g(mﬁopt (tin ))

\/ g'2(mﬁopt (tin)) Var(mﬁom (t) (@ — 57 ptii) ;

0,

1 =1, .., n,

€Lin =

where Sp is the ith diagonal element of the LLK smoother matrix
opt

S; . Let e, denote the bootstrap residuals generated based on the
opt

residuals &, = g'(m; (i) var’*(m; (t;n))2Ln. Let F, be an arbitrary
hopt hopt

distribution such that () Ep(e,) =0, () Ep (e2)=¢2,, and (i)

E 7 (ei3)=¢&},. We use a two-point distribution satisfying the

aforementioned three conditions to generate the residuals &j,, more
specifically, &, = &;,(1 —+/5)/2 with probability (5+ v5)/10, and &}, =
&,(1++5)/2 with probability (5-+5)/10; see Liu [19] for other
constructions. We can then compute the wild-bootstarp test statistic

Z ;fl* in the same manner that we compute the LLK-based test statistic
opt

Z: .
hopt

We can obtain the (1 - a)-quantile, z;, by using the Monte Carlo

approximation of Z }*L
0,

and reject the null hypothesis if Z, > z,. The
pt 0

pt

nominal level a = 0.05 for all tests was used in our simulations. We
conducted 1,000 replications for each configuration of the experiment,
and we performed the bootstrap resampling 100 times for each sample.
To give a fair comparison, we also employed the wild-bootstrap algorithm
to approximate the finite-sample distributions of the NK-based test
statistic, the HM test statistic, and the ACG test statistic.

The H; that we wanted to test was

Hy : m(t) = exp(0; + 09t) = mf(t; 9), (14)
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and the data were generated from models with the following mean
functions:

m(t; 0, B) = exp(0; + 05¢ + Pt?2) (15)

for p =0, 0.125, ..., 2.875, and n =100; B =0, 0.125, ..., 2.25, and n =
200 for the equally spaced design; B = 0, 0.125, ..., 3.0, and n =100;
B=0,0.125, ..., 2.75, and n = 200 for the unequally spaced design.
When B = 0, the generating model (15) becomes the null model (14), and

the generating model (15) provides alternatives that become farther from

the null model as | B| increases.

To compute the LLK-based test statistic Z}; , we used the
opt

Epanechnikov kernel; to compute the NK-based test statistic, we used

the Epanechnikov kernel and associated second-order boundary-corrected
kernel from Miiller [21]. Hence, let ég = m(0, ), and é4 = m(1, 0). Then,
in our simulations, the data-driven bandwidth ﬁopt ={0.15(0, — 65
ngey im(-; O/ with Jp{m(-; )} = 0.00503(62 — 62), and Jy{m(-; 0)} =
0.01{03(67 - 63)/3 - w7 (0)Q1(0)¥(0)}, where W(0) = (0.505(67 — 632),
0.25[(20, —1)67 + 62))7, and

03" (04 - 03) 03°[(65 —1)0, + 03]

@) - A—2r/A ASNA T ASB[AZ oA A oAl
05°[(02 —1)04 + 03] 02°[(63 — 209 +2)6, — 03]

The matrix P(0) can be obtained by using a(t;,; 0) = (m(t;,; 0),

tiymlEin; é))T, and X(0) = diag{m(t;,,; 0), ..., m(t,,; 0)}. We computed the
HM test statistic by using a local constant (Nadaraya-Watson) smoother
and the ACG test statistic by using a local linear smoother with the
quartic kernel as Hirdle and Mammen, and Alcala et al. used in their
papers. However, they did not provide a practical guideline for bandwidth
selection in their test statistics in applications, so we chose smoothing

parameters such that when H; is true, the empirical-rejection

probabilities of the two tests do not differ from the nominal level 0.05 at a
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significance level of 0.01, when the two test statistics are computed

through simulations.

