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Abstract

In 2013, Golchin and Mohammadzadeh introduced a generalization of
Condition (P) called Condition (P’) and gave a characterization of

monoids by this condition of their (Rees factor) acts. Also in 2012,
Qiao and Wei introduced the GP-flatness property of acts, as a
generalization of principal weak flatness. In this paper, first we
introduce Condition (GP'), a generalization of Condition (P’) of acts

over monoids and then we will give general properties of it. We also
give a characterization of monoids all of whose acts satisfy this
condition. Furthermore, many known results are generalized.

1. Preliminaries

For a monoid S, a non-empty set A is called a right S-act, if S acts on
A unitarily from the right, that is, there exists a mapping AxS — A,

(a,s)> as, satisfying the conditions (as)t = a(st) and al=a, for all

ae Aandall s, t eS. Left S-acts are defined similarly. The notations Ag
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and gB will often be used to denote aright or left Sact and ©g = {8} isthe

one-element right S-act. The study of flatness properties of S-acts in general
began in the early 1970s, and a comprehensive survey of this research (up
until the year 2000) is to be found in [8]. In [4], Golchin and
Mohammadzadeh defined a generalization of Condition (P), which was
caled Condition (P’). In this paper, we introduce Condition (GP’), as a

generalization of Condition (P’), and will give some general properties. We
show that Condition (P’) implies Condition (GP’), but the converse is not
true in generally, and Condition (GP') implies GP-flat, but the converse is

not true too. Also a characterization of monoids for which this condition
transfers from products of acts to their components will be given. Then,
we will give a characterization of a monoid S over which all right Sacts
satisfy Condition (GP’) and a characterization of a monoid Sfor which this

condition of right Sacts has some other properties. Also we will a
characterization of a monoid S for which al right Sacts satisfying some
flatness properties have Condition (GP’).

Throughout this article, S will aways denote a monoid. For basic
concepts and terminol ogies relating to semigroups and acts over monoids we
refer the reader to [7] and [8].

2. General Properties

In this section, we introduce Condition (GP') and give some general
properties of it. We show that Condition (P’) implies Condition (GP’), but
the converse is not true, also that Condition (GP’) implies GP-flat, but the
converse is not true. We show that Condition (GP’) can be transferred from

product of S-acts to their components, for commutative monoid S. Also we
give a characterization of monoids for which Condition (GP’) transfers from

products of acts to their components.
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Definition 2.1. We say that aright Sact Ag satisfies Condition (GP') if
for every a,a € Ag, t,t',ze S at = at’ and tz=1tz imply that there
exist a"eAg,u,veS and neN such that a=a'u,a =a'v and
ut" = wvt™".

Theorem 2.2. The following statements hold:

(1) If theright S-act Ag satisfies Condition (GP’), then every retract of
Ag satisfies Condition (GP').

2 A =Hi€| A, where A,iel areright Sacts, satisfies Condition
(GP") ifand only if A satisfies Condition (GP’), for every i e I.

(3) If {B;]i eI} isachain of subactsof Ag andevery B;, i e | satisfies
Condition (GP'), then | J._, B; satisfies Condition (GP).

(4) Sg satisfies Condition (GP’).
Proof. Proofs are obvious, by definition. O

We recall from [4] that Sact Ag satisfies Condition (P’), if for every
aaehgtt zeS

at =at,tz=tz= (3Ja" € A5)(3u,ve S)(a=a'u, @’ = a'vandut = w').

Clearly, Condition (P’) implies Condition (GP’), but not the converse,
see the following example.

Example 2.3. Let T = {0, e, f} be a null semigroup, S = T! and let
A = {a;, ay} be regarded as an Sact in such a way that a1l=4a and
as=a, for i=12 and every seT. Obvioudy Ag is a right Sact,
which does not satisfy Condition (P’). Otherwise, aje = a,f and e0 = f0
imply that there exist a” € Ag and u, v e S such that a; = a"u, a, = a'v
and ue=vf. Now a, =a'v implies that a"=a, and v=1 Then
ue = f, for every u € S, which isacontradiction. Therefore, Ag does not
satisfy Condition (P’). On the other hand a;s = ait and sO = tO, for every
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s, teS Then a = a1 and 1s? = 1f2. Also s = apt and sO = t0, for
every 1#t,se S Then g = aye, a, = ay1 and es? = 1t2. Therefore, Ag
satisfies Condition (GP').

The Sact Ag is caled GP-flat, if for every se S, and a,a’' e Ag,
a®s=a'®s in Ag ®gS implies the existence of a natural number n such
that a®s" =a ®s" in Ag ®sS" (see[16]).

Proposition 2.4. If the right Sact Ag satisfies Condition (GP’), then
Ag is GP-flat.

Proof. Suppose that Ag satisfies Condition (GP') and let as = a's, for
a,a € Agand se S Thenthereexist 8" € Ag,u,ve S and n e N such
that a = a"u, a’ = a"v and us" = vs". Therefore,

a®s"=au®s" =a"®us"=a"®vs"=aves" =a ®s",

in Ag ®Ss", and so Ag is GP-flat asrequired. O
The converse of Proposition 2.4 is not true, see the following example.

Recall from [11] that aright ideal K of amonoid Sis called left stabilizing, if
for every k € K thereexists | € K, suchthat Ik = k.

Example 25. Let S={1, e f, 0} be a semilattice, where ef = 0.
Consider theright ideal K = €S = {g, 0} of S Since K isleft stabilizing and
Sis right reversible, S/K is flat by [8, Ill, Theorem 12.17], and so it is
GP-flat. But it is easy to see that S-act S/K does not satisfy Condition (GP’).

Now, for a commutative monoid we can show Condition (GP’) can be
transferred from products of acts to their components.
Proposition 2.6. For a commutative monoid S, if Hiel A, where

A,i el areright Sacts, satisfies Condition (GP’), then A satisfies
Condition (GP'), for every i € I.
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Proof. Thisisclear. d

Theright Sact Sx S equipped with theright S-action (s, t)u = (su, tu),
for s, t, u e S iscalled the right diagonal act of Sand will be denoted by
D(S). Left diagonal act g(Sx S) is defined dually. By a similar argument

as in the proof of [13, Theorems 3.7 and 3.8], we can show the following
theorems, respectively.

