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Abstract 

The strategies used to study functional or effective connectivity in 
fMRI data are mainly based on the application of correlation studies, 
structural equation models (SEM), dynamic causal modelling (DCM), 
or the Granger causality model (GCM), while some contributions 
focus their attention on simulation studies. Although the tradition is 
scarce, this increase of the latter studies has become steeper in the last 
five years. In this work, we present a systematic study and analysis of 
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simulation studies with fMRI data for the analysis of brain 
connectivity. We conducted a search on the Web of Science (WoS) 
and PubMed and eventually we reviewed a total of 134 studies. The 
most remarkable finding is a lack of information on the simulation 
procedure. For example, 17 works did not specify the model used to 
generate the signal, 36 did not indicate the model’s white noise 
addition in the signal generated, and 52 did not detail the design under 
which the data had been generated. Under these circumstances, it is 
difficult to compare the different contributions in order to identify the 
best strategies to simulate data for the study of brain connectivity in 
fMRI works. However, it is important to note the emergence of the so-
called third-generation simulation models, which consider the brain as 
a complex, dynamical system model. This kind of model to simulate 
brain activity will change the state of the art in this matter, and it 
might be a good tool to assess the different analytical procedures to 
study effective connectivity. 

Introduction 

The use of functional Magnetic Resonance (fMRI) in the studies on 
computational neuroscience has seen an exponential increase in later years. If 
we conduct a bibliographic search on the Web of Science (WoS) database, 
only within the core collection, with only the keyword ‘fMRI’ in the title, up 
to December 2015, we obtain a total of 14,311 papers. One of the earliest 
works was published in 1993 (Miller et al. [113]), but in fact, 13,121 out of 
these works (91.68%) were published between 2001 and 2015 (3,466 
between 2000 and 2005, 4,554 between 2006 and 2010 and, lastly, 5,101 
between 2011 and 2015). The first works published in this field tried to 
determine which areas were activated when a person was conducting a task 
involved in certain cognitive domains, such as working memory (Manoach et 
al. [104, 105]), language processing (Carpenter et al. [21]), attention 
(Hillyard et al. [66]), processing speed (Waiter et al. [168]), or executive 
functions (Sylvester et al. [161]; Horowitz-Kraus et al. [163]). In later years, 
however, researchers have shown more interest in discovering how the 
different brain areas work together when a cognitive task is in process 
(Barbalat et al. [5]; Dick et al. [47]; Haase et al. [61]; Limongi and Pérez 
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[93]), or when the subject is in repose. Consequently, they study the resting 
state and, occasionally, one of the networks that appears in this situation: the 
default mode network (DMN) (Chiong et al. [27]; James et al. [72]; Mäki-
Marttunen et al. [103]). 

From a statistical point of view, we should point out that a wide range of 
indicators was created at the same time to estimate the connectivity level 
between brain areas, both – as mentioned above – upon stimuli or cognitive 
tasks and in a resting situation. An interesting summary of the proposals on 
this matter can be found in Rubinov and Sporns [136]. All the indicators are 
based on the joint distributions observed in the pairs of brain activity areas, 
both those based on the logic of covariances ( )ijs  and correlations ( )ijr  and 

those based on the study of distances or the estimations of similarities ( ),ijd  

although we might understand correlation as a special case of dissimilarity. 
Be that as it may, all these connectivity indicators intend to summarize the 
behavior of the connectivity network, the symmetry between hemispheres, 
directionality, and entropy of the complex network, among others. It seems 
curious that among the different approaches conducted, some of them have 
been the object of statistical analysis to validate their distributions and thus 
establish a statistical criterion of significance, whereas others are descriptive 
estimations without further inferential interest. Stevenson and Körding [159] 
is an example of the first perspective, while Iyer et al. [71] is an example of 
the second. Still, it is important to note that, so far, the studies on statistical 
pertinence of many of these indices focus on their applied functionality, and 
rarely on the study of their sample distributions and inferential properties 
based on the usual simulation studies. This matter is still pending for analysis 
and data contribution. 

It is important to center our attention in which techniques are used 
usually in order to analyse the estimation of brain connectivity using fMRI 
signal. First, it is important to differentiate between functional connectivity 
and effective connectivity. It is not a new concept but it needs to be clarified. 
Friston [51] defines functional connectivity as a statistical relationship (in 
terms of correlation coefficient )ijr  between the functional neuroimaging 
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signals in two or more brain regions. The effective connectivity is the 
estimation of direct effect of one brain region’s activity on another region 
during a specified experimental condition, and it must necessarily be studied 
by models. 

