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Abstract

In this paper, we define modules with the properties (5-GSCE) and
(8-GSCEE) by adapting Zoschinger’s modules with the properties (E)
and (EE) and we investigate the structure of modules with these
properties. It is shown that: (1) a module has the property (6-GSCEE)

iff every submodule has the property (5-GSCE); (2) the property
(8-GSCE) is inherited by direct summands; (3) for an R-module M
over a 3-V-ring, M has the property (8-GSCE) iff M is cofinitely

injective; (4) if R is a 3-semiperfect ring, then every left R-module has
the property (8-GSCE).
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1. Introduction

In this paper, al rings will be associative with an identity element.
Unless otherwise stated, R denotes an arbitrary ring and all modules will be
left unitary R-modules. Let M be an R-moduleby N < M we mean that Nis
a submodule of M. Recall that a submodule N < M is caled small in M
(denoted by N << M) if M = N+ T for every proper submodule T of M.
Dually, a submodule L < M is called essential in M (denoted by L < M)

if LN X # 0 for every nonzero submodule X of M. A module M is said

to be singular if M = % for some submodule N and a submodule L < N

with L < N. Rad(M) will indicate the Jacobson radical of M. For two
submodules N and K of M, N is caled a supplement of K in M if N
is minimal with the property M = K + N; equivalently M = K + N and
K N N << N. A module M is called supplemented if every submodule of M

has a supplement in M. Also, M is called amply supplemented if, for any two
submodules L, K of M with M = L + K, there exists a supplement P of L

suchthat P < K.

In [16], Zhou introduced the concept of &-small submodules as a
generalization of small submodules. A submodule N of M is said to be

o-small in M if whenever M = N + K and % is singular, we have

M = K. The sum of al &-small submodules of a module M is denoted by
8(M). Itis easy to see that every small submodule of a module M is 3-small
in M, so Rad(M) < 8(M). A submodule L of M is called a 3-supplement
of NinMif M=N+L and N L is ésmall in L and M is called
d-supplemented in case every submodule of M has a d-supplement in M.
Note that every supplemented module is 3-supplemented. For submodules
U and V of a module M, V is said to be a rad-supplement of U in
Mif U+V =M and UNV < Rad(V). M is caled a rad-supplemented

module if every submodule of M has a rad-supplement in M. In [10], these
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modules are also called generalized supplemented modules. Let M be an
R-module and let U and V be any submodules of M with M =U +V. If
UNV <3V), then V is caled a generalized d-supplement of U in M.
Following [10], M is called a generalized &-supplemented module (or briefly
8-GSmodule) if every submodule of M has a generalized 3-supplement in M.
Also, in [10], M is called a generalized amply &-supplemented (or briefly a
8-GAS module) if whenever M =U +V for submodules U, V of M, then U
contains a generalized 3-supplement of Vin M.

A submodule N of a module M is said to be cofinite if % is
finitely generated. M is called a cofinitely generalized supplemented module
if every cofinite submodule of M has a generalized supplement (see [3]).
Since every submodule of a finitely generated module is cofinite, a finitely
generated module is generalized supplemented if and only if it is cofinitely
generalized supplemented. M is called cofinitely generalized 3-supplemented
or briefly 5-CGS module if each cofinite submodule of M has a generalized
d-supplement in M (see [15]).

Let Rbe aring and let M and N be R-modules. N is called a (cofinite)
extension of M incase M < N (% is finitely generated) [4]. Zoschinger

generalized injective modules to modules with the property (E) such that a
module M has the property (E) if M has a supplement in every extension. He
also defined the structure of the modules which are called modules with the
property (EE), that isif M has ample supplementsin every extension, i.e., for
M c N, if N=M + K, K contains a supplement of M in N [17]. Every
left R-module has the property (E) iff Risleft perfect.

By adapting Zdschinger’s module with the properties (E) and (EE),
Calisict and Turkmen called a module M has the properties (CE) and (CEE)
if M has a supplement (ample supplements) in every cofinite extension.
Following this, in [8], Oztiirk S6zen and Eren defined modules with the
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property (3-E) as ageneralization of modules with the property (E). In[11],

the author introduced the properties (CRE) and (CREE) as a generalization
of the properties (CE) and (CEE) and gave a characterization of rad
supplemented rings which are a generalization of semiperfect rings.

