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Abstract 

In this paper, we define modules with the properties ( )GSCE-δ  and 

( )GSCEE-δ  by adapting Zöschinger’s modules with the properties (E) 

and (EE) and we investigate the structure of modules with these 

properties. It is shown that: (1) a module has the property ( )GSCEE-δ  

iff every submodule has the property ( );-GSCEδ  (2) the property 

( )GSCE-δ  is inherited by direct summands; (3) for an R-module M 

over a δ-V-ring, M has the property ( )GSCE-δ  iff M is cofinitely 

injective; (4) if R is a δ-semiperfect ring, then every left R-module has 

the property ( ).-GSCEδ  



Esra Öztürk Sözen and Şenol Eren242

1. Introduction

In this paper, all rings will be associative with an identity element.

Unless otherwise stated, R denotes an arbitrary ring and all modules will be

left unitary R-modules. Let M be an R-module by MN   we mean that N is

a submodule of M. Recall that a submodule MN   is called small in M

(denoted by )MN  if TNM   for every proper submodule T of M.

Dually, a submodule ML   is called essential in M (denoted by )ML 

if 0XL   for every nonzero submodule X of M. A module M is said

to be singular if
L
N

M  for some submodule N and a submodule NL 

with .NL   MRad will indicate the Jacobson radical of M. For two

submodules N and K of M, N is called a supplement of K in M if N

is minimal with the property ;NKM   equivalently NKM   and

.NNK  A module M is called supplemented if every submodule of M

has a supplement in M. Also, M is called amply supplemented if, for any two

submodules L, K of M with ,KLM   there exists a supplement P of L

such that .KP 

In [16], Zhou introduced the concept of -small submodules as a

generalization of small submodules. A submodule N of M is said to be

-small in M if whenever KNM   and
K
M

is singular, we have

.KM   The sum of all -small submodules of a module M is denoted by

 .M  It is easy to see that every small submodule of a module M is -small

in M, so    .MMRad   A submodule L of M is called a -supplement

of N in M if LNM   and LN   is -small in L and M is called

-supplemented in case every submodule of M has a -supplement in M.

Note that every supplemented module is -supplemented. For submodules

U and V of a module M, V is said to be a rad-supplement of U in

M if MVU   and  .VRadVU  M is called a rad-supplemented

module if every submodule of M has a rad-supplement in M. In [10], these
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modules are also called generalized supplemented modules. Let M be an

R-module and let U and V be any submodules of M with .VUM   If

 ,VVU   then V is called a generalized -supplement of U in M.

Following [10], M is called a generalized -supplemented module (or briefly

-GS module) if every submodule of M has a generalized -supplement in M.

Also, in [10], M is called a generalized amply -supplemented (or briefly a

-GAS module) if whenever VUM   for submodules U, V of M, then U

contains a generalized -supplement of V in M.

A submodule N of a module M is said to be cofinite if
N
M

is

finitely generated. M is called a cofinitely generalized supplemented module

if every cofinite submodule of M has a generalized supplement (see [3]).

Since every submodule of a finitely generated module is cofinite, a finitely

generated module is generalized supplemented if and only if it is cofinitely

generalized supplemented. M is called cofinitely generalized -supplemented

or briefly -CGS module if each cofinite submodule of M has a generalized

-supplement in M (see [15]).

Let R be a ring and let M and N be R-modules. N is called a (cofinite)

extension of M in case 




 generatedfinitelyis

M
N

NM  [4]. Zöschinger

generalized injective modules to modules with the property (E) such that a

module M has the property (E) if M has a supplement in every extension. He

also defined the structure of the modules which are called modules with the

property (EE), that is if M has ample supplements in every extension, i.e., for

,NM   if ,KMN  K contains a supplement of M in N [17]. Every

left R-module has the property (E) iff R is left perfect.

By adapting Zöschinger’s module with the properties (E) and (EE),

Çalısıcı and Türkmen called a module M has the properties (CE) and (CEE)

if M has a supplement (ample supplements) in every cofinite extension.

Following this, in [8], Öztürk Sözen and Eren defined modules with the
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property  E- as a generalization of modules with the property (E). In [11],

the author introduced the properties (CRE) and (CREE) as a generalization

of the properties (CE) and (CEE) and gave a characterization of rad

supplemented rings which are a generalization of semiperfect rings.