The statistical strategies used to analyse the BOLD signal in fMRI data 
in order to study functional or effective connectivity are, obviously, different. 
In the former case, the statistical techniques employed are usually based on 
the use of correlation with different corrections, like, for example, partial 
correlation in order to control the effect of other regions. Nonetheless, this 
correction is not problem-free because the number of possible correlations 
involved therein is large if we compare it to the number of scans (Sanz Leon 
et al. [142]). Sometimes the effect of autocorrelation is not controlled, either 
(Arbabshirani et al. [2]). Another strategy is the use of autoregressive vectors 
(Chen et al. [23]), which are based on the use of correlations as well. 

The study of effective connectivity is more complex than the study of 
functional connectivity and, therefore, it requires the use of more 
sophisticated statistical techniques, but there is no agreement on the best 
strategy to analyse this type of data. Indeed, it appears that the use of analysis 
strategies depends on the researcher and not on the type of data to be 
analysed. Accordingly, Poldrack [122] remarks the need to propose robust 
methods to study brain connectivity. The most used strategies – previously 
obtaining regions of interest (ROIs), using data-driven or hypothesis-driven 
strategies – are based on the use of structural equation models (SEM) or 
dynamic causal models (DCM) (de Marco et al. [36]; Friston et al. [52]; 
Penke and Deary [118]; Rowe [135]). The ROIs are generally obtained using 
principal component analysis (PCA) or independent component analysis 
(ICA) or, in some cases, is possible to find extractions based on other 
techniques as clustering. The main differences between these two analytic 
strategies are related to the possibility of using DCM to model the temporal 
correlations of a ROI, non-linearities, and also external connections (de 
Marco et al. [35]; Penny et al. [120]). Some authors propose modifications to 
the SEM to analyse effective connectivity, for example unified SEM (Gates 
et al. [57]), extended unified SEM (Gates et al. [58]), or exploratory SEM 
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(Inman et al. [70]; James et al. [72]). Other strategies to analyse effective 
connectivity are based on graphical theoretical modelling strategies (He and 
Evans [64]; Minati et al. [114]), the psychophysiological interaction (PPI) 
(Luchtman et al. [99]; Mason et al. [107]) or the use of Granger causality 
modeling (GCM) and its variants (Deshpande and Hu [41]; Deshpande et al. 
[43]; Deshpande et al. [44]; Miao et al. [111]; Roebroeck et al. [134]). In 
Barnett and Seth [6], they presented the MVGC toolbox for data simulation 
to analyse with the Granger causality model. In any case, Barnett and Seth 
[6, 7] mention that the use of Granger causality of fMRI data should be 
conducted with caution due to the effect of hemodynamics. 

In consequence, there exists a wide range of analytic strategies, just like 
there are several choices of connectivity summary indicators. But which one 
is the best? To answer this question, previously, we should contemplate the 
statistical version of the different choices as their properties will determine 
which technique is the most adequate for one specific situation. Usually, we 
consider it necessary to conduct simulation studies in order to discover the 
efficacy of each of these analytical approaches to study brain signal. A good 
example of statistical simulation can be found in Bellec et al. [9], or with 
more complex simulations than the ones described in the dynamic model 
simulation in Cabral et al. [19]. The use of simulation data is essential at this 
point because it allows us to know in which voxels, areas, or ROIs there 
could be a difference in BOLD signal, given that we manipulated the 
generation of this information in the simulation. This situation is not true for 
real data because we do not know which areas are in fact activated. Actually, 
recently Ritter et al. [131], Sanz Leon et al. [142] and Woodman et al. [175] 
have all presented The Virtual Brain, a simulator of brain network dynamics; 
Seth [149] has described the MATLAB toolbox GCCA, Granger causal 
connectivity analysis; Liao et al. [92] have presented the MATLAB toolbox 
DynamicBC, both used to simulate the fMRI signal; and Aponte et al. [3] 
have presented the massively parallel dynamic causal modeling (mpdcm), a 
toolbox for biophysical simulations from DCM. However, to our knowledge, 
there are few studies assessing the suitability of the simulations performed in 
this area. One of these studies (Welvaert and Rosseel [173]) conducts a 
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systematic revision of simulations in fMRI studies in general, or the one by 
Deco et al. [38], which present three models to study the dynamics of the 
resting state with simulated data. 

