
 

Far East Journal of Mathematical Sciences (FJMS) 
© 2018 Pushpa Publishing House, Allahabad, India 
http://www.pphmj.com 
http://dx.doi.org/10.17654/MS104010119 
Volume 104, Number 1, 2018, Pages 119-132                         ISSN: 0972-0871  

Received: January 13, 2018;  Accepted: February 19, 2018 
2010 Mathematics Subject Classification: 90C05, 90C08. 
Keywords and phrases: network, maximum flow problem, network simplex algorithm, 
cycling. 

NETWORK SIMPLEX ALGORITHM ASSOCIATED 
WITH THE MAXIMUM FLOW PROBLEM 

Sennosuke Watanabe, Hodaka Tanaka and Yoshihide Watanabe 

National Institute of Technology 
Oyama College 
771 Nakakuki, Oyama, Tochigi 323-0806 
Japan 

Graduate School of Science and Engineering, 
Science of Environment and Mathematical Modeling 

Doshisha University 
1-3 Tatara Miyakodani, Kyotanabe 610-0394 
Japan 

Department of Mathematical Sciences 
Faculty of Science and Engineering 
Doshisha University 
1-3 Tatara Miyakodani, Kyotanabe 610-0394 
Japan 

Abstract 

In the present paper, we apply the network simplex algorithm                 
for solving the minimum cost flow problem, to the maximum flow 
problem. Then we prove that the cycling phenomenon which causes 
the infinite loop in the algorithm, does not occur in the network 
simplex algorithm associated with the maximum flow problem. 
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1. Introduction

Two key optimization problems with respect to networks defined in

directed graphs are the maximum flow problem (MFP) and the minimum

cost flow problem (MCFP). These two problems have their own algorithms

to achieve optimal solutions. It is well known that the MFP can be

interpreted as a special class of the MCFP [1, 4]. Thus, the network simplex

algorithm for the minimum cost flow problem can be applied to the

maximum flow problem. The network simplex algorithm is known to be one

of the most efficient algorithms for solving the MCFP [1, 3]. However, a

serious drawback of this algorithm is the so-called cycling phenomenon,

which yields an infinite loop in the updating of feasible solutions, causing

the algorithm to never reach an optimal solution. Thus, preventing this cycle

from occurring is an indispensable part of effectively applying the algorithm.

In the present paper, we consider the MFP as a special class of the MCFP,

and solve it by applying the network simplex algorithm. We show that the

network simplex algorithm for the MFP becomes very concise and simple.

Furthermore, we also demonstrate the main result of this paper, which is that

the cycling phenomenon never occurs in this application.

2. Minimum Cost Flow Problem and Maximum Flow Problem

2.1. Minimum cost flow problem (MCFP)

Let  EVG ,  be a digraph with the vertex set V and edge set E. As

the upper and lower capacity of e, we assign non-negative integers  eb  and

 ,ec  respectively, to each edge Ee  satisfying the inequality    eb0

 .ec  For the cost of e, we assign a positive real number  e  to each edge

.Ee   Furthermore, for the demand of v, we assign the integer  vd  to each

vertex v with    
Vv

vd .0
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The quadruple  dcbG ,,,  is called a network associated with

the MCFP. A flow on the network  is the function f on E satisfying the

following conditions (i) and (ii):

(i) The capacity constraint at each edge:

     ecefeb   for all .Ee 

(ii) The demand condition at each vertex:

     
  

 
  


ve ve

vdefef for all ,Vv 

where the maps VE : and VE : with   ue  and   ve 

for  ., vue   The MCFP is the problem of finding the flow f whose cost

       
Ee

efef  is minimal.