In this paper, we investigate the properties  GSCE-  and  GSCEE-

for modules as a generalization of the properties (CRE) and (CREE),

respectively. We show that a module has the property  GSCEE-  if and

only if every submodule has the property  .-GSCE  We prove that

every direct summand of a module M with the property  GSCE-  has

this property. We also prove that the class of modules with the

property  GSCE-  is closed under extension with a special condition. By

using the property  ,-GSCE  we give a characterization of generalized

-supplemented rings. Since every generalized -supplement is a -
supplement, modules that have a -supplement in every cofinite extension

(briefly  CE-  modules) also have a generalized -supplement in every

cofinite extension. It is clear that modules with the property  CE-  also

have the property  .-GSCE  So at the end, we give an example showing

that a module with the property  GSCE- need not be  .-CE

2. Preliminaries

We begin by stating the following lemmas which are contained in [16]

for the completeness.

Lemma 1. Let N be a submodule of M. The following are equivalent:

(1) ;MN 

(2) if ,MNX  then YXM  for a projective semisimple

submodule Y with ;NY 

(3) if MNX  with
X
M

Goldie torsion, then .MX 
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Lemma 2. Let M be a module. Then we have the following:

(1) For submodules N, K, L of M with ,NK  we have

(a) MN  if and only if MK  and .
K
M

K
N



(b) MLN  if and only if MN  and .ML 

(2) If MK  and NMf : is a homomorphism, then

  .NKf  In particular, if ,NMK  then .NK 

(3) Let ,11 MMK  MMK  22 and .21 MMM  Then

2121 MMKK   if and only if 11 MK  and .22 MK 

3. Main Results

Definition 1. Let M be an R module. M is called with the property

 GSCE-  if M has a generalized -supplement in every cofinite extension

and we say that M has the property  GSCEE-  if M has ample generalized

-supplements in every cofinite extension.

It is easy to see that every module with the property  CE-  has the

property  .-GSCE  But the converse may not be true.

Proposition 1. Every -radical module has the property  .-GSCE

Proof. Let M be a module and N be any cofinite extension of M.

NMN   since   MM   and    .NMMNM   So N is

a generalized -supplement of M in N. 

We denote the sum of all -radical submodules of a module M by

 ”,“ MP  that is,       .UUMUMP

A module M is called -reduced if   .0 MP

Since  MP  is a -radical submodule of M, we have the next result as a

clear consequence of Proposition 1.
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Corollary 1. For a module M,  MP has the property  .-GSCE

The following proposition shows that the property  GSCE-  is

preserved by direct summands.

Proposition 2. Every direct summand of a module with the property

 GSCE- has the property  .-GSCE

Proof. Let U be a direct summand of M and N be any cofinite extension

of .NU  Then UAM   for some submodule .MA   Let N  be the

external direct sum NA   and NM  :  be the canonical embedding.

Then  MM   has the property  .-GSCE  We have

   M
N

M
NA

U
N








is finitely generated. Since  M has the property  ,-GSCE  there exists

a submodule V of N   such that   VMN   and    .VVM  

Consider the projection .: NN  So we have   .NVU   Also

since    ,MKer 

            .VVUVMVM  

Finally,  V  is a generalized -supplement of U in N. 

A module M is called cofinitely injective if M is a direct summand of

every cofinite extension [4].

In [12], the authors defined -V-ring, that is, for any left (or right)

R-module M,   .0 M

Proposition 3. Let R be any -V-ring and M be an R-module. Then the

following statements are equivalent:

(1) M has the property  .-GSCE

(2) M is cofinitely injective.

(3) M has the property  .-CE
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Proof. (1) (2) Let M be a module with the property  GSCE-  and N

be any cofinite extension of M. By hypothesis, M has a generalized -
supplement V in N. Since R is a -V-ring, VMN   is obtained.

(2) (3) and (3) (1) are clear. 

In [17], Zöschinger proved that a module has the property (EE) every

submodule has the property (E).

In the following theorem, we give an analogous characterization that

establishes a similar relation between our modules.