In any case, these toolboxes are new and we think that it is still too early 
to make an accurate assessment of their advantages and disadvantages 
because these platforms or toolboxes are not commonly used to generate the 
simulations in the study of functional or effective connectivity. The works 
using simulations to study the effectiveness of the analytical techniques to 
study brain connectivity – functional or effective – usually generate these 
simulations through their own software and models built by them, despite the 
mathematical properties of the simulator, the technical requirement of the 
software, obviously, independent of the mathematical and statistical 
properties of simulations functions. In fact, some authors say that in this 
field, researchers are currently generating their simulated data by using what 
has been called the third-generation of models (referred to the simulations 
based in dynamic complex models usually nonlinear, identifying several 
different functions to represent different parts of the brain represented 
through different density functions), which generate the brain’s dynamics 
through, for example, the balloon model (Bellec et al. [10]). The simplest 
diagram to show the simulation process, could be presented as follows: 

 

Thus, we can use a simple classification to describe the simulation 
procedures: (i) first generation of simulations imply generating the data as a 
stochastic temporal series after spectral transformation: 

( ) ( ),tutY =  

where 

( ) ( ),0tttu ij −δα∑=  

and the statistical series is defined as 
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( ) ( ) ( ),0 tttfty ikk ε+−β∑∑=  

( )tY  is the signal value at moment t and is established as an accumulated 

function in the period of time ( )0tti −  pondered by the linear parameter ,jα  

(ii) the second generation of simulators is the result of the convolution of the 
temporal series with the hemodynamic response function (HRF), generally 
based on the gamma distribution, as follows: 

( ) ( ) ( ) ( ) ( )∫ τττ−=τ⊗= ,dhtuhtutY  

where 

( ) ( ),τβ∑=τ kk fh  

and it implies incorporating the stimulus effect to the time effect, thus 
convoluting both functions, and finally and most recent, (iii) third generation, 
which implies the incorporation of the dynamic components into the data 
generation procedure. This way, the origin function can be described in this 
case as: ( ).,,,, EAPDBY ϕ=  Each matrix involves a different effect for 

the simulation of Y, where Y has been defined as a tD +3  matrix of a size 
matching the temporal series necessary for fMRI. In this case, B is the 
constant reflecting the brain’s anatomy, D assumes the slow functioning of 
the baseline, P implies the representations caused by noise, A represents the 
fluctuations of the hemodynamic function (at this point we recover the 
characteristics of the second time of simulation), and E is the random 
measurement error typical of statistical models. Evidently, ϕ is assumed as 
any linear or non-linear function. In fact, components can be included in the 
proposed model that includes effects to estimate. The specific conception of 
this simpler proposal is defined as a linear model of the type +β= BBXY  

.EXXX AAPPDD +β+β+β  In this case, we assume E as a Gaussian 

distribution ( ).,0 2σN  

However, despite the fact that in recent years there has been an increase 
of studies using simulations; they have not been systematically reviewed. 
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Accordingly, it remains unclear what the usual procedure is for signal 
simulation, in which cases it is applied, what limitations it presents and, most 
interestingly, what its limits are in recognising the stochastic behavior of the 
simulated signal. 

Consequently, the aim of this paper is to conduct a review of the 
simulation studies carried out so far to study brain connectivity – functional 
or effective – with fMRI data. In essence, the objective is to establish how 
the simulations were generated in order to discover whether the same basic 
patterns exist in the simulations and, therefore, whether it is possible to 
compare the goodness and efficiency of the different types of analytic 
strategies used to study brain connectivity with fMRI data in computational 
neuroscience studies, unlike Welvaert and Rosseel [173] we focused only in 
simulation for the study of brain connectivity. We focus on describing the 
state of the art regarding simulations in fMRI studies and contributing to 
select the best statistical approach to signal studies. One single correlation 
matrix as an input for the connectivity study allows us to obtain different 
estimations depending on the technique employed. This effect, which is 
widely known in other fields of applied statistics, seems to be overlooked in 
this field as there is no clear stable analysis pattern and there is ample 
diversity of techniques and resources. To prevent this variability, it is 
important to study the statistical properties of those techniques in relation to 
the signal data analysed and, to do so, we need to know the properties of the 
possible simulators. 