Theorem 2.7. The following statements are equival ent:
(1) D(S) satisfies Condition (GP’) and | E(S)| < 2;
(2) Sisright cancellative.

Theorem 2.8. For an idempotent monoid S, the following statements are
equivalent:

(1) D(S) satisfies Condition (GP");
(2 s={1.

Corollary 2.9. For an idempotent monoid S, the following statements
are equivalent:

(1) D(S) satisfies Condition (P');
(2) D(S) satisfies Condition (GP");
(3 sS={1.

Here we give a characterization of monoids for which property (GP’)

transfer from products of acts to their components. First we recall from [4]
that a submonoid P of Sis caled weakly right reversible if (Vs, s' € P)

(Vze S)(sz=5z= (Ju, ve P)(us = vs)).

Theorem 2.10. The following statements are equivalent:

@) If Hiel A satisfies Condition (GP'), then A satisfies Condition
(GP'), for every i € |;
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(2) O satisfies Condition (GP');
(3) Sisweakly right reversible.
Proof. Thisis similar to the proof of [13, Theorem 3.10]. O
We recall from [6] that for a,be S, the set L(a,b):={(s,t)e SxS;

sa=tb}, iseither empty or else aleft S-act.

Also, werecall that if Sisamonoid and | is anon-empty set, then the set
of al mapsfrom | to S equipped with the right S-action (as)x = (a(x))s, for

mapping o.: 1 — S, se S and x e |, isaright S-act, denoted by (S' )s-

Theorem 2.11. The following statements are equivalent:

1) S'S satisfies Condition (GP’), for every non-empty set I;

(2) for any a,be S, L(a, b) is either empty or else, if there exists
z e S such that (a, b) € ker p,, thenthereexist u, ve S and n e N such
that L(a, b) ¢ S(u, v) < L(@", b").

Proof. (1) = (2). Suppose L(a, b)= &, for a, b € S and suppose there
exists ze S such that (a, b) e kerp,. Suppose also that L(a, b) isindexed
by I, that is, L(a, b):={(x, y;)|i € I}. Let x, y be the elements of S',
whose i-th components are X, y;, respectively. Then xa = yb and az=bz.
By assumption there exist ze s',u,veSandneN suchthat x= 21, y = 2v
and ua" = vb". Thus, (u,v)eL(@",b"),(x,y;)=1z(u,v), where z isthe
i-th component of z. Therefore, L(a, b) < S(u, v) < L(a", b"), asrequired.

() = (1. Let (x),a=(y),b and az = bz, for (x),, (vi); < (S')s
and a,b,zeS Then (x, V) e L(a b), for every i el. Thus, by

assumption there exist u, ve S and n e N such that L(a, b) < S(u, v) <

L(@", b"). Since (x, ;) € L(a, b), forevery i € |, thusfor every i e I,
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there exists w, € S such that (x, y;) = wi(u, v), that is x = wu and
Y = wyv, forevery i e I. Hence, (%), = (W), u, (¥;), = (W), v andsince
(u, v) € S(u, v) c L(@", b"), we have ua" = vb". Thus, the right S-act
(s' ) satisfies Condition (GP'), asrequired. O

Theorem 2.12. The following statements are equivalent:

(1) D(S) satisfies Condition (GP');

(2) for any a,be S, L(a, b) is either empty or else, if there exists
z € S suchthat (a, b) € ker p,, thenfor every (xq, y1), (X0, ¥2) € L(a, b)
there exist u,ve S and ne N such that (x, y;) € S(u, v) c L(@", b"),
fori=1 2.

Proof. (1) = (2). For a,be S, let L(a, b) # & and (a, b) € kerp,,
for ze S. Now let (xg, y1), (X2, ¥2) € L(a, b), for xq, y3, X2, ¥o € S.
Then we have xa = y;b and xa = y,b, and so (X, Xp)a = (yy, Y2)b,
which with (a, b) € kerp, imply that there exist wy, w,, u,ve S and

ne N such that (xg, Xo) = (W, Wo)u, (Y1, Y2) = (W, Wo)v and ua" = vb",
that is x; = WiU, y1 = WV, Xo =Wou and y, = wov. Therefore,

(%, ¥i) = w(u, v) e S(u, v) c L(@", b"),
for i =1, 2, asrequired.

(2 = (1). Let (xq, x0)a=(y, yo)b and az = bz, for (xq, x2),
(y1, ¥2) € D(S) and a, b, ze S. Then xa = yjb, xoa = y,b, and so
(X, Y1), (X2, ¥2) € L(a, b) and (a, b) € ker p,. Thus, by assumption there
exist u,ve S and neN, such that (x, y;) € S(u, v) c L(@", b"), for
i =1 2, and so, there exist wy, wp, € S such that (x, y;) = w(u, v), for
i=12 thatis, x =wu and y; = wyv, for i =1 2. Hence, (X, Xo) =
(W, wo)u and  (yq, y2) = (W, Wp)v, and since (u,v)e S(u, v) c
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L@", b"), we have ua" = vb". Therefore, D(S) satisfies Condition
(GP). 0

3. A Characterization of Right Actsby the Condition (GP’)

In this section, we give a characterization of monoid S by Condition
(GP') of right S-acts.

Let J be a proper right ideal of a monoid S. If X, y, z are different
symbols not belonging to S, define A(J) := ({x, y} x (S\J))U ({z} x J), and
aright S-actionon A(J) by
(x, us), if usgJ,

(%, u)s= {

(z,us), if useJ,
(y,us), ifusegld,
(y,u)s= _
(z,us), ifuseld,
(z, u)s = (z, us).
Clearly, A(J) isaright S-act.

Lemma 3.1. Let J be a proper right ideal of S. Then A(J) does not
satisfy Condition (GP).

