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Abstract

In this paper, we study a controlled general risk process. We

assume that claim and rates of interest are homogeneous Markov

chains, taking a countable number of non-negative values. Generalized

Lundberg inequalities for ruin probability of this process are derived

by the martingale approach.

1. Introduction

In classical risk model, the claim number process was assumed to be

a Poisson process and the individual claim amounts were described as

independent and identically distributed random variables. In recent years, the
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classical risk process has been extended to more practical and real situations.

For most of the investigations treated in risk theory, it is very significant

to deal with the risks that rise from monetary inflation in the insurance

and finance market, and also to consider the operation uncertainties in

administration of financial capital. The ruin problem has been studied by

many researchers [4, 9, 10]. Sundt and Teugels [16, 17] studied ruin

probability under the compound Poisson risk model with the effects of

constant rate. Yang [19] gave both exponential and non-exponential upper

bounds for ruin probabilities in a risk model with constant interest force and

independent premiums and claims. Xu and Wang [18] gave upper bounds

for ruin probabilities in a risk model with interest force and independent

premiums and claims with Markov chain interest rate. Cai [1, 2] considered

the ruin probabilities in two risk models, with independent premiums and

claims and used a first-order autoregressive process to model the rates

of interest. Cai and Dickson [3] built Lundberg inequalities for ruin

probabilities in two discrete-time risk process with a Markov chain interest

model and independent premiums and claims. Quang [11] established

Lundberg inequalities using the recursive technique for ruin probabilities in

two risk models with homogeneous Markov chain premiums when claims

and interest rates sequences are independent. Quang [12] used martingale

approach to build upper bounds for ruin probabilities in a risk model with

interest force and independent interest rates and premiums when the claims

form a Markov chain. Quang [13] used martingale approach to build

upper bounds for ruin probabilities in a risk model with interest force and

independent interest rates and Markov chain claims and Markov chain

premiums. Quang [14] used martingale approach to build upper bounds for

ruin probabilities in a risk model with interest force and independent claims,

Markov chain premiums and Markov chain interests. Quang [15] also

used recursive approach to build upper bounds for ruin probabilities in a

risk model with interest force and Markov chain premiums, Markov chain

claims, with the independent interest rates.
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In addition, many papers studied an insurance model where the risk

process can be controlled by proportional reinsurance. The performance

criterion is to choose reinsurance control strategies to bound the ruin

probability of a discrete-time process with a Markov chain interest.

Controlling a risk process is a very active area of research, particularly in the

last decade; see [4-7], for instance. Nevertheless obtaining explicit optimal

solutions is a difficult task in a general setting. Diasparra and Romera [8]

obtained generalized Lundberg inequalities for the ruin probabilities in a

controlled discrete-time risk process with a Markov chain interest.

In this article, we extend the model considered by Diasparra and Romera

[8] to introduce claim and rates of interest as homogeneous Markov chains,

taking a countable number of non-negative values. Generalized Lundberg

inequalities for ruin probability of this process are derived by the Martingale

approach.

2. The Model and Basic Assumptions

Let nY be the nth claim payment. The random variable nZ stands for

the length of the nth period, that is, the time between the occurrences of the

claims 1nY and .nY Let   0nnI be the interest rate process. We assume

that ,nY nZ  and nI are defined on the probability space  .,, PA We

consider a discrete-time insurance risk process in which the surplus process

  1nnU with initial surplus u can be written as

     ,,1 111 nnnnnnn YbhZbCIUU    for .1n (2.1)

We make several assumptions:

Assumption 2.1. .00  uU

Assumption 2.2.   0nnY is a homogeneous Markov chain, such that for

any n, the values of nY are taken from a set of non-negative numbers

 ...,...,,, 21 nY yyyG  with iyY 0 and
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      ,,,: 1 YjYiinjnij GyGyNnyYyYPp   (2.2)

where 





1

.1,10
j

ijij pp

Assumption 2.3.   0nnI is a homogeneous Markov chain, such that

for any n, the values of nI are taken from a set of non-negative numbers

 ...,...,,, 21 mI iiiG  with riI 0 and

       ,,,: 1 IsIrrmsmrs GiGiNmiIiIPq  

where 





1

.1,10
s

rsrs qq

Assumption 2.4.   0nnZ is a sequence of independent and identically

distributed non-negative continuous random variables with the same

distributive function

    zZPzF  0;

with   .00 F

Assumption 2.5. We denote by  bC the premium left for the insurer if

the retention level b is chosen, where

  .,0 BbcbC 

The process can be controlled by reinsurance, that is, by choosing

the retention level (or proportionality factor or risk exposure) Bb  of a

reinsurance contract for one period, where  ,1,: minbB   1,0min b will

be introduced below. The premium rate c is fixed.