Method 

Search of studies 

The articles included in the present study were searched for in the Web 
of Science (WoS) and PubMed databases, as well as in other sources. To be 
included in the present study, the articles had to comply with the following 
criteria: they had to be original fMRI papers approaching the brain 
connectivity topic with simulation data published up to December 2015. The 
search for papers was conducted by means of a Boolean algorithm using the 
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following keywords: ‘fMRI’, ‘simulation’ and ‘brain connectivity’ or 
‘fMRI’, ‘simulation’ and ‘functional connectivity’ or ‘fMRI’, ‘simulation’ 
and ‘effective connectivity’. The Boolean operator ‘and’ was used in order to 
connect these keywords. In addition, the keywords “brain connectivity”, 
“functional connectivity” and “effective connectivity” were written between 
double quotation marks in order to detect those papers containing both words 
jointly. The WoS and PubMed search was done independently by two 
researchers, and we obtained a 96.33% rate of agreement in the search done 
between them; all the papers found by the two researchers were considered in 
the study. Following these search criteria, we found a total of 83 records on 
WoS and a total of 62 records on PubMed in the first search (brain 
connectivity), 326 records on WoS and a total of 152 records on PubMed in 
the second search (functional connectivity), and 194 records on WoS and a 
total of 57 records on PubMed in the third search (effective connectivity). 
After removing the duplicates, a total of 649 records were screened plus 14 
records from other sources. Out of the 663 total records, 471 were discarded 
because they were not actually simulation studies. The remaining 192 articles 
were fully reviewed, and 58 of them were discarded: 21 because they were 
not simulation studies, 30 because, in spite of them being simulation studies, 
the simulated data was in the paradigm of EEG, MEG or DTI data; and 7 
because the authors of the paper presented a platform for full brain network 
simulations, but did not perform any simulation study. Eventually, 134 
studies were included in the current study (identified with ∗ in the 
bibliography). Figure 1 presents a graph of the process that summarizes this 
search. 
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Figure 1. Flow chart describing the bibliographic search. 

Coding of the variables 

We applied a codification template to each of the selected papers in order 
to obtain the values of the different variables under study. For each paper, we 
registered the variables listed in Table 1. Some of them are context variables 
used to characterize the selected papers while the majority of the variables 
are related to different parameters for a simulation study in fMRI data. 
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Namely, methodological parameters comprise the following information: 
the type of fMRI data simulated (time series, time series convolved to 
generate BOLD signal, ROIs or network); toolboxes used to generate the 
simulation; the type of study under which the data was generated (blocks, 
event-related, or a resting state situation); the number of samples of 
individuals simulated; the kind of strategy that was used to analyse the 
simulated data; and finally, certain variables related to the probabilistic 
model used to simulate the data. We studied the following variables: the 
model used to generate the signal; the model used to generate white noise, in 
this context white noise is the noise that the authors added to the signal in 
order to generate variability in the data equivalent to the random 
measurement error; whether the authors used a seed (specific voxel or ROI) 
to generate the data; whether the authors included a mechanism such as 
spatial or temporal noise to correct the raw simulated data in order to obtain a 
more realistic fMRI scenario or to test the effect of different noise sources, 
this mechanism is a step more in the generation of the simulated data 
previously to analyse the synthetic data generated; and finally whether the 
authors report the script of the simulation generated. The goal of the studies 
is not considered a variable to analyse because all the studies generally have 
as a goal the accuracy study of an analytic strategy, whether graphical or 
numerical. 

Regarding the type of simulated data, we distinguish those studies that 
only generated time series from those that generated time series convolved to 
HRF to simulate the BOLD signal (i.e. the convolution of a time series 
function and the gamma distribution) for each voxel, and from those that 
simulated ROI-based structures (regardless of the convolution with a 
hemodynamic response function). The BOLD signal in an fMRI study is 
collected as a time series, and in consequence simulate time series with 
temporal dependency is a correct way of simulate data in the context of a 
fMRI study. A fourth group of studies simulated the whole brain as a 
complex and dynamic network with brain regions as nodes and connectivity 
paths as edges, aiming to study the temporal changes in brain connectivity. 
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Table 1. List of variables according to their characteristics and codifications 
Variables Type 

Year of publication (2001 to 2015) Context 
Document type Context 
Periodic publication Context 
Number of authors Context 
Language Context 
Type of data simulated (time series, time series convolved to 
generate BOLD signal, ROIs or network) 

Methodological 

Toolboxes used to generate the simulation Methodological 
Type of study (blocks, event-related, resting) Methodological 
Number of samples simulated Methodological 
Data analysis of the simulations Methodological 
Probabilistic model to simulate the data 

Signal model 
Noise model 
Seed simulations 
Mechanism to correct simulations 
Existence of the script 

Methodological 

Data analysis 

All the analyses were conducted with the SPSS software, version 23, and 
involved the description of the different coded variables obtaining the 
frequencies and percentages of papers for each category of the variables 
analysed. 