For each sample, the values of the LLK-based, NK-based, HM, and
ACG test statistics for testing p = 0 in (15) were computed and compared
with the approximated 0.95-quantiles of their bootstrap distributions.
The empirical powers of the equally spaced design are shown in Figure 1;
the power performance of the NK-based and LLK-based tests is
essentially the same, and the LLK-based test outperforms the HM test
with chosen values of smoothing parameter 0.05 and 0.016 for sample
size 100 and 200, respectively. More specifically, for n = 100 when Hj is
false and B = 0.75, 0.875, ..., 1.875, the power of the proposed LLK-based
test is much higher than that of the HM test, and the difference between
the powers of the two tests is significant at the significance level of 0.01.
For n = 200, the power of the proposed LLK-based test is significantly
higher than that of the NK-based test at the significance level of 0.01
when H| is false and B = 0.375, 0.5, ..., 1.875.

For the unequally spaced design, the empirical powers are plotted in
Figure 2. When H, is true, all tests have empirical-rejection
probabilities close to the nominal level 0.05, and none of the empirical-
rejection probabilities differs from the nominal level 0.05 at the 0.01
significance level. The proposed LLK-based test outperforms both the
NK-based test and the HM test with chosen values of smoothing
parameter 0.055 for n =100 and 0.02 for n = 200. Specifically for
n =100, when H, is false, the power of the LLK-based test is
significantly higher than that of the NK-based test, when
B =1.25,1.375, ..., 1.75, and that of the HM test, when

B =0.5,0.625, ..., 2.375, at the 0.01 significance level. For n = 200,
when H, 1is false, the power of the proposed LLK-based test is
significantly higher than that of the NK-based test, when B = 0.5, 0.625,
..., 2.25, and the proposed LLK-based test has significantly higher power
than the HM test, when B = 0.375, 0.5, ..., 1.875, at the 0.01 significance

level. This finding illustrates the advantage of local-linear fitting and
shows that the proposed LLK-based test is preferable to the NK-based
test when the design points are unequally spaced. Furthermore, in the
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LLK-based test, specific boundary-corrected kernels are not needed to
resolve boundary effects.

The power performance of the LLK-based test is slightly better than
that of the ACG test with selected bandwidths 0.145 for » =100 and
0.138 for n =200 for equally spaced design and with selected
bandwidths 0.130 for n =100 and 0.115 for n = 200 for unequally
spaced design. Furthermore, the proposed LLK-based test is more
practical than the ACG test, because no practical guideline for bandwidth
selection was provided in the ACG test.

5. Real-life Example

In this section, we illustrate the practical use of the proposed LLK-
based test statistic with the esterase radioimmunoassay (RIA) data set
(Carroll and Ruppert [4, p. 46]) and include the NK-based test statistic by
Li [18]. The data consist of RIA assessment of esterase levels in 106
samples; the level of radioactivity is the response, and the concentration
of esterase is the covariate. The data are shown in Figure 3; the ¢ variable
1s used to denote the concentration of esterase rescaled so that all points
fall within the interval [0, 1].

To investigate the relationship between the concentration of esterase
and the RIA count, we consider fitting a log-linear model whose linear

predictor is a polynomial of order p as follows:

H : log(m(t)) = (¢, 0) (16)
for n(t, 0) = 0; + Ot + -+~ + Optp_l. We first wish to assess the validity of
the following parametric log-linear model to the data set:

Hio :n(t, 0) = 6 + 09, @17
and o%(t) = g exp(6; + 09t) under Hjy. The value of the proposed

LLK-based test statistic Z, ) for Hyy is 10.48 and that of the NK-based
op

test statistic by Li [18] for H;g is 4.77. The 0.95-quantile of the bootstrap

distribution approximating the sample distribution of the LLK-based test
statistic under Hjy in (17) is 3.44; that of the NK-based test statistic is
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1.99. Therefore, the two bootstrap tests rejected the postulated
parametric model at the significance level 0.05, which suggests that
according to both test statistics, the proposed log-linear model in (17)
cannot fit the data set well.

