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Abstract

In this paper, we develop a model of integer linear programming that

can be used in detection of the maximum of students’ mathematical
learning outcomes. The model is tested by using test result data from

997 participants, which show that the model could be used to solve the

problem of learning outcomes in education.

1. Introduction

In accordance with the development of science, a problem can be

modeled mathematically called the mathematical model of the problem.

Mathematical modeling is a step taken to obtain solution of the problem

by utilizing the tools of mathematics through real world context. A

mathematical model is a description of the conditions presented by a real
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world problem. It consists of the purpose function and some constraints in

the form of a linear or nonlinear function. Mathematical models that have

objective functions and constraints linear are called linear programming

(LP) [1, 2]. Integer linear programming (ILP) is a linear programming model

with one additional restriction that all variable values must be integers.

Some ILP applications have been used which were successful in solving

optimization problems in various sectors including education, such as the

allocation of student majors [3], scheduling problems [4-6], marking the

location of mathematics test material [7], examination timetabling [8], and

mapping students’ cognitive capability [9].

The cognitive aspect of learning outcomes is the ultimate goal in

educational activities to be used as a measuring tool in several objectives for

instance, to know the quality of education [10], the quality and achievement

of knowledge, skills and attitudes [11], the quality of learning outcomes and

teachers [12, 13], and an overview of student learning outcomes [14], the

results and success rates of learning [15, 16].

In general, the cognitive aspects of learning outcomes are measured

based on six aspects, namely knowledge, comprehension, application,

analysis, synthesis, and evaluation for each topic of teaching material on

educational unit. The number of material topics, cognitive aspects, the

number of students and the extent of the area being tested will make a

problem of determining the material that has been achieved and thoroughly

completed. Therefore, it needs a tool to overcome the problem. This paper

aims to develop a model of ILP that can be used in detection of the

maximum of students’ mathematical learning outcomes.

2. Integer Linear Programming

ILP model is an extension of the LP model with one additional

restriction that is all variables are integer valued. The ILP model can be

expressed as follows:
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Maximum   xcxF T (1)

Constraint bAx  (2)

ux 1 (3)

ix integer, ,JJj 

where A is a matrix of order ,nm  c is a vector of order ,1n Tc is the

transpose of c, and  ....,,2,1 nJ 

The basic approaches to solve the problems of ILP are the branch-and-

bound methods [17-19], and cutting plane [20]. Another approach is the

integrating process [21, 22], and the use of software [23]. Intgerizing process

at a component of the optimal basic feasible vector   ,kBx to linear

programming can be written as

        .11 mnxmxxx NNknjNkjNkkkB   (4)

If  kBx is an integer variable and we assume that k is not an integer,

then the partitioning of k into the integer and fractional components is

given

  .10,  kkkk ff (5)

Increase  kBx to its nearest integer,   .1k Based on the idea of

suboptimal solutions, we may elevate a particular nonbasic variable, say

  ,jNx above its bound of zero, provided ,kj
 as one of the elements of

the vector , j
is negative. Let  j

be an amount of movement of the non-

variable   ,jNx such that the numerical value of scalar  kBx is an integer.

Referring to equation (4),  j
can then be expressed as


 




jk

k
f

f1
(6)
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while the remaining nonbasics stay at zero. It can be seen that after

substituting (5) into (6) for   jNx and taking into account the partitioning

of ,k we obtain

    .1 kkBx (7)

Thus,  kBx is now an integer.

3. Learning Outcomes

Learning outcomes are the ultimate goal in each lesson. Learning

outcomes are expressions of the purpose of education which is a statement of

what is expected to be known and understood by learners after completing a

period of study [24]. Watson [25] defines that learning outcomes are the

changes in people as a result of learning experience [26]. Learning outcomes

can encapsulate a wide range of knowledge, skills and behaviours [27-29].

In general, the size and level of ability of student learning outcomes

are based on the cognitive domain of Bloom’s taxonomy developed by

educational psychologist Bloom [30], namely knowledge, comprehensive,

application, analysis, synthesis and evaluation [31]. The result of cognitive

learning is acquired through the activity of knowing, understanding,

applying, analyzing and evaluating [32]. In general, the measure of the

learning outcomes of education in Indonesia is stated by completeness of

study, that is the percentages achievement of competence with the maximum

of 100 as the ideal thoroughness. Based on the national agency of

educational standards [33] that the criteria for learning completeness ranged

from 0-100% and thoroughness for each indicator of at least 75%. Target of

thoroughness is expected to reach at least 75% nationally [34].