2.2. Maximum flow problem (MFP)

Let  EVG ,  be a digraph with the vertex set V and edge set E. The

digraph G has the source Vs  and the sink ,Vt   and each edge Ee 

has the capacity  .ec  Then, the quadruple  tscG ,,,  is called a

network associated with the MFP. A flow on the network  is the function

f on E satisfying the following conditions (i) and (ii):

(i) The capacity constraint at each edge:

   ecef 0  for all .Ee 

(ii) The flow conservation law at each vertex except for the source s and

the sink t:

   
  

 
  


ve ve

efef 0 for all  .,\ tsVv 

It follows from the flow conservation law that

     
  

 
  


se te

efeff ,
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where  f  is the flow value of the flow f. The MFP is the problem of

finding the flow such that the flow value is the maximum.

2.3. Minimum cost flow problem and maximum flow problem

In this subsection, we explain how the MFP can be interpreted as a

special case of the MCFP. Let  tscG ,,,  be a network on the digraph

 EVG ,  associated with the MFP, and let  f  be the flow value of a

flow f on . By adding a new edge  str , to E, giving  ,rEE  we

can define the flow network  dcbG  ,,, on the digraph  EVG  ,

associated with the MCFP as follows:

(i)   0 eb  for all Ee  and    ecec   for Ee  and   Mrc 

(sufficiently large).

(ii)   0 vd  for all .Vv 

Now, let f be a function on the edge set E. We extend f to the function

f  on the edge set E using    .frf   Then, f is a flow on the network

 tscG ,,,  if and only if f  is a flow on the network 

 .,,, dcbG  Furthermore, we define the cost  on E using   1 e  for

  te  and   0 e  otherwise. Then, a flow f on  is the maximum

flow if and only if the flow f  is the minimum cost flow on   with respect

to the cost .

3. Network Simplex Algorithm

The network simplex algorithm consists of the following 3 steps:

(1) Find the initial feasible tree structure.

(2) Decide whether or not the given tree structure is optimal.

(3) If the tree structure is not optimal, then update the tree structure and

associated tress solution to improve the cost.
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In the present paper, we refer the reader to [3] for a description and use

of Step 1, which we do not address.

3.1. Tree structure

We consider the MCFP on a digraph  ., EVG  Let  TEVT , be a

spanning tree of G. We often identify the spanning tree T and its edge set

TE and use the same symbol T for .TE  We divide the edge set TE \ into

the disjoint union ,\ ULTE   where subsets EUL , are allowed

to be empty. We can fix the triplet  ULT ,,  and define the function f

on the edge set E as follows: First, we define the function f on L and U

using      Ueecef  and      ,Leebef   respectively. Then, the

demand condition for the function f uniquely determines the flow value on

the spanning tree T. Thus, we can see that the function f on E is uniquely

determined by the triplet  .,, ULT  Note that the function f does not always

become the flow on the network  because it does not always satisfy the

capacity constraints on T. If the function f uniquely determined by the triplet

 ULT ,,  becomes the flow on the network, the flow f is called the tree

solution associated with the feasible tree structure  .,, ULT  We call

an edge e free with respect to the flow on the network  provided that

     ecefeb   holds. It follows directly from the definition of the tree

solution that the free edge with respect to the tree solution must be contained

in T. However, all edges of T need not be free with respect to the tree

solution. A feasible tree structure is called optimal if the unique tree solution

associated with the tree structure is optimal. It is well known that if the

MCFP has an optimal solution, then there exists an optimal tree solution

[1, 3]. The network simplex algorithm is an algorithm for solving the MCFP

by updating the feasible tree structure.