Proof. For every j e J, we have (x,1)j =(y,1)j and jj = jj. If
there exist (w, r) e A(J),u,ve S and ne N such that (x,1) = (w, r)u,
(y, 1) = (w, r)v and uj" = vj", then the equality (x, 1) = (w, r)u implies
that w = x, and the equality (y, 1) = (w, r)v implies that w = y. Thus,
X =y, which isacontradiction. O

Recall from [2] and [3] that the Sact Ag satisfies Condition (E'P), if

forevery ae Ag, S, 5, z€ S

as=as,sz=5z= (3@ € Ag)(Ju, U e S)(a=au=au andus=U's).
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The Sact Ag satisfies Condition (EP), if forevery a € Ag, s, S € S,
as=as = (3@’ € Ag)(Ju, U’ € S)(a=a'u = au’ and us = U's).
Theorem 3.2. The following statements are equivalent:
(1) All right S-acts satisfy Condition (GP’);
(2) all 2 -torsion free right S-acts satisfy Condition (GP');
(3) all right S-acts satisfying Condition (E'P) satisfy Condition (GP’);
(4) all right S-acts satisfying Condition (EP) satisfy Condition (GP');
(5) all right S-acts satisfying Condition (E') satisfy Condition (GP’);
(6) all right S-acts satisfying Condition (E) satisfy Condition (GP’);
(7) Sisagroup.
Proof. Implications (1) = (2) and (1) = (3) are obvious and implications
(3) = (4) = (6), (3) = (5) = (6) are obvious, because (E) = (EP) = (E'P),
and (E) = (E') = (E'P).

(2) = (6). Thisis obvious, since all right S-acts satisfying Condition (E)
are R -torsion free, by [17, Proposition 1.2].

(6) = (7). Suppose sS= S, for se S. Then the right Sact A(sS)
satisfies Condition (E), by [8, Ill, Exercise 14.3(3)], and so by the
assumption that A(sS) satisfies Condition (GP’), which is a contradiction,
by Lemma3.1. Hence, sS =S, forevery s e S, and so Sisagroup.

(7) = (1). This is obvious, by [4, Theorem 2.5], since Condition (P’)
implies Condition (GP’). O

Theorem 3.3. The following statements are equival ent:

(1) All right S-acts satisfy Condition (GP’);

(2) all generator right S-acts satisfy Condition (GP’);
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(3) all generator finitely generated right S-acts satisfy Condition (GP');

(4) all generator right S-acts generated by at most three elements satisfy
Condition (GP');

(5) Sx Ag satisfies Condition (GP'), for every generator right S-act
As;

(6) Sx Ag satisfies Condition (GP'), for every generator finitely
generated right S-act Ag;

(7) Sx Ag satisfies Condition (GP'), for every generator right S-act
As generated by at most three elements,

(8) Sx Ag satisfies Condition (GP'), for everyright Sact Ag;

(9) Sx Ag satisfies Condition (GP'), for every finitely generated right
Sact Ag;

(10) Sx Ag satisfies Condition (GP’), for every right Sact Ag
generated by at most two elements;

(11) theright S-act Ag satisfies Condition (GP'), if Hom(Ag, Ss) # <;

(12) the finitely generated right S-act Ag satisfies Condition (GP'), if
Hom(As, Ss) # J;

(13) the right Sact Ag, generated by at most two elements, satisfies
Condition (GP'), if Hom(Ag, Sg) # <;

(14) Sisagroup.

Proof. Implications (1) = (2) = (3) = (4), (1) = (5) = (6) = (7), (1)
= (8) = (9) = (10) and (1) = (11) = (12) = (13) are obvious.

(7) = (2). Let Ag be a generator right S-act, as = a't and sz = tz, for
a, a € Ag, s, t, ze S. Since Ag isgenerator, thus there exists epimorphism
n:As— Ss. Let n(a")=1 and Bg=aSUa'SUa’S. Since n|g.:Bs — Sg
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is an epimorphism, thus Bg is a generator right S-act, which generated by
at most three elements, and so by the assumption that S x Bg satisfies
Condition (GP’). Now (n(a), a)s = (n(a’), @)t and sz =tz imply that
there exist (w,b)e SxBg,u,veS and neN such that (n(a), a)=
(w, b)u, (n(a), @) =(w,b)v and us" = vt". Therefore, a=bu, a' = bv

and us" = vt", and so Ag satisfies Condition (GP’), asrequired.

(13) = (2). Let Ag be agenerator right S-act, as = a't and sz = tz, for
a, a € Ag, S t, ze S. Since Ag is generator, thus there exists epimorphism
n:Ag— Ss. Let Bg=aSUa'S. Since n|gg: Bg — Sg is ahomomorphism,
thus Hom(Bs, Sg) # . Also Bg is generated by at most two elements and
so0 by the assumption that Bg satisfies Condition (GP’). Now as = a't and
sz = tz imply that thereexist a” € Bg ¢ Ag, U, v e Sand n € N such that
a=a'u, a =a'vand us" = vt". Therefore, Ag satisfies Condition (GP’),
asrequired.

(10) = (14). Suppose sS # S, for s € S. Then theright Sact A(sS) is
generated by two different elements (4, x) and (1, y), and so by the
assumption that S x A(sS) satisfies Condition (GP’). Since (1, (1, x))s =
(4 4, y))s and sl1l= sl thus there exist u,v,t,l € S, we {x, y} and
neN suchthat (1, (1, x))= (I, (t, w)u, (1, (4, y))=(, (t, w))v and us" =vs".
Therefore, (1, x)=(t,w)u and (1, y)=(t,w)v, and so x=w=y, whichisa

contradiction. Hence, sS = S, for every s e S, and so Sisagroup.

(2) = (10). Let Ag be aright S-act, generated by at most two elements.
It is obvious that the mapping ¢ : Sx Ag > Sg with ¢(s, a) = s, for all
se S and a € Ag isan epimorphism in Act-S thus S x Ag is a generator,
by [8, II, Theorem 3.16], and so by the assumption that Sx Ag satisfies
Condition (GP').
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(4) = (2). Let Ag be agenerator right Sact, as = at and sz = tz, for
a, a' € Ag, s, t, ze S. Since Ag isgenerator, thus there exists epimorphism
n:As— Ss. Let n(a")=1 and Bg=asUa'SUa’S. Since n|gg: Bg — Sg
is an epimorphism, thus Bg is a generator right S-act, which generated by at
most three elements, and so by the assumption that Bg satisfies Condition
(GP'). Now as=at and sz=tz imply that there exist a"eBgc
As,u,veS and neN such that a=a'u,a =a'v and us" =wt".
Therefore, Ag satisfies Condition (GP'), asrequired.