In this paper, we investigate the properties (§-GSCE) and (5-GSCEE)
for modules as a generdization of the properties (CRE) and (CREE),
respectively. We show that a module has the property (5-GSCEE) if and

only if every submodule has the property (6-GSCE). We prove that
every direct summand of a module M with the property (5-GSCE) has

this property. We aso prove that the class of modules with the
property (8-GSCE) is closed under extension with a special condition. By

using the property (8-GSCE), we give a characterization of generalized

d-supplemented rings. Since every generalized &-supplement is a 6-
supplement, modules that have a 8-supplement in every cofinite extension
(briefly (3-CE) modules) also have a generalized 3-supplement in every

cofinite extension. It is clear that modules with the property (5-CE) also
have the property (5-GSCE). So at the end, we give an example showing
that a module with the property (5-GSCE) need not be (5-CE).

2. Preliminaries

We begin by stating the following lemmas which are contained in [16]
for the completeness.

Lemma 1. Let N be a submodule of M. The following are equivalent:
(1) N <<5 M;
2 if X+N=M, then M =X @Y for a projective semisimple

submodule Y with Y < N;

3)if X + N = M with % Goldietorsion, then X = M.
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Lemma 2. Let M be a module. Then we have the following:

(1) For submodules N, K, L of M with K < N, we have

(8 N << M ifandonlyif K <<; M and  <<5 %

(b) N+ L <<g M ifandonlyif N <<g M and L <<5 M.
2 If K<<xgM and f:M — N is a homomorphism, then
f(K) <<s N. Inparticular, if K <<g M < N, then K <<g5 N.

(3) Let Klg I\/IlgM, Kngng and M =M1(‘BM2. Then
K]_@ K2 <<s Ml@ M2 if and onlylf Kl <<s Ml and K2 <<s Mz.

3. Main Results

Definition 1. Let M be an R module. M is called with the property
(8-GSCE) if M has a generalized 3-supplement in every cofinite extension

and we say that M has the property (3-GSCEE) if M has ample generalized

d-supplements in every cofinite extension.

It is easy to see that every module with the property (3-CE) has the
property (8-GSCE). But the converse may not be true.

Proposition 1. Every 3-radical module has the property (5-GSCE).

Proof. Let M be a module and N be any cofinite extension of M.
N=M+NsncedM)=M and MNN=M =5M) < 8N). SoNis

ageneralized 3-supplement of M in N. O
We denote the sum of all &-radical submodules of a module M by
“Ps(M)”, thatis, Py(M) = Z{U cM|8U)=U}.
A module M is called -reduced if P;(M) = 0.

Since RBy(M ) isad-radical submodule of M, we have the next result as a

clear consequence of Proposition 1.
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Corollary 1. For amodule M, P;(M) hasthe property (5-GSCE).

The following proposition shows that the property (8-GSCE) is
preserved by direct summands.

Proposition 2. Every direct summand of a module with the property
(8-GSCE) hasthe property (5-GSCE).

Proof. Let U be adirect summand of M and N be any cofinite extension
of U< N. Then M = A®@U for some submodule A<= M. Let N’ bethe
external direct sum A® N and ¢ : M — N’ be the canonical embedding.

Then M = ¢(M) hasthe property (5-GSCE). We have

N_A®N_ N

U~ oM) oM)
is finitely generated. Since ¢(M ) has the property (5-GSCE), there exists
a submodule V of N’ such that N'=@(M)+V and ¢(M)NV < 3(V).

Consider the projection n: N'— N. So we have U + (V) = N. Also

since Ker(n) < ¢(M),
He(M)NV) c n(e(M)) N (V) =U N (V) < 8(n(V)).
Finaly, n(V) isageneralized 3-supplement of U in N. O

A module M is caled cofinitely injective if M is a direct summand of
every cofinite extension [4].

In [12], the authors defined 3-V-ring, that is, for any left (or right)
R-module M, §(M) = 0.

Proposition 3. Let R be any 8-V-ring and M be an R-module. Then the
following statements are equivalent:

(1) M hasthe property (8-GSCE).
(2) M is cofinitely injective.
(3) M has the property (3-CE).
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Proof. (1) = (2) Let M be a module with the property (5-GSCE) and N

be any cofinite extension of M. By hypothesis, M has a generalized -
supplement VinN. Since Risad-V-ring, N = M @V isobtained.

(2) = (3) and (3) = (1) areclear. O

In [17], Z6schinger proved that a module has the property (EE) < every
submodule has the property (E).

In the following theorem, we give an analogous characterization that
establishes a similar relation between our modules.