Results 

In this section, we will present the descriptive statistics of the coding 
conducted in each paper. We structured the results into two subsections, one 
that characterizes the articles analysed, and another where we will present the 
description of those variables regarding the simulations conducted in the 
articles. 

Characterization of the articles 

In Table 2, we report the descriptive statistics about context variables. 
All the publications under study were written in English, and 132 out of the 
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134 documents were original research articles, except for two conference 
proceedings. Fifty-two papers (38.8%) were published in NeuroImage, 
followed by nine papers published in Brain Connectivity. It is important to 
point out that 19 papers were published in a different journal: Brain 
Research, Chaos, Clinical Neurophysiology, Current Opinion in Neurology, 
Computational and Mathematical Methods in Medicine, Computational 
Statistics & Data Analysis, Frontiers in Neuroinformatics, Frontiers in 
Systems Neuroscience, IEEE Transactions on Neural Networks, Journal of 
Computational Neuroscience, Journal of Magnetic Resonance Imaging, 
Journal of Physiology, Magnetic Resonance in Medicine, Medical Image 
Computing and Computer-Assisted Intervention, Methods of Information in 
Medicine, PeerJ, Physiological Measurement, Statistica Sinica and the 
proceedings of the 35th Annual International Conference of the IEEE EMBS. 

Finally, in Figure 2, we present the number of publications by year. As 
we can see in this Figure, only 27 papers were published before 2010, and 93 
(69.4%) have been published within the last 5 years. 

Table 2. Description of context variables 
Variables Values Frequency (%) 

Paper 132 (98.5%) Document 
type Proceedings 2 (1.5%) 

NeuroImage 52 (38.8%) 
Brain Connectivity 9 (6.7%) 
Human Brain Mapping 8 (5.8%) 
IEEE Transactions on Biomedical 
Engineering 7 (5.2%) 
Magnetic Resonance Imaging 7 (5.2%) 
Journal of Neuroscience Methods 6 (4.5%) 
Frontiers in Neuroscience 5 (3.7%) 
IEEE Transactions on Medical Imaging 5 (3.7%) 
PLoS ONE 5 (3.7%) 
PLoS Computational Biology 3 (2.2%) 
Brain Topography 2 (1.5%) 
Frontiers in Computational Neuroscience 2 (1.5%) 
Frontiers in Human Neuroscience 2 (1.5%) 
Journal of Neuroscience 2 (1.5%) 

Periodic 
publication 

Others 19 (14.2%) 
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1 2 (1.5%) 
2 22 (16.4%) 
3 27 (20.1%) 
4 34 (25.4%) 
5 23 (17.2%) 
6 16 (11.9%) 
7 6 (4.5%) 
8 2 (1.5%) 
9 1 (0.7%) 

Number of 
authors 

11 1 (0.7%) 

 

Figure 2. Bar chart of the number of publications per year. 

Simulations description 

In Table 3, we present the description of the methodological variables 
related to the simulation study. A total of 28 works simulated total brain 
network and a total of 74 works simulated regions of interest (ROIs) directly. 
The number of regions simulated varied greatly, from 2 to 998, while in 
some works, different numbers of ROIs are simulated depending on the 
different simulation scenarios used. We consider it important to point out that 
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in 97 of the papers analysed there is no information regarding the toolboxes 
used to generate the simulations, possibly because they designed their own 
simulation programme. 

Twenty-nine works simulated data under block study, six under an event-
related study, 45 under a resting-state situation – in order to study the Default 
Mode Network (DMN) in some cases –, two a mixing between a resting state 
situation and a block design, and in 52 (38.8%) papers this information was 
not specified (Table 3). 

The information about the number of simulated samples appears in 93 of 
all the works reviewed (Table 3). Most of them simulate over 20 samples 
(38.8%), reaching 500 samples or more in some cases, but in some cases the 
authors generated a single sample of individuals (26). At this point we 
consider it important to remark that, in some papers, for each subject 
simulated, the authors simulated different time series and, in those cases, the 
number of time series simulated ranged between 50 and 5,000. 