(14) = (1). Thisfollows from Theorem 3.2. O

We recall from [8, I, Definition 5.7], that an Sact Ag is caled
indecomposable if there exist no subacts Bg, Cg — Ag such that
As = BgUCg and Bs N Cg = .

Theorem 3.4. The following statements are equivalent:

(1) All indecomposable right S-acts satisfy Condition (GP’);

(2) all finitely generated indecomposable right S-acts satisfy Condition
(GP);

(3) all indecomposable right S-acts generated by two elements satisfy
Condition (GP');

(4) Sisagroup.

Proof. Implications (1) = (2) = (3) are obvious.

sS
(3) = (4). Supposethat sS= S, for se S, andlet As=S[[S Aswe

know Ag is an indecomposable right S-act generated by two elements, and
so by the assumption that Ag satisfies Condition (GP'), which is a
contradiction, by Lemma 3.1. Hence, sS = S, forevery se S, and so Sisa
group.
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(4) = (1). Thisisobvious, by Theorem 3.2. O

For every weakly right reversible monoid S, there exists a right S-act
As, such that Ag is not indecomposable, but satisfies Condition (GP'). For

this let S be a weakly right reversible monoid and A = {04, 65}, which
0, # 0,5, B;s=10;, forevery se S,i =1, 2.

Obvioudly, Ag isaright Sact that satisfies Condition (GP'), but since
As = {06,1U {05}, {6, and {8,} are subacts of Ag, thus Ag is not
indecomposable.

We recall from [8] that Ag is (strongly) faithful, if for s, t € S the
equality as = at, for (some) al a € Ag impliesthat s =t. Now by using a
similar argument as in the proof of Theorem 3.4, we can show the following
theorem.

Theorem 3.5. The following statements are equivalent:

(1) All faithful right S-acts satisfy Condition (GP’);

(2) all finitely generated faithful right S-acts satisfy Condition (GP’);

(3) all faithful right S-acts generated by two elements satisfy Condition
(GP);

(4) Sisagroup.

Notation: C; (C,) isthe set of all left (right) cancellable elements of S

Lemma 3.6. The following statements are equivalent:

(1) There exists at least one strongly faithful (left) right S-act;

(2) there exists at least one strongly faithful cyclic (left) right S-act;

(3) there exists at least one strongly faithful monocyclic (left) right
Sact;

(4) there exists at least one strongly faithful finitely generated (left) right
Sact;
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(5) (Ss) sS, asa (left) right S-act, is strongly faithful, for every s e S;

(6) there exists se S, such that (Ss) sS, as a (left) right Sact, is
strongly faithful;

(7) (sS) Ss, asa (left) right S-act, is strongly faithful;
(8) (SscCy)sSc C, forevery se S

(9) thereexists se S, suchthat (Ssc C,) sSc C;;
(10) Sis(right) left cancellative.

Proof. Implications (3) = (2) = (4) = (1), (5) = (6) = (1), (10) = (8)
= (9) and (7) = (1) are obvious.

(7) = (3). Thisisobvious, since Sg = Sg/Ag = S/p(s, s), for every s.
(1) = (10). Let Ag be a strongly faithful right S-act and s = st, for

s, I,te S Then ad = adt, for a € Ag. Since Ag is strongly faithful and
as € Ag, thus | =t. Therefore, Sisleft cancellative.

(10) = (7). Let S be left cancellative and d = st, for |I,t e S and
Se Sg. By assumption | =t, and so Sg is strongly faithful, as a right
Sact.

(9) = (10). Let SSc C;, for se Sand rt =rl, for r, t,1 € S. Then

(sr)t = (sr)l. By assumption t = |, and so Sisleft cancellative.

(10) = (5). Let skt = skl, for sk e sS and t,| € S. By assumption
t = I, and so sSis strongly faithful, as aright S-act. O

Theorem 3.7. The following statements are equival ent:

(1) All strongly faithful right S-acts satisfy Condition (GP');

(2) all finitely generated strongly faithful right S-acts satisfy Condition
(GP');
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(3) all strongly faithful right S-acts generated by two elements satisfy
Condition (GP');

(4) either Sisnot left cancellative or, Sisa group.
Proof. Implications (1) = (2) = (3) are obvious.

(3 = (4). If Sisnot left cancellative, then we are done. Now let Sbe
left cancellative, and let there exist s S such that sS# S Put
As = A(sS). We have:

Bs = {(I, X)|| € S\sS} U sS = Sg = {(t, y)|t € S\sS} U sS = Cg
and Ag = Bg U Cg. Since Sis left cancellative, Sq is strongly faithful, by
Lemma 3.6, and so Bg and Cg are strongly faithful. That is, Ag is strongly
faithful, and so by the assumption that Ag satisfies Condition (GP’), which
is a contradiction, by Lemma 3.1. So, sS=S, for dl s S, and Sis a
group.

(4) = (1). Let Sbe not left cancellative. Then there exists no strongly

faithful right Sact, by Lemma 3.6, and so (1) is satisfied. Otherwise, Sis a
group, and al right Sacts satisfy Condition (GP’), by Theorem 3.2, as

required. O

Theorem 3.8. Every strongly faithful cyclic right Sact satisfies
Condition (GP’).

Proof. Let Ag = aS be a strongly faithful cyclic right S-act. Then Sis
left cancellative, by Lemma 3.6, and s0 keri, = Ag. That is, Ag =0aS
= S/kerk, = S/Ag = Ss. S0 Ag = aS saisfies Condition (GP'), by
Theorem 2.2. O

We say that Sis right PCP, if al principa right ideals of S satisfy
Condition (P). The Sact Ag is caled strongly (P)-cyclic, if for every
a e Ag there exists ze S such that keri, = kerk, and zS satisfies

Condition (P) (see[5]). The proof of the following theorem is similar to that
of [5, Theorem 2.6].
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Theorem 3.9. The following statements are equivalent:
(1) All strongly (P)-cyclic right S-acts satisfy Condition (GP’);

(2) all finitely generated strongly (P)-cyclic right Sacts satisfy
Condition (GP');

(3) all finitely generated strongly (P)-cyclic right S-acts generated by
two elements satisfy Condition (GP’);

(4) eSisaminimal right ideal of S, for every idempotent e e T, where T
isthe greatest strongly (P)-cyclic right ideal of S.