Theorem 1. A module M has the property (5-GSCEE) < every
submodule of M has the property (5-GSCE).

Proof. (=) Let M be a module with the property (5-GSCEE) and T

M@N
H i)

where the submodule H is the set of all elements (x, —x) of F with x e T

andlet o:M — F viaa(m)=(m,0)+H, B: N —> F viap(n)=(0,n)+H

foral me M, ne N. Itisclear that o and f are monomorphisms. So we

be any submodule of M. For a cofinite extension N of T, let F =

have the following pushout where p; and p, areinclusion mappings.

&
Ta

© s

It iseasy to provethat F = Im(a) + Im(B). Now we define y : F — N

T

by y((m,n)+H)=n+T foral (m n)+ H e F. Theny isan epimorphism.
N_ F ... .

Note that Ker(y) = Im(a) and so T = ) is finitely generated. Since

a is a monomorphism, we have M = Im(a). By hypothesis, Im(a.) has the
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property (8-GSCEE) so Im(a.) has a generalized &-supplement of V in F
with V < Im(B), i.e,
F=Ima)+V and Im(a)NV < dV).

Then N = BH(Im()) + BHV) = T +pHV) and TNE~HV) < 5(~1(V)).
Hence B_l(v) isageneralized 5-supplement of Tin N.

(=) Suppose that every submodule of M has the property (5-GSCE).

For a cofinite extension N of M, let N = M + K for some submodule K

N K
ofN.Thenmz MK

submodule of K. By hypothesis, there exists a submodule V of K such that

is finitely generated and so M () K is a cofinite

K=(MNK)+V,
MNK)NV =MNV c &V).
Note that N =M +V. So V is a generalized 8-supplement of M in N
which is contained in K. So M has the property (5-GSCEE). O

Corollary 2. Every submodule of a module with the property
(5-GSCEE) has the property (5-GSCE). Moreover, a module with the

property (8-GSCEE) is cofinitely generalized 8-supplemented.
Proposition 4. Let M be a module and A be a submodule of B such that

% is Noetherian. If A and % have the property (5-GSCE), then soisB.

Proof. Let B < N be any cofinite extension of B. By hypothesis, there

Y,
. : v B. N N_ A
is a generalized 6-supplement A of 2 in = Note that BEBAV"
A

Since% is Noetherian, !A isfinitely generated. So, V is a cofinite extension

of A. Since A has the property (5-GSCE), A has a generalized 5-supplement
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W in V. We claim that M is a generalized 5-supplement of B in N.

We have epimorphisms f :W—>!A and g:%a% such that Ker f =

Vv

W N Ac W) and Kerg:Kﬂ%gS(V

A
epimorphism such that W (1 B = Ker(go f) < 8(W). Finaly, N=V +B=
W+ A)+B=W +B. O

).Then gof:Wa%isan

Proposition 5. Let M be a module and K be a 8-radical submodule of M.

If % has the property (8-GSCE), then so does M.

Proof. Let N be any cofinite extension of M. Then N is finitely

M
N
generated and so % = ﬁ is finitely generated. That is, % is a cofinite
K
. M . . V . N
extension of rE By hypothesis, there exists a submodule ® g such
N M V M AV Vv
Since K is 8-radical, M NV < §(V). So V is a generalized 5-supplement of
Min N. O
Theorem 2. Let

f g
O K->M->L->0

be a short exact sequence. Suppose that K is d-radical. If K and L have the
property (8-GSCE), sois M. If the sequence splits, then the converse holds.

Proof. Without loss of generality, we assume that K < M. Since
M =~ L has the property (8-GSCE) and K is d-radical, we have M has the

K
property (8-GSCE) by the previous proposition.
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Conversely, if the sequence splits, then M =z K @ L. So, K and L have
the property (5-GSCE) by Proposition 2. O

Corollary 3. Let M; (i =1, 2, ..., n) be any finite collection of §-radical
modulesand M = M;® M, ®---@® M,. Then M has the property (5-GSCE)
iff M; hasthe property (8-GSCE) for each i =1, 2, ..., n.

Proof. The necessity follows from Proposition 2. Conversely, to prove
that M has the property (8-GSCE), it is sufficient by induction on n to prove
that this is the case when n = 2. Thus suppose M = M; @ M,. By using
the following short exact sequence:

0O->M; > M —> M, >0,
we have that M has the property (5-GSCE) by Theorem 2, since M, is
d-radical and M, hasthe property (5-GSCE). O

Proposition 6. Let M be a module. Then the following are equivalent:

(1) M has a generalized 6-supplement in every cofinite essential
extension.

