REPRESENTATION OF THE DERIVATIVE FOR SPLIT-QUATERNIONIC FUNCTIONS

Ji Eun Kim
Department of Mathematics
Dongguk University
Gyeongju-si 38066, Korea

Abstract

In the split-quaternion domain, functions have standard differentiability conditions and results which are not applied by calculations of differential operators, directly. We introduce the unusual representation of the derivative, called the $S R$ calculus, which is useful to calculate derivatives of such functions. We show the derivatives and their examples by using the simple calculation process on split-quaternionic functions.

1. Introduction

Split-quaternions were introduced by Cockle [2] in 1849. Splitquaternions are elements of a 4-dimensional associative but not commutative algebra over \mathbb{R} for multiplication. Unlike the quaternion algebra introduced by Hamilton in 1843, the split-quaternions have zero divisors, nilpotent elements and nontrivial idempotents (see [11]). In differential geometry and some algebraic properties of Hamilton operators of split-quaternions, there

Received: November 15, 2017; Accepted: March 16, 2018
2010 Mathematics Subject Classification: Primary 32W50, 32A99, 30G35; Secondary 11E88.
Keywords and phrases: split-quaternion, derivative, differentiability, split-quaternionic functions.
are many studies. Kula and Yayli [9] showed that the algebraic structure of split-quaternions has a product of rotations in semi-Euclidean and Minkowski 3-space. Jafari and Yayli [4] studied De-Moivre's and Euler's formulae for matrices associated with split-quaternions. Kim and Shon [6, 7] proposed a split-hyperholomorphic function and a split-harmonic function with values in split-quaternions, which are expressed polar coordinate forms for split quaternions, and obtained properties of split-hyperholomorphic mappings.

An involution is an inverse linear mapping itself. Many examples of non-trivial involutions contain the complementation in set theory and complex conjugations. Knus et al. [8] recalled basic properties of central simple algebras and studied involutions into symplectic and unitary types. Bekar and Yayli [1] expressed geometric interpretations of involutions and anti-involutions of real quaternions, biquaternions and split-quaternions.

The $H R$ calculus has been used to calculate formal derivatives of both analytic and non-analytic functions of quaternion variables. The $H R$ derivative can be proposed the left-hand and right-hand versions of quaternionic derivatives, based on a general orthogonal system. Actually, the $H R$ calculus gives the simple way to deal with the chain rule, the meanvalued theorem and Taylor's theorem. Jahanchahi et al. [5] introduced the $H R$ calculus to provide information within four-dimensional quaternion valued signals, for the calculation of the derivatives of analytic quaternion valued functions. Mandic et al. [10] gave the $H R$ calculus which conforms with the maximum change of the gradient and the direction of the conjugate gradient, based on the isomorphism with quaternion involutions.

In this paper, we consider $H R$ calculus and $H R$ derivative on splitquaternions. We introduce the $S R$ calculus which is useful to represent derivatives of split-quaternion valued functions. From the $S R$ calculus, we show the standard differentiability conditions and calculations of differential operators in the split-quaternion domain. Also, we give some examples to show convenience in use of the $S R$ calculus.

2. Preliminaries

A set consisting of split-quaternions is defined as

$$
\mathbb{H}_{\mathcal{S}}=\left\{p=x_{0}+i x_{1}+j x_{2}+k x_{3} \mid x_{r} \in \mathbb{R}, r=0,1,2,3\right\},
$$

where the imaginary units i and the unit elements j and $k=i j$ as components of a basis for $\mathbb{H}_{\mathcal{S}}$ satisfy

$$
i^{2}=-1 \quad \text { and } \quad j^{2}=k^{2}=i j k=1 .
$$

The product for split-quaternions is non-commutative, that is, $p q \neq q p$ and

$$
i j=k=-j i, \quad j k=-i=-k j \quad \text { and } \quad k i=j=-i k .
$$

For $p=x_{0}+i x_{1}+j x_{2}+k x_{3}$ and $q=y_{0}+i y_{1}+j y_{2}+k y_{3}$ in $\mathbb{H}_{\mathcal{S}}$, the corresponding dot product, denoted by $\langle p, q\rangle_{(s)}$, is given by

$$
\langle p, q\rangle_{(s)}=x_{0} y_{0}+x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3} .
$$