Corollary 3.10. All cyclic strongly (P)-cyclic right Sacts satisfy
Condition (GP’).

Proof. Thisis obvious, by definition. O
Lemma 3.11 [5, Lemma 2.3]. If all cyclic subacts of a right Sact Ag

aresimple, then for every a, a' € Ag, either aS(1a'S= or aS = a's.
Theorem 3.12. The following statements are equivalent:

(1) All regular right S-acts satisfy Condition (GP’);

(2) all finitely generated regular right S-acts satisfy Condition (GP’);

(3) all regular right S-acts generated by two elements satisfy Condition
(GP');

(4) eSisa minimal right ideal of S, for any idempotent e e T, where T
isthe greatest regular right ideal of S.

Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4). Let e T be an idempotent. If eSis a minimal right ideal,
then we are done. Otherwise, there exists a right ideal Kg of S such that

K
Ks c €S Let As =eS]JeS Then Ag isregular by [8, III, Proposition
19.11], and so by the assumption that Aq satisfies Condition (GP’). Now let

eu € Kg. Then eu = (e, x)u = (g, y)u and uu = uu, imply that there exist
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aehAg, Vv,V €S and neN such that (e x) =aw, (e y) =av, and
viu" = vou". Then equdlity (e, x) = av; implies that a = (t, x), for some
t € eS\Kg, similarly, a = (t, y), for some t' € eS\Kg, that is x =y,
which is a contradiction.

(4) = (1). Let Ag be aregular right Sact, and let a € Ag. Then aSis
projective, and so there exists e € E(S) such that aS = eS. Since T is the
greatest regular right ideal of S we have eSc T and so ee T. By the
assumption that eS is a minimal right ideal of S and so aS is too.
Therefore, aS is simple. Now, suppose at =a't’ and tz=tz for
a,a €A t,t',ze S Then aS(1a'S# J, and so aS = a'S, by Lemma
3.11. Thus, a’' = as, for some s; € S, and S0 at = asjt’. Since eS satisfies
Condition (GP’) and aS = €S, thus there exist u,ve S and n e N such

that a=au,asy=a’ =av and ut" = wt", that is, Ag satisfies Condition
(GP'), asrequired. O

Theorem 3.13. Every regular cyclic right Sact satisfies Condition
(GP).

Proof. This follows from definition. O

As we saw in Section 2, weak flatness of acts does not imply Condition
(GP’). Now it is natural to ask for monoids S over which weak flatness

implies Condition (GP’).

An element s of Sis called left e-cancellable, for an idempotent e € S,
if s=se and kerig < kerAo. The monoid Sis called right PP if every

principal right ideal of Sis projective, as aright S-act. This is equivalent to
saying that every element s e S is left e-cancellable for some idempotent
ee S (see[1]). The monoid Sis called left PSF if every principal left ideal
of Sisstrongly flat, as aleft S-act. Thisis equivaent to saying that Sis right
semi-cancellative, that is, whenever su = s'u, for s, §, u e S, there exists

r e Ssuchthat u=ru and sr = sr (see[12)]).
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Theorem 3.14. The following statements are equivalent:
(1) Sisright cancellative;

(2) Sis left PSF and all torsion free right S-acts satisfy Condition
(GP);

(3) Sis left PSF and all principally weakly flat right Sacts satisfy
Condition (GP');

(4) Sisleft PSF and all weakly flat right S-acts satisfy Condition (GP’);
(5) Sisleft PSF and all flat right S-acts satisfy Condition (GP').

Proof. (1) = (2). It is obvious that every right cancellative monoid is
left PSF. Suppose Ag isatorsion freeright S-act, at = a't’ and tz = t'z, for

a,a’ e Ag and t,t', ze S. Then by assumption t = t’, and so at = a't. Now
since Ag is torsion free, thus a = a'. Therefore, Ag satisfies Condition
(GP'), asrequired.

Implications (2) = (3) = (4) = (5) are obvious.

(4) = (1). If Sisnot right cancellative, then | = {s e S|s is not right
cancellable} is a proper right ideal of S and so A(l) isflat, by [15, Lemma
2.11]. Thus, by the assumption that A(l) satisfies Condition (GP’), which
isacontradiction, by Lemma 3.1. O

Recall from [10] that an element s of S is called left almost regular
if there exist elements r, ry, ..., Iy, S, S, -, Sy € S and right cancellable

elements ¢, Cy, ..., ¢y € S, such that

S0 =S
$C2 = Sz
SmCm = Sm-1'm

S = SIS
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A monoid Siscalled left almost regular if al its elements are left almost
regular.

Notice that the above theorem is also valid when left PSF is substituted
by left PP or left aimost regular.

By a similar argument as in the proof of [8, IV, Proposition 9.3], we can
show the following theorem.

Theorem 3.15. If all finitely generated flat right S-acts satisfy Condition
(GP"), then E(S) = {1}.

By a similar argument as in the proof of [14, Theorem 2.9], and
Theorems 3.14 and 3.15, we can show the following theorem.

Theorem 3.16. The following statements are equivalent:
(1) Sisright cancellative;

(2) thereexistsaregular left Sactand | E(S)| = 1;

(3) there exists a regular left S-act and all principally weakly flat right
S-acts satisfy Condition (GP');

(4) there exists aregular left S-act and all weakly flat right S-acts satisfy
Condition (GP');

(5) there exists a regular left Sact and all flat right Sacts satisfy
Condition (GP').
Theorem 3.17. The following statements are equivalent:

(1) Sisright cancellative;
(2) Sisleft PSF and all GP-flat right S-acts satisfy Condition (GP’);

(3) there exists a regular left S-act and all GP-flat right S-acts satisfy
Condition (GP');

(4) left diagonal act g(Sx S) is regular and all GP-flat right S-acts
satisfy Condition (GP’).
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Proof. (1) = (4). Left diagona act g(Sx S) is strongly faithful, by
duality of [13, Corollary 4.8], and so g(Sx S) is regular, by [8, IlI,
Proposition 19.13]. By using a similar argument as in the proof of (1) = (2)
of Theorem 3.14, we have all GP-flat right S-acts satisfy Condition (GP’).