3.2. Optimality condition

Consider the MCFP on the network  defined on a digraph G and let f

be the tree solution associated with a feasible tree structure  .,, ULT  We

can determine the potential  V:  using the following procedure: Fix
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a base vertex ,Vx   and set   .0 x  For each vertex  ,\ xVv   there

exists a unique undirected path vP from x to v in the spanning tree T. We

define the direction of the path vP from x to v. Then, all the edges in vP are

categorized as forward and backward edges with respect to the direction

of ;vP  the set of forward edges is denoted by 
vP and the set of backward

edges by .vP  We can define the potential  using

      
  



v vPe Pe

eev for all  .\ xVv 

Furthermore, we can define the reduced cost  E:  in terms of

the potential  using

       ji vvee   for all   ., Evve ji 

Then, we have

            
 

 
Ee Vv

vdvfeeff

which shows that the cost  f  and the reduced cost  f of the tree

solution f differ only by a constant independent. Thus, it is easy to see that

a tree structure  ULT ,,  is optimal if and only if the reduced cost  on

 ULT ,, satisfies the following condition:

 











.allfor0

,allfor0

,allfor0

Ue

Le

Te

e (3.1)

3.3. Network simplex algorithm

Algorithm 3.1. Consider the MCFP on a digraph G. We can obtain the

optimal solution of the MCFP using the following procedures:

(1) If the reduced cost  with respect to the feasible tree structure

 ULT ,, satisfies optimality condition (3.1), then the tree solution
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associated with the tree structure  ULT ,,  is the optimal solution of the

MCFP. Otherwise go to the next step.

(2) Choose some ULe  satisfying either

(i) Le  and   0 e  or

(ii) Ue  and   .0 e

We call this edge e the entering edge. Then, the edge set  eT 

contains the unique circuit  .eCT  We can determine the orientation of

 eCT as the direction of the entering edge e if ,Le   and as the opposite

direction of e if .Ue 

(3) Augment the flow f along the circuit  eCT  until either

(i) one of the forward edges in  eCT  reaches its upper capacity or

(ii) one of the backward edges in  eCT  reaches its lower capacity.

Choose an edge a in  eCT  that reaches the upper or lower capacity and

call a the leaving edge.

(4) Update the new tree structure  ULT  ,,  as follows:

    ,\: aeTT 

    
 




bound,capacityupperitsreachesif,\

,boundcapacityloweritsreachesif,\
:

aeL

aaeL
L



 .\: LTEU 

Compute the potential  of  ULT  ,,  and the reduced cost .  Go to

Step (1).

4. Network Simplex Algorithm Associated with
the Maximum Flow Problem

In this section, we apply the network simplex algorithm to the MFP.
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4.1. Pseudo tree structure

We consider the MFP on a network  tscG ,,,  with the digraph

 ., EVG   Let  AA EVA ,  and  BB EVB ,  be trees of G satisfying

VVVVtVs BABA  ,, and .BA VV 

We express the union of AE and BE as T. Furthermore, we divide the

edge set TE \ into the disjoint union .\ ULTE   We can fix the triplet

 ULT ,,  and define the function f on the edge set E as follows: Define the

function f on L and U using   0ef  Le  and    ecef   .Ue 

Then, the values of the function f on T are uniquely determined by the

conservation law. Thus, we see that the function f on E is uniquely

determined by the triplet  .,, ULT  If this function f becomes the flow on

the network, then it is called the tree solution associated with the feasible

pseudo tree structure  .,, ULT

4.2. Initial feasible pseudo tree structure

Let  .,,, tscG  Consider a pseudo tree structure  ULT ,,  with

TEL \ and .U  Then the function f which is uniquely determined by

 ULT ,,  becomes the zero flow on the network .  We can take the zero

flow f as the initial tree solution associated with the initial feasible pseudo

tree structure  .,, ULT

4.3. Optimality condition

Consider the MFP on the network  with the digraph G and let f be the

tree solution associated with a feasible pseudo tree structure  .,, ULT  We

define sets of edges ABL and BAU as

  BAAB VvVuLvuL  ,,

and

  .,, BABA VvVuUuvU 
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Then the optimality condition of the tree structure is given as follows:

Lemma 4.1. The tree solution f associated with a feasible pseudo tree

structure  ULT ,, is optimal if and only if sets of edges ABL and BAU are

empty sets, that is, ABL and .BAU

Proof. The tree solution associated with a pseudo tree structure

 ULT ,, on the network associated with the MFP accords with a tree

solution associated with the tree structure    ULstT ,,,  on the network

associated with MCFP. Thus, we only have to prove that the edge set given

in (3.1) that obstruct the optimality of the solution coincides with the edge

set BAAB UL  of Lemma 4.1. We choose an arbitrary feasible pseudo tree

structure  ULT ,,  on the network associated with the MFP. We divide the

edge set TE \ into six subsets:

     ,,,,,, BABABAAB VvVuUuvUVvVuLvuL 

     ,,\,,,\, BBBAAA VvuTEvuEVvuTEvuE 

     .,,,,, BAABBABA VvVuUvuUVvVuLuvL 

First, we prove that the edges in ABL or BAU do not satisfy optimality

condition (3.1). To compute the potential , we take the sink vertex t as the

base vertex and set   .0 t

(1-i)   ., ABLvu 

For ,AVu  we have   0 u  and for ,BVv   we have   0 t  and

  1 v for .tv   Since   1,  tu  and   0,  vu  for ,tv   we can

compute   1,  tu  and   1,  vu  for .tv   Thus,   1,  vu

for all   ,, ABLvu   which shows that   ABLvu , does not satisfy

optimality condition (3.1) (cf. Figure 1).

(1-ii)   ., BAUuv 

It follows from the assumption on the MFP that there are no edges

with tail t. We have   0 u  for AVu  and   1 v  for .BVv   Since
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  0,  uv for all   ,, BAUuv   we can see that   1010,  uv

(cf. Figure 1), which shows that   BAUuv , does not satisfy optimality

condition (3.1).

Figure 1. The potential and the cost in the case of (1-i), (1-ii).

Next, we prove that edges in BABBAA LEE ,, and ABU satisfy optimality

condition (3.1).

(2-i)   ., AAEvu 

Since     0 vu  and   0,  vu  for ,, AVvu   we can compute

  0,  vu  (cf. Figure 2), which shows that   AAEvu , satisfies

optimality condition (3.1).

(2-ii)   ., BBEvu 

If ,tu  ,tv  then we have     1 vu  and   0,  vu  for

., BVvu  Therefore, we compute   0110,  vu  (cf. Figure 2),

which shows that   BBEvu , satisfies optimality condition (3.1). If ,tu 

,tv  we have     1,0  ut  and   .1,  vu  Therefore, we compute

  0011,  vu  (cf. Figure 2), which shows that   BBEvu ,

satisfies the optimality condition (3.1).

Figure 2. The potential and the cost in the case of (2-i), (2-ii).
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(2-iii)   ., BALuv 

It follows from the assumption on the MFP that there are no edges

with head s or edges with tail t. Thus,   0 u  for AVu  and   1 v

for .BVv  Furthermore,   0,  vu  for   ., BALuv   Therefore, we can

compute   1010,  vu  (cf. Figure 3), which shows that  uv,

BAL satisfies optimality condition (3.1).

(2-iv)   ., ABUvu 

We have   0 u for .AVu   Furthermore, for ,tv   we have

  0 t  and   ,1 v  and   1,  tu  and   .0,  vu  Therefore, we

can compute the reduced cost   1,  vu  for both cases tv  and tv 

(cf. Figure 3), which shows that   ABUvu , satisfies optimality condition

(3.1).

Figure 3. The potential and the cost in the case of (2-iii), (2-iv).

Thus, we have completed the proof of Lemma 4.1. 

4.4. Network simplex algorithm associated the maximum flow problem

Consider the MFP on the network  tscG ,,,  on the digraph

 ., AVG  We can describe the network simplex algorithm for MFP as

follows:

Algorithm 4.1.