We now fit the data set by the following log-linear model:
H20 : 'I’](t, 6) = 61 + 92t + 93t2, (18)

and o2(¢) = ¢ exp(0; + 05t + 05¢2) under Hyy. The observed LLK-based

test statistic for the model in (18) is 0.92, and the approximated
0.95-quantile of the sample distribution of the LLK-based test statistic
under Hyy in (18) is 1.71 from the bootstrap distribution. The observed

NK-based test statistic is —0.462, and the 0.95-quantile of the bootstrap
distribution approximating the sample distribution of the NK test
statistic under Hgg in (18) is 0.91. As a result, the two bootstrap tests do

not reject the proposed log-linear model in (18), which suggests that the
parametric model fits the data set well enough. The parametric,
LLK-based and NK-based fits are given in Figure 3, in which the fitted

parametric log-linear model is m(t; 0) = exp(4.65 + 4.57¢ — 2.65¢t2).

Appendix

To prove Theorem 1 given in Section 2, we need some required
conditions and a series of lemmas. The arguments of the proof of the
theorem are similar to those of Theorem 2.1 in Li [18]. Hence, we will
give only a brief sketch of the proof. We will give the lemmas and the
proofs of the lemmas after the proof of the Theorem. To begin, let us first
outline the following required conditions:

(C1) lim n AT ()X (0)A(8) = ©(0), which is nonsingular, uniformly
n—x

in 0 € ® c O, where ®; is an open neighborhood of 0y, and ® is a

compact region.

(C2) sup sup |dm(t; 0)/08 ;| is bounded for j = 1, ..., p.
t 0€0g

(C3) lim sup| omft; 0)/00; — om(t; 0)/08|g_,| = O for j =1, ..., p.
0-0) 0
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(C4) m'(t; 8) = 0°m(t; 0)/ot? is Lipschitz continuous of order ¢ in ¢ for
0 € 0.

(C5) sup sup| om'(t; 8)/08; | is bounded for j =1, ..., p.
t 0e€0Q

(C6) max E|g;, |20+51 is bounded for some §; > 0.
sSisnh

Proof of Theorem 1. Using Lemma 1, the Cauchy-Schwarz
inequality, " P(8))e, "2 = Op(1)7 maXlSiSnl Tin | = Op(n_1/2)7 and " Shep "2

= Op(hfl), one can rewrite 7; in (12) as
opt

T, =S~ PO)s, |* - 261(S; - P©) (L-S; Im(o)

opt
+ nhd i im(-; 00)) + 0, (nY10). (19)

Furthermore, by using Lemmas 1 through 3, Chebychev’s inequality, and
Slutsky’s Theorem, we can express (19) as

A T A A A A
T, -uls; - PO(S; - POVZO] - nike; il 0)
n
= Zwij;hoptgingjn - 22 fiain + Op(]_), (20)
iz i-1
where wjj., = is the (i, j)-element of S Shyp» and (4, is the kth
0 op 0
T .
element of £, = (Shopl -P(0y)) (I- Shupt)m(GO)' Therefore, by using

Lemma 5 and the Central Limit Theorem in Heyde and Brown [15], we

can show that
= D
Z wi;. hoptginsjn - 22 finsinJ U, — N(O, 1), (21)
iz i—1
T
where v; = 2tr{{(S, , —P(89))' (Sh,,, — P(06)Z(00)F} + 4] =/*(00) L, [,
which is = n'/® because of Lemmas 1 and 4. Finally, by using Lemmas 3

and 4, we can estimate v2 consistently by 2tr{[(Sﬁ —P(é))T(Sﬁ -
opt opt
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P(0))Z(0)) + 4n};§th2 {m(-; 0)}, and by using Slutsky’s theorem, the
proof can be finished from (20) and (21).

The arguments of the proof of consistency are similar to those

presented in Li [18]; therefore, the proof is omitted.

Lemma 1. If h = n” ", then

6) 6178, 200 )] ~ [ o%(; 09)dt[ | K2(u)dufh,

(i) tr{(Sy, — P(0p))" (S5, — P(0))Z(00)] ~ [, 0%(: 00)de] " K*(w)duf,
(iii) || (T - S;,)m(8g) |* = nh*Jyim(-; 0y)} + o(nh*),