Assumption 2.6. We denote the function  ybh , with values in  y,0

specifies the fraction of the claim y paid by the insurer, and it also depends

on the retention level b at the beginning of the period. Hence  ybhy , is

the part paid by the reinsurer. The retention level 1b  stands for control
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action with no reinsurance. In this article, we consider the case of

proportional reinsurance, which means that

  ,, ybybh  with .Bb  (2.3)

Usually, the constant minb in Assumption 2.5 is chosen by

    .0;1,0min:min  bCbb (2.4)

Assumption 2.7. We suppose that   ,0nnY   0nnZ and   0nnI are

independent.

Assumption 2.8. We consider Markovian control policies   ,1 nna

which at each time n depend only on the current state, that is,   nnn bUa :

for .0n Abusing notation, we identify functions ,: BXa  where

,X B is the decision space.

Consider an arbitrary initial state 00  uU and a control policy

  .1 nna Then, by iteration of (2.1) and assuming (2.2), it follows that

for nUn ,1 satisfies

       
  

 














n

l

n

l

n

lm
mlllnln IYbZbCIU

1 1 1
11 .11 (2.5)

The ruin probability when using the policy , given the initial surplus

u, and the initial claim ,0 iyY  the initial interest rate riI 0 with

Assumptions 2.1 to 2.8 is defined as

   



















 
1

000 ,,0,,
k

rikri iIyYuUUPiyu (2.6)

which we can also express as

   .,,1somefor0,, 000 rikri iIyYuUkUPiyu   (2.7)

Similarly, the ruin probabilities in the finite horizon case with

Assumptions 2.1 to 2.8 are given by
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    .,,0,,
1

000 
















 
n

k
rikrin iIyYuUUPiyu (2.8)

Firstly, we have

      ,,,,,,, 21   
rinriri iyuiyuiyu (2.9)

and with any ,Nn 

  .1,,  rin iyu (2.10)

Thus, from (2.7) and (2.8), we obtain

   .,,,,lim ririn
n

iyuiyu 




We denote by  the policy space. A control policy  is said to be

optimal if for any initial    ,,, 00 ri iyIY  we have

   riri iyuiyu ,,,,  


for all .

3. Upper Bounds for Ruin Probability by the Martingale Approach

We now construct upper bounds for ruin probabilities by the martingale

approach. To this end, let  



n

i
inn IUV

1

11 with ,1n be the so-called

discounted risk process. The ruin probabilities n in (2.8) associated to the

 ...,2,1, nVn are

    .,,0,,
1

00000 
















 
n

k
rikrin iIyYuUVPiyu

In the classical risk model, process   1
0




n
UR ne is a martingale.

However, for our model (2.5), there is no constant 0r such that
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  1


n
rUne is a martingale. Still, there exists a constant 0r such that

  1


n
rVne is a supermartingale, which allows us to derive probability

inequalities by the optional stopping theorem. Such a constant is defined in

the following lemmas:

Lemma 3.1. Let model (2.5) satisfy Assumptions 2.1 to 2.8. Assume that

for each  ,...,...,,, 21 nYi yyyGy       101 ZEbCyYYbE i
  and

   .00 011 
iyYZbCbYP Then there exists a constant  bRR 00 

such that

     .10
110 

i
bYZbCR yYeE (2.11)

Proof. Define

        .;0,10
11   tyYeEtf i

bYZbCt
i

We have

           00 011011  
iii yYYbEZEbCyYbYZbCEf

(by independence) (2.12)

and the second derivative is

          .00
2

11
11  

i
bYZbCt

i yYebYZbCEtf

This implies that

 tfi is a convex function with   .00 if (2.13)

By    ,00 011 
iyYZbCbYP we can find some constant 0

such that

   .00 011 
iyYZbCbYP
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Then we get

       10
11  

i
bYZbCt

i yYeEtf

        11
011

11
0  


iyYZbCbYi

bYZbCt yYeE

   .1011  
i

t yYZbCbYPe

This implies that

  .lim 


tfi
t

(2.14)

From (2.12), (2.13) and (2.14), there exists a unique positive constant iR

satisfying   .0ii Rf

Let       .1:0inf 00
110  

i
bYZbCR

i yYeERR Then 0R

satisfies (2.11).

Lemma 3.2. Let model (2.5) satisfy Assumptions 2.1 to 2.8.