The data analyses of the simulations were based on general linear models 
in 70 out of the 134 works, using models such as dynamic causal models 
(DCM), autoregressive vectors (VAR) or Granger causality model (GCM). In 
23 papers the data analyses comprised the efficiency study of a proposed 
algorithm with measures that could be either descriptive or both descriptive 
and inferential. We consider it important to mention that in the latter case, the 
data analysis of the simulated data was not specified in four of the studies 
(Table 3). 

As for the probabilistic model used to generate the simulated data, we 
have divided this information into five subsections: the model used to 
generate the raw signal; what model they used to add white noise to the 
signal; whether they used a seed to conduct the simulations; whether the 
authors used a mechanism to correct the simulated data adding for example: 
spatial noise, temporal noise or frequency dispersion and whether the authors 
added the script used to generate the simulations to the paper (Table 3). 
Regarding the model used to generate the signal and the white noise, the 
most remarkable aspect in both cases is that this information is absent from 
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some papers, more specifically in 17 works for the signal model and in 36 
works for the white noise model. The most widely used model in the case of 
signal is the autoregressive vectors (47), followed by time series convolved 
with hemodynamic response function (in general generated by the gamma 
distribution) (39), time series plus the balloon-Windkessel model (13), 
Gaussian (11), sinusoid wave (3), uniform distribution (3) and finally one 
paper derived the simulation from real data. In 81 papers the model used to 
add white noise to the signal was the Gaussian. Only in eleven papers were 
seeds used to generate the simulations. In these cases, when we speak about 
the use of seeds to generate the simulations, we mean to fix a voxel or a ROI 
to generate the simulation. Seventy-two papers used a mechanism to correct 
the simulated data, for example spatial noise, temporal noise or frequency 
dispersion. This information does not appear in 27 of the 134 papers 
analysed, where we must assume that the authors did not apply any 
corrections to the simulated data. Of the seventy-two papers that the authors 
used a mechanism to correct the raw simulated data, in twenty no 
information appears to known how they apply the correction, in seventeen 
they apply some mechanism related to add some artefact to the signal similar 
to head motion, for example deterministic noise, random signal spike, 
thermal white noise, and finally in thirty-five papers the authors used some 
mechanism to add physiological noise to raw signal like cardiac rate or 
respiratory movement, the strategy used to add this type of noise is 
modification of the Hz (14 papers), autoregressive models (10 papers), 
normal distribution (10 papers) or general linear model (1 paper), and finally 
129 of the papers did not add the script of the simulation generated (Table 3). 
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Table 3. Description of methodological variables 
Variables Values Frequency (%) 

Time series 22 (16.4%) 
Time series convolved to generate BOLD signal 10 (7.5%) 
ROIs 74 (55.2%) 

Type of data 
simulated 

Network model (whole brain) 28 (20.9%) 
AFNI 2 (1.5%) 
Connectionist platform 1 (0.7%) 
FMRIB 1 (0.7%) 
FSL: DTT 1 (0.7%) 
Home made 3 (2.2%) 
MATLAB (for example Math Works, SimTB) 12 (10.5%) 
NetSIM 1 (0.7%) 
SPM 6 (4.5%) 
SPM: DCM 8 (6.0%) 

Toolboxes 
used to 
generate 
simulations 

No information 97 (72.4%) 
Blocks 29 (21.6%) 
Event-related 6 (4.5%) 
Resting state 45 (33.6%) 
Resting state and blocks 2 (1.5%) 

Type of 
study 

Not defined 52 (38.8%) 
1 26 (19.4%) 
Between 2 and 10 7 (5.2%) 
Between 11 and 20 8 (6.0%) 
More than 20 52 (38.8%) 

Number of 
samples 
simulated 

No information 41 (30.6%) 
Algorithm efficacy (descriptive or inferential 
measures) 

23 (17.2%) 

Correlation study 23 (17.2%) 
General linear model (DCM, VAR, MAR, 
GCM, etc.) 