(4) = (3). Thisisclear.

(3) = (1). Since every principaly right Sact is GP-flat, thus by the
assumption that every principally weakly flat right S-act satisfies Condition
(GP’), and so Sisright cancellative, by Theorem 3.16.

(1) = (2). Thisissimilar to the proof of (1) = (2) of Theorem 3.14.
(2) = (2). Thisissimilar to the proof of (4) = (1) of Theorem 3.14. [

Notice that the above theorem is also valid when left PSF is substituted
by left PP or left aimost regular.

For fixed elements u, v € S definethe relation Ry v OnSas
(X, y)eR yeouw=w(xyeS).

For s,t e S, let pgy = kerig v kery, and for any right ideal | of S

let p; denote the right Rees congruence, i.e., for x, y € S,
(X, y)ep, @x=yorxyel.

The what follows pgg isthe right Rees congruence on Sby the principal
right ideal sS.

Lemma 3.18. For any s,t,u,ve S, neN, the following statements are
equivalent:

(D us" =wt", Ry c Psonsto Ry
(2 Pl,s” °Ugt ° Ptn‘1 cRvcRsenstoR

(3 Pl N ° Hsn,tn ° Ptn,l c F)u,v < Pl,s °Ust © Pt,l-
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Proof. (1) = (2). Let p, pp € S, and (py, po) € Pl,s” °Ugt © Ptn,1.
Thus, there exist vy, Yy € S such that (py, yg)e Pls”’(yl’ Y2) € ts

(Y2, P2)€Pn - S0 pr=5"y1, P2 =t"Y2, (V1 Vo) € ¢ = kerkg v kerky.

Then by [8, I, Lemma4.37], thereexist 7, ..., Z,, € S such that

V= =S5 v 1=y
tz = tz, tZ = tys.
Consequently,
up, = us"y; = us"z = vtz = - = wt"z, = "y, = vp,,

and so (py, pp) € R, y, asrequired.

(2= (3).Let p;, pp e S and (py, Po) € PLs” °Hgn in © Pt”,l' Thus,

there exist y;, y, €S such that (p, yi)€ PR . (Y1 Y2) €bg i,

(Y2, P2) € B - S0 ="y, P = 1"y, (Y1, Y2) € pgn o = kerdp
v ker }“t”' Then thereexist 7, ..., z,, € S such that
s'yi=s"g sz =5"zs - "z 4 =5"2z,
t"z =t"z, "z, = t"y,.
Obviously, we have (s",1) e P LD epgt @t e Pn . and so
(s",t")e PLs” oustoPn, SR, which implies us" = wvt". Consequently,
up, = us"y; = us"z = vtz = - = wt"z, = "y, = vp,,

and so (py, p2) € Ry, asrequired.
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(3) = (1). Obviousy, we have (s",1)e P o L1e M gns
(Lt")e Ptn,l’ and so (s",t")e Pl,sn °lgn n Ptn,lg Ry, Which implies
us" = wt". O

Theorem 3.19. The following statements are equivalent:

(1) All fg-weakly injective right S-acts satisfy Condition (GP');

(2) all weakly injective right S-acts satisfy Condition (GP’);

(3) all injective right S-acts satisfy Condition (GP');

(4) all cofreeright S-acts satisfy Condition (GP’);

(5) for any s, t, ze S, sz =tz implies that there exist u,ve S and
ne N suchthat (s", t") € R, , and the following conditions hold:

() Ry € Risenste R

(if) kerdy < pss;

(iii) ker i, < pis;

(iv) kerhys U keriy < gt

(6) for any s, t, ze S, sz =tz implies that there exist u,ve S and

n € N such that the following conditions hold:
(i) Pl,s” °Hgt© Pt”,l c R,vcPRsonstoR
(ii) kerdy < pss:
(iii) kerhy < prs;

(iv) kerhys Uker by < pgt;
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(7) for any s, t, ze S, sz =tz implies that there exist u,ve S and

n € N such that the following conditions hold:

@) Pl,s” Mg 4n © Pt”,l cRvcPRseoustoR 1

(ii) ker iy < pss:
(iii) ker %y < pis;
(iv) kerhys U keriy < gt

Proof. Implications (1) = (2) = (3) = (4) are obvious, and
implications (5) < (6) < (7) arefollows, from Lemma 3.18.

(4) = (5). Let there exist s, t, ze S such that sz =tz, and for any
u,veSandneN ether us" = wvt" or one of the Conditions (i)-(iv) does
not hold. Let S, and S, be sets such that |S;|=|S,|=|S|, and let
a:S—> S and B:S—> S, be bijections. Let X =(S/ps)] SIS
and define mappings f, g: S — X asfollows:

(0 = {[y]psyt, JyeS x=s,
a(x),  xeS\sS,

, dyeS x=ty,
g0 = {[y]u&t yeS x=ty
B(x), x € S\tS.

If there exist yj, yo € S such that sy; = sy, or ty; =ty,, then
(Y1, ¥2) € ps,t, and respectively, f(syr) = [yal, = [y2], = f(sy2) or

g(ty;) = [yl]us,t = [yZ]Hs,t = g(tyo), that is, f and g are well defined.

According to the definition, fs= gt. Since xS is cofree, by [8, II,

Proposition 4.8], thus by the assumption that X ° satisfies Condition (GP"),
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and so thereexist h: S— X,u,veS and n € N suchthat f = hu, g = hy,
and us" = vt". Now there are four possibilities that can arise:

If one of conditions (i)-(iii) does not hold, then a similar argument as [9,
Proposition 2.2], leads to a contradiction. So we suppose that condition (iv)
does not hold. Then there exist p;, p, € S such that (py, p,) € ker Ays U

ker 7\‘Vt \“'S,t' That iS,

(3p1, P2 € S)((uspy = uspy) v (Vtpy = Vip2)) A (P P2) € Ks,t-

If uspy = uspy, then f(spy) = hu(spy) = h(uspy) = h(usp) = hu(spz)
= f(spp). By definition of f and g, we have [pl]us,t = [pZ]Hs,t’ and so
(P1, P2) € g, Which is a contradiction. If vtp; = vtp,, then analogously
it leads to a contradiction.