Assume that for each  ,...,...,,, 21 nYi yyyGy   Ir Gi

 ,...,...,,, 21 miii

       0,01 00
1

111  
ri iIyYIZbCbYP

and

      ,0,1 00
1

111  
ri iIyYIbYZbCE (2.15)

there exists 0ir satisfying that

      .1, 00
1 1

111 


ri
IbYZbC iIyYeE ik (2.16)

Then

.min 01 RR ir  (2.17)

Furthermore, for all  ,...,...,,, 21 nYi yyyGy   Ir Gi

 ,...,...,,, 21 miii
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      .1, 00
1 1

1111 


ri
IbYZbCR iIyYeE (2.18)

Proof. For each  ,...,...,,, 21 nYi yyyGy   ,...,...,,, 21 mIr iiiGi 

let

       ,, 00
1 1

111
ri

IbYZbCr
ir iIyYeEtl 

 for .0t

Then the first derivative of  tlir at 0t is

        0,10 00
1

111  
riir iIyYIbYZbCEl

and the second derivative is

 tlir

           ri
IbYZbCr iIyYeIbYZbCE 


00
121

111 ,1
21

111

.0

This shows that  tlir is a convex function. From (2.15), it implies that

  .lim 


tfir
t

Let ir be the unique positive root of the equation   0tlir on  ,0

and .0 ir Then

     ri
IbYZbCR iIyYeE 


00
1 ,

1
1110

      



ji sr

ibyZbCR
rsij

sjeeqp
, ,

1 1
10 (by Jensen’s inequality)

      
 

s

i
i

bYZbCR
rs

syYeEq .
1

110 1
0

Consequently, by Lemma 3.1, we have       .10
110 

i
bYZbCR yYeE

Hence, since  
s

rsp ,1
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      .1, 00
1 1

1110 


ri
IbYZbCR iIyYeE

This implies that   .00 Rlir Moreover, irR 0 for i, r and so

.min: 0
,

1 RR ir
ri



Thus, (2.13) holds. In addition, irR 1 for all i, r, which implies that

  .01 Rlir This yields (2.14).

Theorem 3.1. Under the hypotheses of Lemma 3.1 and Lemma 3.2, for

all  ,...,...,,, 21 nYi yyyGy   ...,...,,, 21 mIr iiiGi  and ,0u

  .,, 1uR
ri eiyu   (2.19)

Proof. Let   .1
1

1



k

l
lkk IUV Then

     
 

















k

l

l

t
tlk IbYZbCuV

1 1

1
1 .1 (2.20)

Let .1 nVR
n eS  Then

    
.

1

1

1
111 1

1







 

 

n

t
tnn IbYZbCR

nn eSS

Thus, for any ,1n

 nnnn IIZZYYSE ...,,,...,,,...,, 1111 



    

nnn

IbYZbCR

n IIZZYYeES

n

t
tnn

...,,,...,,,...,, 111

1
1

1

1
111








 




    

....,,, 1

1
1

1

1
111

nn

IbYZbCR

n IIYeES

n

t
tnn








 


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From  


 
n

t
tI

1

1 110 and Jensen’s inequality, we have


    

nn

IbYZbCR

n IIYeES

n

t
tnn

...,,, 1

1
1

1

1
111








 



      
 

....,,,
1

11
1

1111
1

1






  

n

t
tI

nnn
nn

IbYZbCR
n IIYeES

In addition,

      nn
IbYZbCR IIYeE nnn ...,,, 1

1 1
1111 


 

      nn
IbYZbCR IYeE nnn ,

1
1111 1 


 

       .1, 00
1 1

111 
 IYeE IbYZbCR n

Thus, we have

  ....,,,...,,,...,, 1111 nnnnn SIIZZYYSE 


This implies that   1nnS is a supermartingale.

Let  ,0:min 0 iIVnT ni  where nV is given by (2.20). Then iT

is a stopping time and  ii TnTn ,min is a finite stopping time. Thus,

by the optional stopping theorem for martingale, we get

    .1
0

uR
Tn eSESE

i



 

Hence,

           nTTnTTnTn
uR

iiiii
SESESEe 







  111

         ,,,11.1
rinnTnT

VR
iyuEeE

ii
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where (2.21) follows because .0
iTV Thus, by letting n in (2.19),

we obtain the result.
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4. Conclusion

We studied a controlled general risk process when claim and rates of

interest are homogeneous Markov chains taking a countable number of non-

negative values. Using Lemma 3.1 and Lemma 3.2, Theorem 3.1 provides a

probability inequality for  0,, iyu i
 by the martingale approach.
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