Theorem 1. A module M has the property  GSCEE-  every

submodule of M has the property  .-GSCE

Proof. () Let M be a module with the property  GSCEE-  and T

be any submodule of M. For a cofinite extension N of T, let ,
H

NM
F



where the submodule H is the set of all elements  xx ,  of F with Tx 

and let FM  : via     ,0, Hmm  FN  : via     Hnn  ,0

for all ,Mm  .Nn  It is clear that  and  are monomorphisms. So we

have the following pushout where 1  and 2  are inclusion mappings.

It is easy to prove that    .ImIm F  Now we define
T
N

F  :

by    TnHnm  ,  for all   ., FHnm   Then  is an epimorphism.

Note that     ImKer  and so  
Im

F
T
N

is finitely generated. Since

 is a monomorphism, we have  .Im M  By hypothesis,  Im  has the
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property  GSCEE-  so  Im  has a generalized -supplement of V in F

with  ,Im V i.e.,

  VF  Im and    .Im VV  

Then       VTVN 111 Im    and     .11 VVT  

Hence  V1  is a generalized -supplement of T in N.

() Suppose that every submodule of M has the property  .-GSCE

For a cofinite extension N of M, let KMN   for some submodule K

of N. Then
KM

K
M
N


 is finitely generated and so KM   is a cofinite

submodule of K. By hypothesis, there exists a submodule V of K such that

  ,VKMK  

   .VVMVKM  

Note that .VMN  So V is a generalized -supplement of M in N

which is contained in K. So M has the property  .-GSCEE 

Corollary 2. Every submodule of a module with the property

 GSCEE- has the property  .-GSCE Moreover, a module with the

property  GSCEE- is cofinitely generalized -supplemented.

Proposition 4. Let M be a module and A be a submodule of B such that

A
B

 is Noetherian. If A and
A
B

have the property  ,-GSCE then so is B.

Proof. Let NB   be any cofinite extension of B. By hypothesis, there

is a generalized -supplement
A
V

 of
A
B

in .
A
N

 Note that .

A
VB

A
V

B
N




Since
A
B

 is Noetherian,
A
V

 is finitely generated. So, V is a cofinite extension

of A. Since A has the property  ,-GSCE A has a generalized -supplement
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W in V. We claim that M is a generalized -supplement of B in N.

We have epimorphisms
A
V

Wf : and
B
N

A
V

g : such that fKer

 WAW  and .






A
V

A
B

A
V

gKer  Then
B
N

Wfg : is an

epimorphism such that    .WfgKerBW    Finally,  BVN

  .BWBAW  

Proposition 5. Let M be a module and K be a -radical submodule of M.

If
K
M

has the property  ,-GSCE then so does M.

Proof. Let N be any cofinite extension of M. Then
M
N

 is finitely

generated and so

K
M
K
N

M
N  is finitely generated. That is,

K
N

is a cofinite

extension of .
K
M

 By hypothesis, there exists a submodule
K
V

in
K
N

such

that
K
V

K
M

K
N  and .







K
V

K
V

K
M
 Then we have .VMU 

Since K is -radical,  .VVM   So V is a generalized -supplement of

M in N. 

Theorem 2. Let

00  LMK
gf

be a short exact sequence. Suppose that K is -radical. If K and L have the

property  ,-GSCE so is M. If the sequence splits, then the converse holds.

Proof. Without loss of generality, we assume that .MK  Since

L
K
M   has the property  GSCE-  and K is -radical, we have M has the

property  GSCE- by the previous proposition.
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Conversely, if the sequence splits, then .LKM   So, K and L have

the property  GSCE-  by Proposition 2. 

Corollary 3. Let  niM i ...,,2,1 be any finite collection of -radical

modules and .21 nMMMM   Then M has the property  GSCE-

iff iM  has the property  GSCE- for each ....,,2,1 ni 

Proof. The necessity follows from Proposition 2. Conversely, to prove

that M has the property  ,-GSCE  it is sufficient by induction on n to prove

that this is the case when .2n  Thus suppose .21 MMM  By using

the following short exact sequence:

,00 21  MMM

we have that M has the property  GSCE-  by Theorem 2, since 1M  is

-radical and 2M  has the property  .-GSCE 

Proposition 6. Let M be a module. Then the following are equivalent:

(1) M has a generalized -supplement in every cofinite essential

extension.