(iv) oy {m(5 )} = Iy (-5 00)} = 0p (Y10,

) {8785 Z00)F) ~ [ ot 09)de _QZK*Z(z)dz/h, where K*(z) =

J‘}l K(u)K(z — u)du is the convolution kernel with support on [-2, 2],
and
vi) tr{{(Sh ~ P(8))" (i ~ P(80))Z(00)} = tr{[S}S;, Z(00)F*} + O(1).
Proof. Let S, .; = XgnKtm;hXtm = [Stin;h;jH?]Osj,ﬂsl’ i=1,..n,
F, () be the empirical distribution for the design, and F(¢) = J; f(s)ds.
Set By, = LB;, UUBy,, where LBy, = {t : t < h}, and UBy, = {¢t : t > 1 — h},
u, = J‘il WKu)du, p, _q = J-iai u' K(u)du, and p, . = J‘jurK(u)du
Using sup,| F,(t) - F(t)| = O(n™"'), one can show that
n
Stinshsr = Z(% = tin) Kp(ton = tin)
=1

= nhrf(tin)“r,tin +o(nh”) + 0(1), (22)
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where p,. ;. is p. if &, € By, p, o, if t, € LBy (e, t;, =a;h,
0< a; < 1), or Hr,oti if tin € UBh (i.e., tin =1- O(ih, 0< a; < 1)

Therefore, S;. .5, can be expressed as
tln’

Sy,.;n = nf(t;, ) HM,;, H{l + o(1)}, (23)

ins

where H = diagi{l, 2}, and M;, is M = [u; /]o; o if tin € By, M

-0

= [jre-a;dosj i< 1 tin = oihy or Mo, = [Wjiro;osj a1 tin =1 - b
Let Sy .p = XZnKtin;h Z00)Ky, 1 Xy, » M =[vilocjicar M, =
[Vier—a; ]Osj,fsl’ and M’&i = Vjssa; ]Osj,fgp where v, = Jlll u' K*(u)du,
Via; = J‘iai u"K2(u)du, and Via; = Ijuer(u)du. Because sup;| F,,(¢)

-F@)| = O(n™!), we can show that
St ih = nh T f(tin )0 (tin: 00)HM;, H{1 + o(1)}, (24)

where M; —is M" if ¢, ¢ B,, M., if #;, =o;h, or Mg if

t;, =1 —a;h. The proof of (i) can be finished by using the cyclic property
of the trace, (23), (24), and sup,| F, () - F(t)| = O(n™").
Let p;j(8g) be the (i, j)-element of P(8)) and s;;.;, be that of Sy.

One can then obtain the following facts:

Hilff}.X| pij(89)| = o(n™), (25)

n}f}x| pij(90)02(tjn; 8p)] < n}f’}?q pij(BO)lm}?‘X Gz(tjn; 0y) = O(n™"), and (26)

n
D sijnd;

j=1

max
l

< max| d; |O(1) = O(max| d; |). (27)
J j

Then, using P(OO )Z(BO )PT (00 ) = P(BO )2(90 ) = Z(B() )PT (00 ), (25) through
(27), and the cyclic property of the trace, the proof of (i1) is finished.
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(iii) By applying a Taylor’s expansion to m(0,), the ith-component of
S;m(0,) is

Tq-1 T
e S, hXthtm;hm(eO)

in>
1 Tq-1 T 2
= m(tin; 0O) + Em (tin; 0O)el Stm;h(stm;h;z, Stm;h;S) + O(h ) (28)

Thus, by (22), the ith-component of (I-S;)m(0,) is
1 " -
) R (tn; 90)9€Mtii (1,4, - M3,4;,)" {1+ 0o(L)}- (29)

Consequently, because sup;|F,(t)— F(t)| = O(n™'), we can obtain the
desired result from (29).

(iv) The proof is immediately done because  — 0 = Op(n_l/ %), and

I; m'(t; ) f(¢)dt = | ;m”(t; 00)2f(t)dt + O, (n"Y?),

(v and vi) Let Bj, = LB, UUBy, for LBj, = {t : t < 2h} and UB;, =
{t 1t >1-2h}. Let W}, = [w.,] = S Sy, Then, for n sufficiently large,
by using the result in (23), a Taylor’s expansion and sup;| F,(¢) - F(¢)| =

O(n™'), one can show

O(nlihj, if tin’ tjn (S LB;; or tin’ tjn S UBZ,
K* tin — tjn j
h * * * *
Ww(ﬁ), if (t;, € LB}, and ¢, ¢ B}), (t;, ¢ B} and t, € LB}),
jn

w”§h = * * * *
Y (tin € UB}, and ¢, & B}), (t;, # B}, and ¢;,, < UB},),

(tinstjn 2 By ), and satisfies |t;, —t,, | < 2h,

0, if‘tin—tjn‘>2h.

