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Abstract 

In this paper, we consider the random effect panel data model which 
has fixed and random effects as well as the experimental error term. 
By using the properties of mixed model, we can represent random 
panel data model as a mixed model. Bayesian approach is employed  
to make inferences on the resulting mixed model coefficients. We 
investigate the posterior density and identify the analytic form of the 
Bayes factor. 

1. Introduction 

Statistical data is important to study most of phenomena in economical, 
social, psychological phenomena, etc. The analysis of this data via the 
statistical methods gives the researcher or the decision maker more 
information about the studied phenomenon to make the suitable decision. 
The data availability needs to limit a mathematical model and put into 
consideration the type of the available data. One of these data is panel which 
can be represented by one of the models (fixed effect model or random effect 
model). One of the aims of science is to describe and predict events in the 
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world in which we live. One way this is accomplished by finding a formula

or equation that relates quantities in the real world. The linear model

involves the simplest and seemingly most restrictive statistical properties:

independence, normality, constancy of variance, and linearity. However, the

model and the statistical methods associated with it are surprisingly versatile

and robust. More importantly, mastery of linear model is a prerequisite to

work with advanced statistical tools because most advanced tools are

generalizations of the linear model. The linear model is thus central to the

training of any statistician, applied or theoretical. Panel (or longitudinal)

data are cross-sectional and time-series. There are multiple entities, each of

which has repeated measurements at different time periods. Panel data have

a cross-sectional (entity or subject) variable and a time-series variable. Panel

data usually give the researcher a large number of data points, increasing the

degrees of freedom and reducing the collinearity among explanatory

variables. Panel data models have become increasingly popular among

applied researchers due to their heightened capacity for capturing the

complexity of human behaviour as compared to cross-sectional or time-

series data models. As a consequence, more and richer panel data sets also

have become increasingly available. Linear mixed effects modelling is a

widely used statistical method for analyzing repeated measures or

longitudinal data. Such longitudinal studies typically aim to investigate and

describe the trajectory of a desired outcome. Longitudinal data have the

advantage over cross-sectional data by providing more accuracy for the

model. Linear mixed effects models are important class of statistical

models that can be used to analyze correlated data. Such data include

clustered observations repeated measurements, longitudinal measurements,

multivariate observations, etc. Linear mixed effects models allow researchers

to account for random variation among individuals and between individuals,

[1-8, 11-14].

In this paper, we consider the random effect panel data model which has

fixed and random effects as well as the experimental error term. By using the

properties of mixed model, we can represent random panel data model as a



Bayesian Panel Data Model as a Mixed Model 29

mixed model. Bayesian approach is employed to make inferences on the

resulting mixed model coefficients. We investigate the posterior density and

identify the analytic form of the Bayes factor.

2. Panel Data Model and the Prior Distribution

Consider the model:
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where ity is the value of response variable for ith unit at time t, ijtX are the

explanatory variables, Kjj ...,,1,,  are fixed parameters and it is an

error term with  ,,0~ 2
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iid

it [9].

Now, if the parameter  is specified as:

,0 iu (2)
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ui Nu   then the model (1) is
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The model (3) is rewrite as follows:
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where ,itiit u   ,,0~ 2
 Nit ,222

u  thus by using the

properties of mixed model, we can represent the model (4) as follows:

, ZuFY (5)

where  TNTNT YYYYYY ...,,...,,,...,, 121111  has length NT,  XeF ,
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is an  1 KNT design matrix of fixed effects,  Te 1...,,1,1  has length

NT and  TNXXXX ...,,, 21  is an KNT  matrix,  TK ...,,, 10

has length  TNuuuK ...,,,1 1 has length ,1N Z is an NNT  design

matrix of random effects,  TNTNTT  ...,,...,,...,,,...,, 1221111

has length NT with  NTIN 2,0~  and  .,0~ 2
Nu INu  The model (5)

is rewritten as follows:

, CY (6)

then we have
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where ,  are hyperparameters that determine the priors and must be

chosen by the statistician, [10]. Then the prior distribution of  is

          12
000 NuIu

T

  ,12   u
T

where .
0

00 1 
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3. Posterior Distribution

The posterior distribution of  is
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Proposition 1. The posterior distribution of  is
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We now prove the form of covariance.
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we have
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Proof.
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4. Bayes Factor

We would like to choose between a Bayesian mixed panel data

model and its fixed counterpart by the criterion of the Bayes factor for two

hypotheses:

 FH0  versus .1  ZuFH (14)
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We compute the Bayes factor ,01B of 0H relative to 1H for testing

problem (14) as follows:
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5. Conclusion
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(2) The posterior mean of   given Y is:
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(3) The posterior covariance matrix of   given Y is:
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(4) Bayes factor for testing the two models  FH0 versus 1H

 ZuF is:

   
  ,

1

0
01 HYm

HYm
YB






where  iHYm   is predictive density of Y under the model .1,0, iHi We
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