(5) = (1). Suppose Ag is an fg-weakly injective right Sact. Let
as=a't and sz=1tz, for a,a’ € Ag and s, t, ze S. By assumption, there
exist u,ve S and ne N such that us" =wt" and conditions (i)-(iv) hold.

Define the mapping ¢ : (USU vS)g — Ag asfollows:

!

ap, dJpeS; x=up,
¢(x) =
ag, 3JgeS x=vq

If there exist p, qe S such that up = vq, then by (i) there exist

Y1, Y2 € S such that (p, y1) e Rs, (Y1, Y2) e ust and (y2,0) € R g
That is p=sy;, q=ty, and (yy, y,) € (kerig v kery), i.e, there exist
7, ..., Z;m € S such that

Y1 =84 S =823 -+ Sp-1 = Sy

tz; = 1z, e tz,, = tys.
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Consequently,
ap = asy; = asg = aty = Atz = -+ = a'tzy = a'ty, = aq.
Suppose that there exist p;, p, € S such that up; = upy. If py = po,
then ap; = ap,. If p; # p,, then by condition (ii), there exist y;, y, € S
such that p; = sy; and p, = sy5. Then usy; = up; = up, = usy, and so
(Y1, ¥2) € ker Ly, which by condition (iv) implies that (y3, y5) € pgt =

(ker kg v kerd;), and so

Y1=Sy SH=S3 - Sy =Sy
tz7 =1z, tzg = tys.
Hence,
ap) = asy] = asz = a'tyg = atz, = --- = A'tg, = a'ty, = asy, = ap,.

If there exist ¢, 0p € S such that vo; = vap, then by using the
conditions (iii) and (iv), we get analogously that a'qy = a'gp. Then g isa
well defined homomorphism. By fg-weak injectivity of Ag there exists a
homomorphism y: S — Ag which extends ¢. Let a" = wy(1). Then
a=¢(u)=y(u)=y(@Qu=a'u, and a’' = p(v) = y(v) = y()v = a"v. Thus,
Ag satisfies Condition (GP'), asrequired. O

Lemma 3.20. For any monoid S, and for any s € S:

PLSOkerkSo PS,l = (SSX SS)ﬂAS

Proof. Let p, pp € S, and (py, Pp) € B g o kerkg o Py 1. Then there
exist y;, Yo € S suchthat (py, 1) € R s, (Y1, Y2) € kerig, (y2, p2) € Ps 1,

and SO Py = Sy1, Y1 = Y2, P2 = Y. Thatis, (py, P2) € (SSx sS)N As,
asrequired. It is easy to see the reverse inclusion. O
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Corollary 3.21. Let S be a monoid such that the set of all left
cancellable elements is commutative. Then all cofree right Sacts satisfy

Condition (GP') if and only if Sisa group.

Proof. Necessity. Let se S. Thereexist u, v e S, n € N, such that
Pl,sn OHsnvsn ° Psn,l c I:’u,v = I:%I.,S °Hss°Fs 1

and so

P]_’sn o kel' ksn o Psn,l g PU,V g Pl‘s o ka’?\,s o PS,].’

by Theorem 3.19, and so (s"Sx s"S)NAg < R,y = (SSx sS)N Ag, by
Lemma 3.20. Let ker, # Ag. Then there exists (p;, p,) € ker A, such
that p; # pp. By Theorem 3.19, keri, < pgs, and so there exist
Vi, Y2 € S, such that p; = sy; and p, = sy,. Since up; = up,, thus
usy; = usy,, and so (v, y) e kerd,s. Agan by Theorem 3.19,

kerLys < Hs s = kerdg, andso p; = pp, whichisacontradiction. That is,

ker L, = Ag. By asimilar argument we can show that ker &, = Ag. Hence,

u, v are cancellable elements, and so by assumption they commute. Now,

w=w-=(v,ueR , c(sSxsS)NAg=u=V,
LDekerhy =R,y =R yc(sSxsS)NAg=IxeS x=1,

andso sS =S, forevery se S, thatis, Sisagroup.

Sufficiency. If S is a group, then al right Sacts satisfy Condition
(GP"), by Theorem 3.2. O

Corollary 3.22. Let S be a commutative monoid. Then all cofree right

S-acts satisfy Condition (GP’) if and only if Sisa group.
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Corollary 3.23. Let S be a finite monoid. Then all cofree right S-acts
satisfy Condition (GP') if and only if Sisa group.

Proof. Necessity. Let s € S. By asimilar argument asin Corollary 3.21,
there exist u,ve S and ne N such that keri, = keri, = Ag and
(s"Sxs"S)NAsc Ry = (sSxSS)NAg. So, uS = S/kerk, = S/Ag = S,
and so |uS| =|S|. Since Sisfiniteand uS c S, the last equality implies
that uS = S. Thus, there exists x € S such that ux = v, and (x,1) € R,
< (sSxsS)NAg, hence x =1 and so u = v. Now by a similar argument
asin the proof of Corollary 3.21, Sisagroup.

Sufficiency. If Sis a group, then all right Sacts satisfy Condition
(GP'), by Theorem 3.2. O

Corollary 3.24. Let S be a monoid such that every left cancellable
element of S has a right inverse. Then all cofree right Sacts satisfy
Condition (GP') if and only if Sisa group.

Proof. By assumption, for any u e C;(S),uS=S, and so a similar
argument as in the proof of Corollary 3.23, gives the result. O

Corollary 3.25. Let S be an idempotent monoid. Then all cofree right
S-acts satisfy Condition (GP’) if and only if S = {1}.

