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Abstract

Let M be a real hypersurface in a complex space form  ,cMn .0c

In this paper, we prove that if the structure tensor field is (i) Lie

-parallel and (ii) -parallel, then M is a Hopf hypersurface. We

characterize such Hopf hypersurfaces of  .cMn

1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic

sectional curvature c is called a complex space form, which is denoted by

 .cMn  As is well-known, a complete and simply connected complex space

form is complex analytically isometric to a complex projective space ,CnP

a complex Euclidean space nC or a complex hyperbolic space ,CnH

according to 0,0  cc  or .0c
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In this paper, we consider a real hypersurface M in a complex space

form  ,cMn .0c Then M has an almost contact metric structure

  ,,, g  induced from the Kaehler metric and complex structure J on

 .cMn The Reeb vector field  is said to be principal if A  is

satisfied, where A is the shape operator of M and  . A  In this case,

it is known that  is locally constant [4] and that M is called a Hopf

hypersurface.

Typical examples of Hopf hypersurfaces in CnP  are homogeneous ones,

namely those real hypersurfaces are given as orbits under subgroup of

the projective unitary groups  .1nPU  Takagi [10] completely classified

homogeneous real hypersurfaces in such hypersurfaces as six model spaces

DCBAA ,,,, 21 and E. On the other hand, real hypersurfaces in CnH  have

been investigated by Berndt [1], Montiel and Romero [6] and so on. Berndt

[1] classified all homogeneous Hopf hyersurfaces in CnH  as four model

spaces which are said to be 210 ,, AAA  and B. A real hypersurface of 1A  or

2A  in CnP or ,0A ,1A 2A in ,CnH  is said to be a type A for simplicity.

As a typical characterization of real hypersurfaces of type A, the

following is due to Okumura [8] for 0c  and Montiel and Romero [6] for

.0c

Theorem 1.1 [6, 8]. Let M be a real hypersurface of  ,cMn ,0c

.2n It satisfies 0 AA on M if and only if M is locally congruent

to one of the model spaces of type A.

For the structure tensor field  on M, we define the Lie derivative 

by      ,,, XXX  and  X with respect to a unit vector

field X. We call the Lie derivative and covariant derivative in the Reeb

vector field  direction of the structure tensor field as -Lie parallel and

-parallel. Several workers have studied real hypersurfaces with certain
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conditions and obtained results on the classification of real hypersurfaces in

complex space form  .cMn

As for the differential operator, Maeda and Udagawa [5] and Lim and

Jun [4] have proved the following theorems:

Theorem 1.2 [5]. Let M be a real hypersurface of  .cPn Then the

following are equivalent:

(i) ,0 where  is the Lie derivative on M, namely,  is an

infinitesimal automorphism of .

(ii) M is locally congruent to one of homogeneous real hypersurfaces of

types 1A and .2A

Theorem 1.3 [4]. Let M be a real hypersurface of  .cMn Then we have

   XLXL   on M if and only if M is locally congruent to one of

the model spaces of type A.

Theorem A is a generalization of Theorem 1.2, the proof of this theorem

is also different from Maeda and Udagawa [5] paper because it classifies

the real hypersurface according to the kind of principal curvature under

the Hopf hypersurface hypothesis. Also, from Theorem 1.3, it is found

that the different derivatives of structure Lie operator have the geometrical

properties of the real hypersurface. Therefore, Theorem B investigates the

characteristics of the real hypersurfaces through these differentiations of the

structure tensor field. In other words, we prove the following theorems:

Theorem A. Let M be a real hypersurface satisfying 0 in a

nonflat complex space form  .cMn Then M is a Hopf hypersurface and it is

locally c congruent to one of the model spaces of type A in  .cMn

Theorem B. Let M be a real hypersurface satisfying   in a

nonflat complex space form  .cMn Then M is a Hopf hypersurface and it is

locally congruent to one of the model spaces of type A in  .cMn
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All manifolds in the present paper are assumed to be connected and of

class C  and the real hypersurfaces supposed to be orientable.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form  ,cMn

and N be a unit normal vector field of M. By ~ we denote the Levi-Civita

connection with respect to the Fubini-Study metric tensor g~ of  .cMn

Then the Gauss and Weingarten formulas are given, respectively, by

  ,
~

,,
~

AXNNYAXgYY XXX 

for any vector fields X and Y tangent to M, where g denotes the Riemannian

metric tensor of M induced from ,~g  and A is the shape operator of M in

 .cMn  For any vector field X on M, we put

  ,,  JNNXXJX

where J is the almost complex structure of  .cMn  Then we see that M

induces an almost contact metric structure  ,,,,  g  that is,

    ,1,0,2  XXX

           ,,,,,  XgXYXYXgYXg (1)

for any vector fields X and Y on M. Since the almost complex structure J

is parallel, we can verify from the Gauss and Weingarten formulas that

,AXX  (2)

      .,  YAXgAXYYX (3)

Since the ambient manifold is of constant holomorphic sectional

curvature c, we have the following Gauss, Codazzi equations and operator of

Lie derivative, respectively:
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          YZXgXZYgYZXgXZYg
c

ZYXR  ,,,,
4

,

       ,,,,2 AYZAXgAXZAYgZYXg  (4)

          ,,2
4

 YXgXYYX
c

XAYA YX (5)

for any vector fields X, Y and Z on M, where R denotes the Riemannian

curvature tensor of M.

Let  be the open subset of M defined by

 ,0 AMp (6)

where  . A We put

,WA  (7)

where W is a unit vector field orthogonal to  and  does not vanish on .

3. Some Lemmas and Proof of the Theorems

In this section, we prove Theorems A and B. Now we state the following

without proof:

Lemma 3.1 [4]. If  is a principal curvature vector, then the

corresponding principal curvature  is locally constant.

Lemma 3.2 [9]. Assume that  is a principal curvature vector and the

corresponding principal is . Then

  .0
42
 c

AAAA (8)

Proof of Theorem A. We assume that 0  for any vector field X.

Then we have

           XXX XXXX ,,

    ,  AXAXXAX
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for any vector field X. Since Lie derivative of structure tensor field is zero,

the above equation can be expressed as

    . AXAXXAX (9)

If we now use equation (3), then we obtain

  . AXAXXA (10)

If we put WX  into (10), then we have

.OAWWA  (11)

If we take inner product of  into (11), then we immediately obtain 0  on

 and it is a contradiction. Thus the set  is empty, and hence M is a Hopf

hyersurface in  .cMn

The assumption 0  is equivalent to

0 AXXA (12)

by use of (1) and (3).

For any vector field  X  on M such that ,XAX   it follows from

(8) that

.
22

1
2

X
c

XA 




 





  (13)

If ,
2
 then we see from (13) that X is also principal direction, say

.XXA 

From equation (12) and using the first equation (1), we have 

and hence .AXXA   If ,
2
 then it is easily seen that .AXXA 

Therefore, we have 0 AA on M. Thus follows Theorem A. 

Now, we will characterize the real hypersurfaces of a nonflat complex

space form satisfying   for any vector field X on M, we can state
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Proof of Theorem B. By Theorem A, the real hypersurface M satisfying

  is equivalent to

  , AXAXXA (14)

for any vector field X on M.

If we put X  into (14) and make use of (6), then we obtain

.A  Hence, by virtue of (6), the set  is empty and hence M is a Hopf

hypersurface.

Since M is a Hopf hypersurface and satisfies (12), we conclude that M is

locally congruent to one of the model spaces of type A. 
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