This proof can be done by using the above fact, the cyclic property of the
trace, (25) through (27), and sup,| F,(t)- F(t)]= O(n™1).

Lemma 2. If conditions (C5) and (C6) hold, then

@ [ (S5, , ~PO0))en [* -~ rl(S;  ~POO)) (S;  —P(0o)Z(00)]
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- P(0))e, |* + tr[(S),

op

-1 Sy

opt

, ~ P00)" (S, — POp)Z(0,)] = 0, (1),

opt

(i) &, (S;  ~PO0)" (1-S; Jm(0)- ey (Sp,, ~P@O:)"

(I1-8y,,,)m(0g) = 0, (n'/'°),

and

i) &S] A=, Jm(d)=s[S] (=S, )m(By) = 0,("0).

Proof. (i) First note that (ﬁopt — hopt Vhopt = Op(nfl/ %) by using a
Taylor’s expansion and (C5). To finish the proof, we use a partitioning
argument similar to one used in Hérdle et al. [13]. Since P(] };'opt -
hopt V/hope <n77) > 1 for y <1/2, we need to consider only those values
of h falling in H, ={h:|h—hyy |[hoyp <n '} Let wyp 5, be the
(v )-element of (S5, ~ P(0))(Sy, - P(09) (S5, - P(00) (S, - P(0, )
Then, for h;, hy € H,, one can show that w,.p, p, = O( " — hy Jnh?)

uniformly in r, j by using (23) and the Mean Value Theorem. The
remainder of the proof can be finished by using the moment condition
(C6) and the inequality (8) from Whittle [25].

The arguments of proving (i1) and (iii) are similar to those for (i), so it
is omitted.

Lemma 3. If 0 - 0, = O,(n"Y?), then

O oS, -PO)(S; -POIZO]-ulS; -PO) S -
P(6))Z(00)] = 0, (n1), and

() wrll(S; ~PO)'(S; ~POYZOF}-urilS; - P@O0)(S;
- P(09))Z(0, )} = 0, (/).

Proof. The proof can be done by using 0 -0y = 0,(n"7/?), A() -

A(By) = 0,(n7Y2), P(8) - P(8y) = O, (n"¥?), and (27).
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Lemma 4. If h < n Y5 and conditions (C1) and (C4) hold, then

@ 1ZY%(80)(Sy ~P(0o)) X-S;,)m(8y) | = nh*y fm(- 89)} + o(n'1°),
and

(i) o {m(-s 0)} = Ja{m(-; 09)} = 0, (1).

Proof. (i) First, using (29), condition (C1), and sup,| F,(t) - F(¢)| =
O(n™'), one can show that PT(8y)(I-S,)m(0,) = —(h%uy/2)Z71(0,)
A(00)27(09)n AT (09)m"(89) + o(h*),  where m"(8y) = (m"(11,5 0),
s M"(tn; 00))T . By using (23), (C4), and supy| F,(t) - F(t)| = O(n™"), it
can be shown that the ith element of ST m"(0y) is m'(t;,; 0y) + O(R®) if
t;, ¢ Bp or O(1) if t;, € Bi. Hence, the ith element of S¥(I-S;)m(0,)
is — h2ugm’(t;,; 00)/2 + o(h?) if t;, ¢ Bj, or O(h%) otherwise. Finally, the
proof can be finished by using sup,| F,(t) - F(t)| = O(n™'), (C4), and

n'AT(8,)m"(8)) = ¥(8,) + O(n?).