Step 0. Choose arbitrary trees  AA EVA ,  and  BB EVB ,

satisfying

BABA VVVtVs ,,  and .BA VV 
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Define the initial pseudo tree structure  ULT ,,  as ,BA EET 

TEL \ and .U  Take the zero flow as the initial tree solution

associated with the tree structure  .,, ULT

Step 1. If the pseudo tree structure  ULT ,,  satisfies ,BAAB UL 

then the tree solution f associated with  ULT ,, is optimal. Else go to

Step 2.

Step 2. Choose an edge BAAB ULe  and attach e to T. Then there

is the unique s-t path P in T. Determine the orientation of the path P as the

direction of e if ABLe  and as the opposite direction of e if .BAUe 

Augment f until at least one of the forward edges of P reaches its upper

capacity or one of the backward edge reaches its lower capacity, and choose

one edge a that is saturated by the above augmentation of the flow.

Step 3. Update the new pseudo tree structure  ULT  ,,  as follows:

    ,\: aeTT 

    
 




,boundcapacityupperitsreachesif,\

,boundcapacityloweritsreachesif,\
:

aeL

aaeL
L



 .\: LTEU 

Go to Step 1.

5. Main Result - No Cycling Phenomenon

The network simplex Algorithm 3.1 for the MCFP does not necessarily

terminate in a finite number of iterations. This inconvenience is caused

by the degeneracy of the tree structure. If the spanning tree T in the tree

structure  ULT ,, contains non-free edges, then the tree structure  ULT ,,

is called degenerate. In this case, a proper augmentation along the circuit

determined in Step (2) of Algorithm 3.1 may be impossible. In such a case,

only the feasible tree structure is updated and the tree solution associated
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with the tree structure is not updated. In this case, we may return to the

same tree structure after a number of iterations without updating the tree

solution. This phenomenon is known as cycling. It is known that this cycling

can be prevented by choosing the leaving edge appropriately, for example,

by applying the so-called rule of the last blocking edge or the rule of the

first blocking edge [3, 5]. In the present paper, we prove that the cycling

phenomenon never occurs in the network simplex algorithm for the

maximum flow problem.

Theorem 5.1. The cycling phenomenon never occurs in the network

simplex algorithm for the maximum flow problem.

Proof. We assume on the contrary that the cycling occurs and prove

that this leads to a contradiction. We start with some pseudo tree structure

 ,,, ULT  and return to the original pseudo structure  ULT ,, without

updating the flow value after a finite number of iterations. Let A

 AA EV , and  BB EVB , be the corresponding trees associated with

the pseudo tree structure  .,, ULT  We assume that there exists an edge

Ee 0 that leaves the tree T and later re-enters the tree. We call such an

edge a leaving-entering edge. We will prove that the existence of leaving-

entering edge gives rise to a contradiction.

First, we consider the case where the leaving-entering edge 0e  is in .AE

If we consider the tree A as an undirected graph, there exists a unique path in

A between the source vertex s and an arbitrary vertex AVv  such that the

vertices in AV can be layered as ,0 iiA VV    where  sV 0 and iV is the

set of vertices such that the length of the unique path from s in A is i. Also,

we define the set of edges Aj EE  using ,b
j

f
jj EEE  where we set

  ,,, 1 jjA
f
j VvVuEvuE  

  .,, 1 jjA
b
j VvVuEuvE  
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We assume kEe 0 and that k is taken as a minimum. Since the edge

 vue ,0   leaves from ,AE  we can see that    00 ecef   if f
kEe 0 or

  00 ef if .0
b
kEe   It follows from the minimality of k that ...,,, 10 VV

Ak VV 1 and ....,,, 110 Ak EEEE   For the edge 0e  to re-enter ,AE

we must have either   BAUvue  ,0 if f
kEe 0 or   ABLuve  ,0 if

.0
b
kEe   In both cases, we have ,BVu   which contradicts the assumption

.1 Ak VVu    We can also consider the assumption that there exists a

leaving-entering edge ,0 AEe   which similarly leads to a contradiction.

Thus, the proof of the main theorem is complete. 
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