4. The Mathematical Model

The measurement of cognitive aspects of learning outcomes refers to

Bloom’s taxonomy, i.e., knowledge (C1), comprehensive (C2), application
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(C3), analysis (C4), synthesis (C5) and evaluation (C6). The number of

items tested depends on the evaluation objectives, materials and aspects to

be achieved in an evaluation activity conducted at the school. Creating a

mathematical model of learning outcomes problem is done in two stages.

First, create variables and parameters as symbols for the components to

be used. Second, create objective function, that is to determine students’
mathematics learning outcomes of the maximum number of items that have

been mastered by students and make some constraints from problems that

can maximize objective function. Form of data based on the test results for

the measurement of learning outcomes can be expressed as in the form of

Table 1 below.

Table 1. The preliminary data form test results

Aspect

Topics C1 C2 C3 C4 C5 C6 

1 11c 12c 13c 14c 15c 16c 1p

2 21c 22c 23c 24c 25c 26c 2p

3 31c 32c 33c 34c 35c 36c 3p

       

m 1mc 2mc 3mc 4mc 5mc 6mc mp

 1r 2r 3r 4r 5r 6r

where jC ’s are cognitive aspects to ,j ,6...,,1j ijc is the number of

students who correctly answer on each topic to ,i mi ...,,1 on aspect

,jC ip is the number of students who correctly answer topic to i  for all

,jC  and jr is the number of students who correctly answer topic to i  on

each .jC

Based on the data in Table 1, is then formed the variables and

parameters needed in the modeling process for problem solving.
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Set:

Variable:

:iX variable items to ,i

:ijX variable items to i  iX on cognitive to j  .jC

Parameter:

:ip a number of students who answer correctly iX for all ,jC

:iq the maximum number if all students answer correctly iX for all

,jC

:jr a number of students who answer correctly iX on each ,jC

:js the maximum number if all students answer correctly iX on each

,jC

:ijS a number of students who answer correctly on each iX for all ,jC

:ijT the maximum number of students who answer correctly on each

iX for all .jC

Having established the required variables and parameters so the initial

data table test results can be expressed in Table 2 below:

Table 2. Preparation of modeling

Aspect

Topics Variable C1 C2 C3 C4 C5 C6 

1 1X 1111Xc 1212 Xc 1313Xc 1414 Xc 1515Xc 1616 Xc 1p

2 2X 2121Xc 2222 Xc 2323Xc 2424 Xc 2525Xc 2626 Xc 2p

3 3X 3131Xc 3232 Xc 3333Xc 3434 Xc 3535Xc 3636 Xc 3p

        

m mX 11 mm Xc 22 mm Xc 33 mm Xc 44 mm Xc 55 mm Xc 66 mm Xc mp

 1r 2r 3r 4r 5r 6r
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Furthermore, to solve the problem of learning outcomes, the

mathematical model can be expressed as follows.

The objective function is to know learning outcomes of mathematics

students about the maximum number of items mastered by them. The

objective function can be given by


 


m

i j
ijXMaxZ

1

6

1

. (8)

Some constraints of problems can maximize the objective function.

The constraints on the number of all ,iX and the number of iX for each

jC are expressed as follows:

,
1

6

1

 


m

i j
ij MX (9)

,...,,1,6
6

1




j

ij miX (10)





m

i
ij jmX

1

.6...,,1, (11)

The constraints on the number of students who answer correctly all iX

and each jC are stated below:

,...,,1,6
6

1




j

iijij miXS (12)





m

i
jijij jrXS

1

.6...,,1, (13)

The constraints on the number of students who answer correctly every

iX and the maximum of all students answering correctly each jC  are
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described as follows:

,...,,1,
6

1




j

iijij mjqXS (14)





m

i
iijij jsXT

1

.6...,,1, (15)

For the constraints to the variable difference of students who answer

correctly but not each iX and all domains s,’jC the capability aspect is

stated as follows:

  ,...,,1,
6

1




j

iijijij mipXXS (16)

 



m

i
jijijij jrXXS

1

.6...,,1, (17)

The constraints for the difference of maximum amount if all the students

answer correctly and the number of students who answer correctly all iX

jC can be expressed as follows:

  ,...,,1,
6

1




j

iijijijij mipXSXT (18)

 



m

i
jijijijij jrXSXT

1

.6...,,1, (19)

The constraints or the difference of maximum if all students answer

correctly iX with the number of students based on test results for each

domain jC can be stated as follows:
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  ,...,,1,
6

1




j

ijijijijij miTXSXT (20)

 



m

i
jijijijij jsXSXT

1

.6...,,1, (21)

The constraints for the difference of maximum if all students answer

correctly iX with the number of students who answer correctly the results of

tests for each domain jC can be stated as follows:

  ,...,,1,
3

1




j

iiijijijij mipqXSXT (22)

  ,6...,,1,
1




m

i
jjijijijij jrsXSXT (23)

where ijX is an integer.