(2) M has a generalized -supplement in its cofinitely injective envelope

 .ME

Proof. (1) (2) is clear.

(2)  (1) Let N be any cofinite essential extension of M, and let

NMf : and  MEMg : be inclusion mappings. Then we have

the following commutative diagram with h as necessarily monic.



Modules that have a Generalized -supplement … 251

By hypothesis, M has a generalized -supplement in  ,ME  say K, that

is,  MEKM   and  .KKM  Since  ,NhM   we obtain that

          .KNhMKMNhMENh  

Now, taking any ,Nn   we have      ,11 nmhnhmnh  where

Mm  and     .1 KNhnh   So,  KhMnmn 1
1

 since h is

monic, and thus   .1 NKhM    Moreover,    KMhKhM  11  

     KhKh 11   since   MMh 1  as h is monic. Hence  Kh 1

is a generalized -supplement of M in N. 

Proposition 7. Let M be a module with the property  .-GSCE If M is

Noetherian, then M has the property  .-CE

Proof. Let N be any cofinite extension of M. There exists a submodule V

of N such that VMN   and  VVM   since M has the property

 .-GSCE Since M is Noetherian, VM  is finitely generated. So it is easy

to see that .VVM  So M has the property  .-CE 

Proposition 8. If R is a -semiperfect ring, then every left R-module has

the property  .-GSCE

Proof. Let M be an R-module and N be any cofinite extension of

M. Then there exists a finitely generated submodule K of N such that

.KMN   Since R is -semiperfect,
M
N

 has a projective -cover and M

has a -supplement and so generalized -supplement in N. Hence M has the

property  .-GSCE 

Theorem 3. The following statements are equivalent for a ring R:

(1) R is generalized -supplemented.

(2) R-module R has ample generalized -supplements in every cofinite

extension.
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(3) R-module R has ample generalized -supplements in every finitely

generated extension.

(4) Every left R-module has the property  .-GSCE

(5) Every left R-module has the property  .-GSCEE

Proof. (1)  (4) Let M be an R-module and N be a cofinite extension

of M. Then there exists a finitely generated submodule K of N such that

.KMN  Since R is a generalized -supplemented ring, KM   has a

generalized -supplement T in K. And so, TMN   and  .TTM 

Hence T is a generalized -supplement of M in N.

(4) (1) Suppose that every left R-module has the property  .-GSCE

Since R is a cofinite extension of ideal of itself, every ideal of R has a

generalized -supplement in R as a left R-module. Hence, R is generalized

-supplemented.

(2)  (1) If R-module R has the property  ,-GSCEE then it is

generalized -supplemented by Corollary 2.

(5) (3) (2) are clear. (4) (5) follows from Theorem 1. 

A module M over a ring R is called unserial if the lattice of submodules

of M is a chain and M is called serial if M is a direct sum of uniserial

modules. A ring R is called left (right) unserial if the module  RR RR  is

unserial. R is called a uniserial ring if R is both right and left uniserial. A

uniserial domain R is called nearly simple if  RRad  is the unique nonzero

two sided ideal of R and   .02 RRad

In the following example, we show that a module with the property

 GSCE- need not be  .-CE

Example 1 (See [3]). Let    battfQQfG  : for Qba ,

and 0a be the group of affine linear functions on the field of

rational numbers Q. Choose any irrational number   and set P
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   fGf  and   . fGfP Note that P, resp. P

defines a left order on G. Take an arbitrary field F and consider the

semigroup group ring  PF  in which the right ideal  



Pg

PgFM is

maximal. The set   MPF  is a left and right ore set and the corresponding

localization R is a nearly simple uniserial domain. Taking any nonzero

element ,Rr   rRREndS  is a rad-supplemented ring and so a

semilocal generalized -supplemented ring which is not -semiperfect [3].

Since S is a generalized -supplemented ring, SS has the property  GSCE-

by Theorem [3]. However, it can be clearly seen that SS  does not have a

-supplement in every cofinite extension since it is not -semiperfect.
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