70 (52.2%) 

Graphic 14 (10.4%) 

Data analysis 
of the 
simulations 

Not defined 4 (3.0%) 
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Probabilistic model to simulate the data 
Autoregressive vectors (time series) 47 (35.1%) 
Derived from real data 1 (0.7%) 
Gaussian 11 (8.2%) 
Sinusoid wave 3 (2.2%) 
Time series convolved with HDF (Gamma 
distribution) 39 (29.1%) 
Time series plus balloon-Windkessel model 13 (9.7%) 
Uniform 3 (2.2%) 

Signal 
model 

Not specified 17 (12.7%) 
Gaussian 81 (60.4%) 
Rice noise 4 (3.0%) 
White noise 11 (8.2%) 
Noiseless 2 (1.5%) 

Noise model 

Not specified 36 (26.9%) 
Yes 11 (8.2%) Seed 

simulations No 123 (91.8%) 
Yes 72 (53.7%) 
No 35 (26.1%) 

Mechanism to 
correct 
simulations No information 27 (20.2%) 

Yes 5 (3.7%) Existence of 
Script No 129 (96.3%) 

Discussion 

In this paper, we have shown a systematic analysis of works included in 
the Web of Science and PubMed regarding simulation studies on brain 
connectivity for fMRI studies, works that studied functional or effective 
connectivity. The results obtained show a rather erratic behavior in the use of 
fMRI signal simulators in the sense that there is no recognisable, systematic 
pattern as to how to approach signal simulations in the case of fMRI data.  

Regardless of the general descriptions in Table 3, we think that it is 
important to point out, as a first observation, that most of the papers reviewed 
do not provide sufficient information about the simulation procedures in 
order to know in detail the basis and tools of the approach at hand. This is 
not only a characteristic of simulation fMRI studies. Carp [20] point out the 
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lack of methodological information in fMRI studies, and consequently the 
difficulty to replicate the research. For example, in 17 works the information 
about how the signal was simulated was not provided, 36 works did not 
specify the white noise model used, 52 works did not specify the design 
under which the simulation data had been generated and 129 works did not 
add the script used to generate the simulation. Thirty-nine studies convolved 
the time series generated with hemodynamic response function, usually with 
the gamma function – one of those recommended to generate fMRI data 
(Erhardt et al. [49]; Welvaert and Rosseel [173]). Eleven of the papers used 
the Gaussian model. This probabilistic model, however, is not appropriate to 
generate an fMRI signal because the BOLD signal does not follow a normal 
distribution (Boubela et al. [13]). On the other hand, some of the authors 
used an autoregressive function to generate the signal, this could be 
appropriate because in fMRI the data have serial dependencies. Welvaert and 
Rosseel [173] recommend simulating fMRI data by following a gamma 
function or the use of the balloon model proposed by Buxton et al. [18] in 
order to generate the dynamics of brain activity, used in thirteen of the papers 
analysed. Complementary to this, the simulation based on the balloon model 
assumes a model that assumes the capillary volume fixed but the venous 
volume can change (same as a balloon) with a pressure/volume response 
curve that may vary. Keeping in mind that this type of simulation appears to 
be the best fit for the characteristics of fMRI signal, it would seem logical to 
use it more frequently. Regarding the papers that provide information on the 
simulation of white noise, in most of them the model used was the Gaussian, 
the simplest model recommended to add noise to the fMRI signal (Smith et 
al. [154]; Welvaert and Rosseel [173]). 

In any case, despite the difficulty to reproduce the simulations generated 
in the papers analysed because of the loss of information, 72.4% of the 
analysed papers do not have information about the toolboxes used to 
generate the simulations, the works analysed generally meet the objective 
that the authors had proposed, which is, in general, the adequacy of an 
analytical strategy, graphical or numerical. Another aspect to highlight is 
evolution, as the strategies used to generate the simulations. In the early 
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years researchers simulated only temporal series, while later they convolved 
these series with the hemodynamic response function to emulate the BOLD 
signal in the simulated data; and in recent years researchers have been trying 
to emulate the brain’s dynamics using, for example, the aforementioned more 
complex approach based on the balloon model. It is encouraging to think 
that, if in the last 15 years, there has been such an evolution, in the near 
coming years the simulations will be closer to a perfect replication of brain 
activity working with numerous data points. 

As a conclusion we think that the journals could be more accurate as 
regards the review of simulation studies for the study of brain connectivity in 
fMRI data, as the papers published so far do not provide sufficient 
information to replicate the simulation. This is a problem because it reduces 
the possibility to generate more knowledge in the same line as other authors. 
Probably the future of the simulations in this field would be related to the use 
of certain simulation routines created for R software – such as the neuRosim 
package (Welvaert et al. [172]), that generates pre-processed fMRI data and 
could include different noise sources (temporal, spatial, physiological, etc.) 
or likewise, the use of other MATLAB-based toolboxes such as simTB 
(Erhardt et al. [49]), or The Virtual Brain (TVB) (Ritter et al. [131]; Sanz 
Leon et al. [142] or Woodman et al. [175]), which is a platform for full brain 
network simulation. 

