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Abstract

In this paper, we study a controlled general risk process. We
assume that claim and rates of interest are homogeneous Markov
chains, taking a countable number of non-negative values. Generalized
Lundberg inequalities for ruin probability of this process are derived
by the martingal e approach.

1. Introduction

In classical risk model, the claim number process was assumed to be
a Poisson process and the individual claim amounts were described as
independent and identically distributed random variables. In recent years, the
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classical risk process has been extended to more practical and real situations.
For most of the investigations treated in risk theory, it is very significant
to deal with the risks that rise from monetary inflation in the insurance
and finance market, and also to consider the operation uncertainties in
administration of financial capital. The ruin problem has been studied by
many researchers [4, 9, 10]. Sundt and Teugels [16, 17] studied ruin
probability under the compound Poisson risk model with the effects of
constant rate. Yang [19] gave both exponential and non-exponential upper
bounds for ruin probabilities in a risk model with constant interest force and
independent premiums and claims. Xu and Wang [18] gave upper bounds
for ruin probabilities in a risk model with interest force and independent
premiums and claims with Markov chain interest rate. Cai [1, 2] considered
the ruin probabilities in two risk models, with independent premiums and
claims and used a first-order autoregressive process to model the rates
of interest. Cai and Dickson [3] built Lundberg inequalities for ruin
probabilities in two discrete-time risk process with a Markov chain interest
model and independent premiums and claims. Quang [11] established
Lundberg inequalities using the recursive technique for ruin probabilities in
two risk models with homogeneous Markov chain premiums when claims
and interest rates sequences are independent. Quang [12] used martingale
approach to build upper bounds for ruin probabilities in a risk model with
interest force and independent interest rates and premiums when the claims
form a Markov chain. Quang [13] used martingale approach to build
upper bounds for ruin probabilities in a risk model with interest force and
independent interest rates and Markov chain claims and Markov chain
premiums. Quang [14] used martingale approach to build upper bounds for
ruin probabilities in arisk model with interest force and independent claims,
Markov chain premiums and Markov chain interests. Quang [15] also
used recursive approach to build upper bounds for ruin probabilities in a
risk model with interest force and Markov chain premiums, Markov chain
claims, with the independent interest rates.
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In addition, many papers studied an insurance model where the risk
process can be controlled by proportional reinsurance. The performance
criterion is to choose reinsurance control strategies to bound the ruin
probability of a discrete-time process with a Markov chain interest.
Controlling arisk processis a very active area of research, particularly in the
last decade; see [4-7], for instance. Nevertheless obtaining explicit optimal
solutions is a difficult task in a genera setting. Diasparra and Romera [8]
obtained generalized Lundberg inequalities for the ruin probabilities in a
controlled discrete-time risk process with a Markov chain interest.

In this article, we extend the model considered by Diasparra and Romera
[8] to introduce claim and rates of interest as homogeneous Markov chains,
taking a countable number of non-negative values. Generalized Lundberg
inequalities for ruin probability of this process are derived by the Martingale
approach.

2. The Model and Basic Assumptions

Let Y, be the nth claim payment. The random variable Z,, stands for

the length of the nth period, that is, the time between the occurrences of the
clams Y,_; and Y,. Let {I,,}, ., be the interest rate process. We assume

that Y,, Z, and |,, are defined on the probability space (2, A P). We

consider a discrete-time insurance risk process in which the surplus process
{Un},sq Withinitial surplus u can be written as

Uy =Up1@+ 1)+ C(by_1) - Zy — h(by_1, Yy), for n > 1. (2.
We make several assumptions:
Assumption 2.1. Ug = u > 0.
Assumption 2.2. {Y,}., is ahomogeneous Markov chain, such that for

any n, the values of Y, are taken from a set of non-negative numbers

Gy =1{Y1, Y2, s Yn» -} With Yy = y; and
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pij = Plo € Q: Yy1(0) = yj[Ya(@) = i ](ne N, ¥ € Gy, yj € Gy), (22)

+00
where 0< p; <1, > p;j =1.
j=1
Assumption 2.3. {I,} ., is a homogeneous Markov chain, such that
for any n, the values of 1, are taken from a set of non-negative numbers
G| = {il, i2, . im, } with |0 = il’ and

Ors = Plo € Q: Ipya(0) =i Ip(0) =i ] (me N, i, € G, ig € G),

+00
where 0< s <1, > gs = 1.
s=1

Assumption 2.4. {Z,} ., is a sequence of independent and identically

distributed non-negative continuous random variables with the same
distributive function

F(z) = P(o € Q; Zp(o) < 2)
with F(0) = 0.

Assumption 2.5. We denote by C(b) the premium Ieft for the insurer if
the retention level b is chosen, where

0<C(b)<c, beB.

The process can be controlled by reinsurance, that is, by choosing
the retention level (or proportionality factor or risk exposure) b € B of a
reinsurance contract for one period, where B = [byin, 1], bBmin € (0, 1] will
be introduced below. The premium rate c is fixed.