Proof. Necessity. If ee S, then by the proof of Corollary 3.21,
there exist u,veS and neN such that keri,=keri,=Ag and
Riv=(eSxeS)NAg. Thus, (u,1) € keri, = Ag, andso u =1, similarly
v = 1. Therefore,

AS = ker7\.1= kerku = Pu,u = PU,V Z(GSXGS)HAsg(eSXES),

since (1, 1) e Ag < (eSx eS), thereexists x € S such that ex =1, and so
e=1 Thus, S= {1}, asrequired.
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Sufficiency. If S = {1}, then al right S-acts satisfy Condition (GP'), by
Theorem 3.2. O

Theorem 3.26. The following statements are equivalent:

(1) All right S-acts satisfying Condition (GP’) arefree;

(2) al right S-acts satisfying Condition (GP’) are projective generators,

(3) all finitely generated right S-acts satisfying Condition (GP') are
free;

(4) all finitely generated right S-acts satisfying Condition (GP') are

projective generators,

(5) al cyclic right S-acts satisfying Condition (GP’) arefree;

(6) all cyclic right Sacts satisfying Condition (GP') are projective
generators;

(7) all monocyclic right S-acts satisfying Condition (GP’) arefree;

(8) all monocyclic right S-acts satisfying Condition (GP’) are projective
generators;

9 S=1{1.

Proof. (1) = (9). By the assumption that all right Sacts satisfying

Condition (P) are free, and so by [8, IV, Theorem 12.8], S = {1}. By using a
similar argument, it can be seen that other implicationsto (9), are also true.

(9) = (). Thisisclear. O
Recall from [8] that an element s of a semigroup Sis called aperiodic if

there exists n e N such that s” = s"*1. A semigroup Sis called aperiodic
if every s e S isaperiodic.

Theorem 3.27. Let S be a monoid such that every idempotent different
from 1lisaright zero. Then the following statements are equival ent:
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(1) All right S-acts satisfying Condition (GP’) areregular;

(2) all finitely generated right S-acts satisfying Condition (GP') are

regular;
(3) all cyclic right S-acts satisfying Condition (GP') areregular;
(4) every element of Sdifferent from 1 isright zero.
Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4). If al cyclic right Sacts satisfying Condition (GP') are
regular, then all cyclic right Sacts satisfying Condition (P) are regular.
Thus, al cyclic right S-acts satisfying Condition (P) are projective and so are

strongly flat. Hence, S is aperiodic, by [8, IV, Theorem 10.2]. Thus, for

every se S there exists ne N such that s™*! = s". That is, s" is an
idempotent. If s = 1, then s" = 1. Otherwise, s" =1 impliesthat ss" = sl

or "1 = s Since "1 = 3" wehave s" = s, and so s=1 whichisa

contradiction. Thus, s" = 1, and so by the assumption that s" is right zero.
Ss, asacyclicright Sact, satisfies Condition (GP’), by Theorem 2.2, and
so by the assumption that Sg is regular, thus the principal right ideal sSis
projective. Therefore, s is left e-cancellable, for some idempotent e € S, by

[8, Ill, Theorem 17.16], that is, s=se and ss" ! =ss" implies that

es"1 = es". Without loss of generality, we may assume that n is the

1

smallest natural number such that s" = s"*t. Now, if e=1 then

s"1 = §", which is acontradiction. Thus, e # 1, and so by the assumption

that eisaright zero. Then s = se = g, that is, sisaright zero, as required.

(4) = (1). Suppose Ag satisfies Condition (GP'). We have to show
that all cyclic subacts of Ag are projective. Let a € Ag. Then either for all

l#seS as#a or there exists se S such that as=a. If for dl
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1#se S as#a, then ¢ : aS — S defined by ¢(as) = s isan isomorphism,

because if as=at, then since ss=ts, Condition (GP’) implies that there

exist u,ve S, and ne N such that us" = wt". Since 1= s, t are right

zero, the last equality impliesthat s =t, and so ¢ well defined. Therefore,
aSisprojective. If thereexists 1 # s € S such that as = a, then by using a
similar argument as above, there exists at most one such s. In this case
¢:aS— sS defined by ¢(at) = st is an isomorphism. Since s is an

idempotent aSis projective, by [8, |1, Proposition 17.2(3)]. O
The monoid Sis called simple, if Shas no proper idea (see[8]).

Theorem 3.28. For any simple monoid S, the following statements are
equivalent:

(1) All right S-acts satisfying Condition (GP’) areregular;

(2) all finitely generated right S-acts satisfying Condition (GP') are

regular;
(3) all cyclic right S-acts satisfying Condition (GP’) areregular;
4) sS={1.
Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4). By the assumption that all cyclic right Sacts satisfying
Condition (P) are (being regular) projective and so every right reversible
submonoid of S contains a left zero by [8, IV, Theorem 11.8]. Let 1 = e be
an idempotent. Since Sis simple, it has no proper right ideal, and so €S = S.
Therefore, e =1 which is a contradiction. Hence, the only idempotent of S
is 1. Now let se S. As we showed in the proof of Theorem 3.27, Sis

aperiodic, and so there exists n € N such that s" = s™*1. Since s isan
idempotent, we have s” =1, and so s"=s"! implies that s=1. Thus,
S={1}, asrequired.
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4) = (1. If S={1}, then dl right Sacts are regular, by [8, IV,
Theorem 14.4]. O

Theorem 3.29. The following statements are equivalent:

(1) All right S-acts satisfying Condition (GP’) aredivisible;

(2) all finitely generated right S-acts satisfying Condition (GP') are
divisible;

(3) all cyclic right S-acts satisfying Condition (GP') aredivisible;

(4) all monocyclic right S-acts satisfying Condition (GP') are divisible;

(5) all left cancellable elements of Sare left invertible.

Proof. Implications (1) = (2) = (3) = (4) are obvious.

(4) = (5). By Theorem 2.2, Sg, as a right Sact, satisfies Condition
(GP"). Since S/p(s,s)=S/Ag=Sg, for se S, thus by the assumption that

Sg is divisible, and so Sc = S, for any left cancellable element ¢ € S.
Therefore, thereexists x € S, such that xc = 1.

(5) = (2). Thisisobvious, by [8, Ill, Proposition 2.2]. O

We recall from [18] that an act Ag is called strongly torsion free if for
any a, be Agandany s e S, theequality as = bs implies a = b.

Theorem 3.30. The following statements are equivalent:

(1) All right S-acts satisfying Condition (GP') are strongly torsion free;

(2) all finitely generated right S-acts satisfying Condition (GP') are
strongly torsion free;

(3) all cyclic right Sacts satisfying Condition (GP') are strongly
torsion free;

(4) Sisright cancellative.
Proof. Thisfollows from [18, Theorem 3.1]. 0
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