Simulation studies in the field of fMRI data should be more commonly 
used because there are many procedures about which we do not know 
whether they operate efficiently, (e.g. the smoothness process in the pre-
processing BOLD signal). The necessity to conduct simulation studies is 
even more important when we try to analyse effective connectivity because 
the statistical models used so far, such as the structural equation models 
(SEM) and their variants, the dynamical causal models (DCM), or the 
Granger causality models (GCM), have some limitations. For example, one 
of their most important limitations is that the number of ROIs that can be 
modelled at the moment is small due to its high computational demands. One 
further limitation is the serial dependence of the series to analyse, given that 
some current analysis strategies do not properly take this aspect into account. 
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We consider it important to remark that, in recent years, the model to 
conduct simulation studies with an fMRI signal has shifted to the so-called 
third-generation simulation models. These models generate the brain network 
activation as a complex dynamic system with inhibitory and excitatory 
groups of neurons. Some of these generation data follow the balloon-
Windkessel model. These models are different from the statistical simulation 
models based on a sampling distribution of a voxel, or a group of voxels, 
with different activation as a simple time series, or as a time series convolved 
to the hemodynamic response function to generate the BOLD signal. Some 
of the papers studied in this review are examples of simulation works based 
on the third-generation models, for example Deco and Jirsa [37], Deco et al. 
[39] or Senden et al. [148], which are a promising perspective in this area as 
they attempt to model brain activity as the functioning of a complex and 
dynamic network. 

Conclusions 

In summary, our systematic review allows us to conclude that, firstly, 
there exist two different types of simulation studies: dynamic and statistical 
simulations. In dynamic simulations the authors try to generate the dynamics 
of the brain activity, while in statistical simulations the authors are, in 
general, more focused on the time series simulated, but in some cases, they 
adapt this time series to a hemodynamic function. 

Secondly, there is no standard mechanism to simulate data in fMRI 
studies. As a consequence, we consider it important to unify simulation 
studies in this area in order to make research more easily reproducible and 
comparable. This unification should include appropriate reports of the 
simulation parameters and the simulation algorithm. This unification would 
lead to certain guidelines in the line of the work by Poldrack et al. [123], 
which presents certain guidelines to report fMRI studies. So, briefly, in our 
opinion, it might be interesting that all simulation studies in this area should 
provide the following information: 
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• An appendix or a web page or a link to the paper with the simulation 
script and the characteristics of the parameters of simulation. And also 
report the toolboxes used to simulate the data. 

• Clear identification of the simulation baseline values, sample 
generation systems and number of simulations done. 

• The possibility to determine a reference standard template that allows 
us to assess the goodness of the simulation. Simulating a brain volume 
is not the same as simulating a quantitative variable, and maybe the 
future of simulation in this area is the third-generation simulation, 
which considers the brain as a complex, dynamic system model. 
Anyway, the authors must to report in the method section if they are 
doing a statistical simulation or a dynamic simulation. 

Finally, the data and the contributions of this work allow us to elaborate 
a set of initial recommendations about the simulation procedures to do in 
fMRI designs. We believe that there exist three fundamental elements that 
must guarantee: (i) a correct definition of the probability model that 
incorporates the signal/noise ratio in order to make a true replication of the 
record conditions with real data; (ii) identify bias corrections that are derived 
of the lack of a real neuroanatomic model, and so, the simulations must 
correspond to plausible anatomic processes and substrates, and (iii) the 
simulated values must correspond to recognisable methodological substrates 
that could be analysed using the described conventional techniques; because 
if the simulation processes are used in resting state designs, for example, the 
signal behaviour is clearly different than if we used an event-related design 
or a box-car design. These three simple recommendations have a structural 
character, and jointly with the other recommendations done previously, 
should allow facilitate replications that at the moment are practically 
impossible to do in simulated fMRI data. Probably, the main conclusion of 
this paper is related to the necessity to elaborate consensus guidelines 
standards to make and report fMRI simulation studies, done by teamwork of 
experts in this field (task force). 
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