5. Test Data

Data learning outcomes with participants of 997 students are from 8

schools grade 12 public and private high school. Data collection technique

is conducted by using 48 items to the students as a sample. The used

instrument is an objective test taken from document of mathematics national

examination. The selection of test items is performed by recapitulation of

teaching materials, so it is taken 16 pieces of topic with 3 aspect, i.e.,

knowledge (C1), comprehension (C2) and application (C3). Test data are

presented in Table 3.
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Table 3. Test data

Aspect

Topics Variable C1 C2 C3 

1 X1 614 767 326 1707

2 X2 357 598 336 1291

3 X3 616 625 793 2034

4 X4 475 406 398 1278

5 X5 385 376 510 1271

6 X6 555 754 550 1859

7 X7 700 471 385 1556

8 X8 301 613 444 1358

9 X9 633 506 316 1454

10 X10 634 506 550 1689

11 X11 730 415 368 1513

12 X12 579 242 323 1144

13 X13 325 458 442 1225

14 X14 343 435 410 1279

15 X15 280 155 472 907

16 X16 333 532 319 1184

 7951 7859 6942 22752

6. Result and Discussion

Based on the data in Table 3, the replacement of all parameter values

in equations (9) to (23) provides 1 objective function and 139 linear

constraints. Due to all the variables must be integers, the prepared model is

an integer linear programming (ILP). To solve ILP model by application of

LINDO 6.1 packages, we have to follow:
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LP OPTIMUM FOUND AT STEP 45

OBJECTIVE VALUE = 32.4264412

SET X111 TO <= 0 AT1, BND= 23.00 TWIN=-0.1000E+3182

NEW INTEGER SOLUTION OF 23.0000038 AT BRANCH 1 PIVOT 82

BOUND ON OPTIMUM:  23.00000

DELETE X111 AT LEVEL 1

ENUMERATION COMPLETE. BRANCHES = 1 PIVOTS = 82

LAST INTEGER SOLUTION IS THE BEST FOUND

RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

(1) Z = 23.00000

VARIABLE VALUE REDUCED COST VARIABLE VALUE REDUCED COST

X11 1.000000 –1.000000 X91 1.000000 –1.000000

X12 1.000000 –1.000000 X92 1.000000 –1.000000

X13 0.000000 –1.000000 X93 0.000000 –1.000000

X21 0.000000 –1.000000 X101 1.000000 –1.000000

X22 1.000000 –1.000000 X102 0.000000 –1.000000

X23 0.000000 –1.000000 X103 0.000000 –1.000000

X31 1.000000 –1.000000 X111 1.000000 –1.000000

X32 1.000000 –1.000000 X112 0.000000 –1.000000

X33 1.000000 –1.000000 X113 0.000000 –1.000000

X41 1.000000 –1.000000 X121 1.000000 –1.000000

X42 0.000000 –1.000000 X122 0.000000 –1.000000

X43 0.000000 –1.000000 X123 0.000000 –1.000000

X51 0.000000 –1.000000 X131 0.000000 –1.000000

X52 0.000000 –1.000000 X132 1.000000 –1.000000

X53 1.000000 –1.000000 X133 0.000000 –1.000000

X61 1.000000 –1.000000 X141 0.000000 –1.000000

X62 1.000000 –1.000000 X142 0.000000 –1.000000

X63 0.000000 –1.000000 X143 1.000000 –1.000000

X71 1.000000 –1.000000 X151 1.000000 –1.000000

X72 1.000000 –1.000000 X152 0.000000 –1.000000

X73 0.000000 –1.000000 X153 0.000000 –1.000000

X81 0.000000 –1.000000 X161 0.000000 –1.000000

X82 1.000000 –1.000000 X162 1.000000 –1.000000

X83 1.000000 –1.000000 X163 0.000000 –1.000000
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Based on the output of calculation, the value of the objective function

is  .23Z  It means that the maximum number of items mastered by the

students is 23 out of 48 items or 47.92%. It shows that it has not yet reached

the national completeness criteria, which is at least 75% [33, 34]. Therefore,

learning can be improved on the location of the variable 0 to obtain

maximum learning outcomes.

7. Conclusion

Learning outcomes is an essential unsure to determine the quality of

learning by student. The completeness of learning is one of essential unsure

to measure learning outcomes. We developed an integer linear programming

model in order to detect the maximum of students’ mathematical learning
outcomes. The model could be used to solve the problem of learning

outcomes in education.
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