(2) M has a generalized 5-supplement in its cofinitely injective envelope
E(M).

Proof. (1) = (2) isclear.

(2) = (1) Let N be any cofinite essential extension of M, and let
f:M >N ad g: M — E(M) be inclusion mappings. Then we have
the following commutative diagram with h as necessarily monic.

fo
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By hypothesis, M has a generalized 3-supplement in E(M ), say K, that
iss M +K =EM) and M NK < §(K). Since M < h(N), we obtain that

h(N)NE(M)=h(N)N(M + K) =M + (h(N)N K).

Now, taking any n € N, we have h(n) = m+ hy(n) = h(m+ ry), where
meM and h(n) e (N)NK. So, n=m+m € M +h(K) since his
monic, and thus M + h™(K) = N. Moreover, M Nh™(K)=h"{(M NK)
- h‘l(S(K)) - 8(h‘1(K)) since h™}(M)=M ashismonic. Hence h™}(K)
isageneralized &-supplement of M in N. O

Proposition 7. Let M be a module with the property (8-GSCE). If M is
Noetherian, then M has the property (5-CE).

Proof. Let N be any cofinite extension of M. There exists a submodule V
of Nsuchthat N=M +V and M NV < §(V) since M has the property
(8-GSCE). Since M is Noetherian, M NV isfinitely generated. So it is easy
toseethat M NV <<5 V. So M has the property (5-CE). O

Proposition 8. If Ris a d-semiperfect ring, then every left R-module has
the property (5-GSCE).

Proof. Let M be an R-module and N be any cofinite extension of

M. Then there exists a finitely generated submodule K of N such that
N = M + K. Since Ris &-semiperfect, % has a projective 5-cover and M

has a 8-supplement and so generalized 5-supplement in N. Hence M has the
property (8-GSCE). O
Theorem 3. The following statements are equivalent for aring R:
(1) Risgeneralized 5-supplemented.

(2) R-module R has ample generalized &-supplements in every cofinite
extension.
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(3) R-module R has ample generalized &-supplements in every finitely
generated extension.

(4) Every left R-module has the property (5-GSCE).
(5) Every left R-modul e has the property (8-GSCEE).

Proof. (1) = (4) Let M be an R-module and N be a cofinite extension
of M. Then there exists a finitely generated submodule K of N such that
N =M + K. Since R is a generalized 3-supplemented ring, M (1 K has a
generalized 3-supplement TinK. Andso, N=M +T and M NT < &(T).

Hence T isageneralized 8-supplement of M in N.

(4) = (1) Suppose that every left R-module has the property (5-GSCE).
Since R is a cofinite extension of ideal of itself, every ideal of R has a
generalized 5-supplement in R as a left R-module. Hence, R is generalized
d-supplemented.

(2 = (1) If Rmodule R has the property (8-GSCEE), then it is
generalized 5-supplemented by Corollary 2.

(5) = (3) = (2) areclear. (4) = (5) follows from Theorem 1. O

A module M over aring Ris called unserial if the lattice of submodules
of M is a chain and M is called serial if M is a direct sum of uniserial
modules. A ring R is called left (right) unserial if the module RR(RR) is

unserial. Ris called a uniserial ring if R is both right and left uniserial. A
uniserial domain Ris called nearly simple if Rad(R) is the unique nonzero

two sided ideal of Rand Rad?(R) = O.

In the following example, we show that a module with the property
(8-GSCE) need not be (5-CE).

Example 1 (See[3]). Let G={f :Q > Q|f(t)=at+b for a,be Q
and a >0} be the group of affine linear functions on the field of
rational numbers Q. Choose any irrational number e e R and set P =
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{f eGle< f(e)} and P* ={f e G|e < f(g)}. Note that P, resp. P"
defines a left order on G. Take an arbitrary field F and consider the
semigroup group ring F[P] in which the right idel M = )  gF[P] is
geP?
maximal. The set F[P]/M is aleft and right ore set and the corresponding
localization R is a nearly simple uniserial domain. Taking any nonzero
element r e R, S=End(R/rR) is a rad-supplemented ring and so a
semilocal generalized 3-supplemented ring which is not 5-semiperfect [3].
Since Sisageneralized §-supplemented ring, S has the property (5-GSCE)
by Theorem [3]. However, it can be clearly seen that ¢S does not have a

d-supplement in every cofinite extension since it is not 5-semiperfect.
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