(ii) The proof is immediately finished because 6 — 6y = 0, (n""?).

k-1 .
Lemma 5. Let Uy, = 2(2].:1 Whj: hop Ejn ~ Ekn]skn/vn, where (, is

~P0,)" (I-S), )m(0,), and v =

opt opt

the kth element of L, = (S
T 2 1/2 2

2tr{((Sp,,, —P(00))" (Sp,,, —P(0g)Z(0)"} + 4| Z7*(89) L,y |- Then,

under (C6) for 0 < 8 <1 as n - o,

@ > E|Upy [F*° - 0, and

1+6
(ii) E‘ St EUR s -1 >0,
where €5,_1 = (g1, - ak_l,n)T for k=1, ..., n.

Proof. We take 6 = 1 to establish this lemma.

,2L = n'/5 because of Lemmas 1 and 4. We can

(1) First note that v
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k-1
express Uy, as Uyp, = Qpnern + Lpnern, Where Qp, :2zj:1wkj;h gjn/vn,

opt

and Ly, = -2(p,/v,, then using Wk oy = O(1/nhgp,; ), which was given
in Lemma 1, the moment condition (C6), and /;, = O(hgpt), it can be

seen that ZZ=1 E[(Qpnern)*] = o(1), and ZZ=1 E[(Linepn )] = o(1).

Hence, the proof of (1) is complete.
.. . . 2 2 _ 2 2 2
(i) Using Lemma 1, we can write v;, as v;, = vj, + U3, + U3, + O(1),
2 _ no2 40 . 2 _ n k-1 2
where  vi, = 2Zk:1 Wihs by © (tpn; 90), Uy, = 4Zk:2 Zj:l Wi hopy

% (tns Oo)cg(tjn; 0,), and 03, = 42221 02,6 (tpn; 00). In addition,

2
E[Z;;ﬂ E(U;%n l€_1)— 1} can be expressed as

2
E| > EUfy, |ep1) - 1}

=

—_

n

2
= B Y @ + )0 %)}

k=1

+ 4E{
n

2
Z anLknG2 (tkn; e0 ):| -2
k

k=1

Z (Q/%n + L%an)cg(tkn; 90)] [Z QinLinGZ(tin; 0o )}}
k=1 i=1

+4E 2 (tpns 00)E(@pn + Lpn)* +1. (30)

n

=1

Because

2
n
E|:Zk=1 ngncg(tkn; 90):| = (vl2n + U%n)z/vﬁ + 0(]_),

B2 Qb 00)] = 0, + o + o),

and ZZ:1 13,62 (tpn; 00) = V3, /v2, the first term of (30) is 1 + o(1). Using
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lhp = O(hgpt) and wyj.p, . = O(1/nh,p,) and knowing that only O(nh,)

opt

NONZEro Wji p, exists for any fixed j, we can show that the third term of

(30) is o(1). Using the Cauchy-Schwarz inequality and the above result
shows that the second term of (30) is also o(1). Finally, the proof can be

finished by demonstrating that ZZ:l 2 (thn; 00) E(@Qpn + Lipy ) =1+ 0(1).

Equally Spaced Design

9
§ o
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S
e — LlKbasdtest
""" i based test
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- == ACG kst jh=0.145)
T T T T T T
00 05 10 15 20 25
beta
B 0= e
theta1=10
a2 treta2=25
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T e ¥ hased lest
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Figure 1. Comparison of the Poisson empirical power function among the local-linear kernel
(LLK)-based test, nonparametric boundary-corrected kernel (NK)-based test, Hirdle and

Mammen test, and Alcald et al. test for the null model log m(t): 0; + 09t and

alternative models log m(t) = 6; + 09t + Bt2 based on the nominal level 0.05.
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Unequally Spaced Design
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Figure 2. Comparison of the Poisson empirical power function among the
local-linear kernel (LLK)-based test, nonparametric boundary-corrected
kernel (NK)-based test, Hirdle and Mammen test, and Alcala et al. test
for the null model log m(t) = 6; + 05¢ and alternative models log m(t) = 6,

+ 09 + Bt% based on the nominal level 0.05.
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— Parametric fit
LLK-based fit
''''''' - NK-based fit

R1A Count

Concentration of Esterase

Figure 3. Parametric (m(¢, 0) = exp(4.65 + 4.57¢ — 2.65t2)), local-linear

kernel (LLK)-based fit, and nonparametric boundary-corrected kernel

(NK)-based fit for the esterase radioimmunoassay data
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