Assumption 2.6. We denote the function h(b, y) with valuesin [0, y]

specifies the fraction of the claim y paid by the insurer, and it also depends
on the retention level b at the beginning of the period. Hence y — h(b, y) is

the part paid by the reinsurer. The retention level b =1 stands for control
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action with no reinsurance. In this article, we consider the case of
proportional reinsurance, which means that

h(b, y)=b -y, with b € B. (2.3)
Usually, the constant by, in Assumption 2.5 is chosen by
Brmin := min{b € (0, 1], C(b) > 0}. (2.9
Assumption 2.7. We suppose that {Yn}.0, 1Zn}nso @d I, @€
independent.

Assumption 2.8. We consider Markovian control policies © = {a, },51,

which at each time n depend only on the current state, that is, a,(U,,) := b,
for n> 0. Abusing notation, we identify functions a: X — B, where
X =R U ¢, Bisthe decision space.

Consider an arbitrary initial state Ug = u >0 and a control policy
T = {ap 5. Then, by iteration of (2.1) and assuming (2.2), it follows that
for n>1, U, satisfies

Up=uJ @+ I.)+Z(0(bn_1)2. -b-y ] @+ Im)]. (2.5)
1=1

1=1 m=I+1

The ruin probability when using the policy =, given the initial surplus
u, and the initial clam Yy = y;, the initial interest rate 1y =i, with
Assumptions 2.1 to 2.8 is defined as

VACR I PR[U(Uk <0)|Ug =u, Yo =V lg = irJ (2.6)
k=1

which we can al'so express as

v (U, ¥, i) =P"Uy < 0forsomek >1|Ug =u,Yg = ¥;, lg =i;). (2.7)

Similarly, the ruin probabilities in the finite horizon case with
Assumptions 2.1 to 2.8 are given by
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n

wiu Y i) = P JUk <OV =u, Yo = v, lo =iy | (28)

k=1
Firstly, we have
Wi i i) S w3, ¥ i) << wplu i) <, (29)
andwithany n e N,
wRu, ¥, i) < L (2.10)

Thus, from (2.7) and (2.8), we obtain

lim wa(u, i, ir) = w™ (U, i, i)

n—oo

We denote by [] the policy space. A control policy n* is said to be
optimal if for any initial (Y, 1g) = (V;, i;), wehave

W (U, Vi i) < WU, Y, i) forall me TIL

3. Upper Boundsfor Ruin Probability by the Martingale Appr oach
We now construct upper bounds for ruin probabilities by the martingale

n
approach. Tothisend, let V, =U J [ @+ 1)~ with n > 1, be the so-called
i=1

discounted risk process. The ruin probabilities ¢f; in (2.8) associated to the
Vpyn=12 ..} ae

n
Yo, ¥ ir) = P [ J(V < 01Ug =g, Yo = ¥, 1o =ir) |
k=1

In the classical risk model, process {e‘ROUn}n21 is a martingale.

However, for our model (2.5), there is no constant r > 0 such that
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{e"n} ., is a matingde. Still, there exists a constant r > 0 such that

{e‘rVn Jn>1 1S @ supermartingale, which alows us to derive probability

inequalities by the optional stopping theorem. Such a constant is defined in
the following lemmas:

Lemma 3.1. Let model (2.5) satisfy Assumptions 2.1 to 2.8. Assume that
for each y; € Gy ={V1, Y2, s Yn: }» PE"(Y|Yg = ¥;) < C(b)E™(Z;) and
P™(bY; — C(b)Z; > 0]Yp = ;) > 0. Then there exists a constant Ry = Ry(b)

such that
Ef[eRICOIZ-bM] 1y — o (2.12)
Proof. Define
fi(t) = E"e ICAP vy = y]-1 te (0 +0).
We have

fi(0) = ~E"[C(b)Zy - bY; | Yo = y;] = ~C(D)E™(Z1) + PE" (V1Yo = ¥;) < O
(by independence) (2.12)
and the second derivativeis
f/(t) = EF[C(b)Zy - byyPe CP Ay, = 1> 0.
Thisimpliesthat
f,(t) isaconvex function with f;(0) = 0. (2.13)
By P™(bY; — C(b)Z; > 0|Yy = ¥;) > 0, we can find some constant § > 0
such that

P™(bY; — C(b)Z; > & > 0|Yy = y;) > O.
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Then we get
fi(t) = E[e 1C® Ay, = yi]-1

E™ ({e—t[C(b) Z1-bYp] | YO

\%

= Vit Lov—c(b)zy>51Yo=yi}) — 1

> PP (bY, - C(b)Zy > 5|Yy = ¥ ) - 1.
Thisimplies that

lim f;(t) = +o. (2.14)

t—>+0

From (2.12), (2.13) and (2.14), there exists a unique positive constant R
satisfying f;(R) = 0.
Let Ry =inf{R >0: Ef[e RICPIZ-DM |\ — v1_11 Then R,
satisfies (2.11).
Lemma 3.2. Let model (2.5) satisfy Assumptions 2.1 to 2.8.
Assume that for each vy, € Gy ={y, Y2, s Y, -}» iy € G| =
{i1, 19y vy Iy -t
P™([bY; - C(0)Z4] @+ 1) > 0|Yg = ¥i, Ig =) > O
and
E™(-[C(b)Z; - bY ]+ Il)_1|Y0 =V, lg=i)<0, (2.15)

there exists p;, > O satisfying that

Eﬂ(e—Pik[C(b)Zl—bYl](1+|1)_l Yo = yi, Ig =i ) = 1. (2.16)

Then
R = minpj, > Ry. (2.17)
Furthermore, for al vy e Gy ={w, Y2, w1 Y, -}y iy €G) =

{ig, 12, oo i by
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Er(e RICOZI-DMIGH)™ |y v — <1 (2.18)

Proof. For each y; € Gy ={Y1, Y2, s Yns }» Iy € G| ={it, 00, s imy o}y
let

-1
I (1) = ER(e " ICOZA-PAIA+1)" y — v 1 =), for t > O.
Then thefirst derivative of I, (t) at t = 0 is

I (0) = E™(~[C(b)Z — bY] @+ 1)) Yo = ¥i, 1o = i) < O
and the second derivativeis

Iir (t)

= E"(([C(b)Zy — bY ]+ 1y L)2e T ICOZDMIAr ) v )
> 0.

This shows that |, (t) is a convex function. From (2.15), it implies that

lim i, (t) = +oo.
t

—>+00

Let p;, bethe unique positive root of the equation I;, (t) = 0 on (0, +x)
and 0 < p < pj;. Then

ETC(e C(b)zl bYl](1+|l) |Y0 =%, |0 = II’)

|
= ZZ p,quse[e RolC(B) Z3-by; J(1+is) ] (by Jensen’s inequality)

i,jr,s

N
< qu Ro[C(b)Z;- bYl]|Y0 =y ](1+'s)

Ro[C(b) Z1-b¥a] |y,

Consequently, by Lemma 3.1, we have E[e "0 =vyi]=1

Hence, since Y prs =1
S
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B (e RICO)Zi-bMIGH )™ |y _ o)< 1
Thisimpliesthat |, (Ry) < 0. Moreover, R, < p;j; fori, r and so
R = Tirnpir > Ry.
Thus, (2.13) holds. In addition, R; < p;, for al i, r, which implies that
li; (Ry) < 0. Thisyields (2.14).

Theorem 3.1. Under the hypotheses of Lemma 3.1 and Lemma 3.2, for
all yi € Gy =1{Y1, Y2, s Yns -}» iy € G ={iq, i9y eury iy, -} @nd u >0,

v, YL i) < e R (2.19)
k
Proof. Let Vi = U [J@+1;)™" Then
=1
k |
Vi =u+ Y [(Cb)z -bp) [ [a+ )™ (2.20)
=1 t=1

Let S, = e "V Then

n+1
~RI(C(b) Zny1-bYny) [T @+19) ™t

Shi1 = See t=1

Thus, forany n > 1,

E™[She1l Y oo Yoo Z4s coer Zpyo 1gs oo 1]

n+l

~RI(C(b) Zny1-bYny) [T @+1) ™t
= S,E™[e t=1 7P 7 PR

n+1
~RI(C(b) Zny1-bYn ) [T @+1p) ™t
= §,E"[e t=1 Y, 11 o In -
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n
From 0<J ]+ It)_1 <1 and Jensen’s inequality, we have
t=1

n+1
~RI(C(b) Zny1-bYny) [T @)
S.E™[e t=1 Ya, 14, o 10]

< SnETE[e—Rl(C(b)Zn+1—an+1)(1+|n+1)7l |an |1, . In]
In addition,

1
E™[e RU(CHE)I Znit-DYn ) B ™ 1y gy 1]
_ En[e—Rl(C(b)Zn+1_an+1)(1+|I’H—l)_l |Yn’ |n]

_ ETe ROCBZa-bW @)™ |y 1<q
Thus, we have
E™[Shit Ve oo Yoo Zg, coor Zpys Mgy v 1] < Sy
Thisimpliesthat {S;},,., isasupermartingale.

Let Ti = min{n:V, < 0|l =i}, where V,, isgiven by (2.20). Then T;
is astopping time and n A T; = min{n, T;} is a finite stopping time. Thus,
by the optional stopping theorem for martingale, we get

E™(Sha7) < E™(S) = e .
Hence,
e R > E™(Sy01) 2 EM(Shat) - Lri<n) = E*((Sp) - Y7.<n)

= BN N A ) 2 ERYr <) 2 VAU Vi), (2:20)

where (2.21) follows because Vg, <O0. Thus, by letting n — +oo in (2.19),

we obtain the result.
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4, Conclusion

We studied a controlled general risk process when claim and rates of

interest are homogeneous Markov chains taking a countable number of non-
negative values. Using Lemma 3.1 and Lemma 3.2, Theorem 3.1 provides a

probability inequality for w™(u, y;, ig) by the martingale approach.
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