The split-quaternion conjugate of $p \in \mathbb{H}_{\mathcal{S}}$ is defined as

$$
p^{*}=x_{0}-i x_{1}-j x_{2}-k x_{3}=S(p)-V(p),
$$

and the modulus is written by

$$
\langle p, q\rangle_{(s)}=p p^{*}=p^{*} p=x_{0}^{2}+x_{1}^{2}-x_{2}^{2}-x_{3}^{2} \in \mathbb{R}
$$

and thus the inverse element of each split-quaternion in $\mathbb{H}_{\mathcal{S}}^{\circ}$ is given by

$$
p^{-1}=\frac{p^{*}}{p p^{*}}=\frac{p^{*}}{\langle p, p\rangle_{(s)}},
$$

where $\mathbb{H}_{\mathcal{S}}^{\circ}=\mathbb{H}_{\mathcal{S}} \backslash D$ and $D=\left\{p=x_{0}+i x_{1}+j x_{2}+k x_{3} \mid x_{0}^{2}+x_{1}^{2}=x_{2}^{2}+x_{3}^{2}\right\}$, for example,

$$
i^{-1}=-i, \quad j^{-1}=j \quad \text { and } \quad k^{-1}=k
$$

Consider a similarity relation ' \sim ' between p and q in $\mathbb{H}_{\mathcal{S}}$ such that

$$
p \sim q \text { if and only if } p=\mu q \mu^{-1}
$$

where $\mu \in \mathbb{H}_{\mathcal{S}}^{\circ}$ is non-trivial. Then we obtain the following properties:
Proposition 2.1. For p and q in $\mathbb{H}_{\mathcal{S}}$, if $p \sim q$, then we have

$$
\begin{equation*}
\langle p, p\rangle_{(s)}=\langle q, q\rangle_{(s)} . \tag{1}
\end{equation*}
$$

Proof. From the assumption $p \sim q$, there is $\mu \in \mathbb{H}_{\mathcal{S}}^{\circ}$ such that $p=\mu q \mu^{-1}$. Since the modulus on $\mathbb{H}_{\mathcal{S}}$ satisfies $\langle\cdot\rangle_{(s)} \in \mathbb{R}$ and a splitquaternion and its conjugate are commutative for product, we can calculate as follows:

$$
\begin{aligned}
\langle p, p\rangle_{(s)} & =p p^{*}=\left(\mu q \mu^{-1}\right)\left(\mu q \mu^{-1}\right)^{*} \\
& =\left(\mu q \mu^{-1}\right)\left(\left(\mu^{-1}\right)^{*} q^{*} \mu^{*}\right)=q q^{*}=\langle q, q\rangle_{(s)}
\end{aligned}
$$

Thus, we obtain equation (1).
Example 2.2. Since i, j and k satisfy the following equations:

$$
i(i) i^{-1}=-i(i) i=i, j(j) j^{-1}=j(j) j=j \text { and } k(k) k^{-1}=k(k) k=k
$$

the three units satisfy the similarity relation each other, that is, $i \sim j \sim k$.
Remark 2.3. An involution is denoted by the mapping $x \mapsto I(x)$, which satisfies the following axioms [12]:

Axiom 1. An involution is its own inverse, that is, $I(I(x))=x$.
Axiom 2. An involution is linear, that is,

$$
I(\alpha x+\beta y)=\alpha I(x)+\beta I(y),
$$

where α and β are real constants.

Axiom 3. An involution satisfies $I(x y)=I(x) I(y)$.
Let the equivalence relations be involutions of split-quaternions by referring [3]:

$$
\left\{\begin{array}{l}
p^{i}=i p i^{-1}=-i p i=x_{0}+i x_{1}-j x_{2}-k x_{3} \tag{2}\\
p^{j}=j p j^{-1}=j p j=x_{0}-i x_{1}+j x_{2}-k x_{3} \\
p^{k}=k p k^{-1}=k p k=x_{0}-i x_{1}-j x_{2}+k x_{3}
\end{array}\right.
$$

Also, the conjugate of a split-quaternion is also an involution and satisfies $\left(p^{*}\right)^{*}=p$. Based on the above involutions in (2), the four real components of a split-quaternion can be expressed as

$$
\begin{array}{ll}
x_{0}=\frac{1}{4}\left(p+p^{i}+p^{j}+p^{k}\right), & x_{1}=-\frac{1}{4} i\left(p+p^{i}-p^{j}-p^{k}\right), \\
x_{2}=\frac{1}{4} j\left(p-p^{i}+p^{j}-p^{k}\right), & x_{3}=\frac{1}{4} k\left(p-p^{i}-p^{j}+p^{k}\right) . \tag{3}
\end{array}
$$

By using the above equations in (2) and (3), any split-quaternion-valued function of the four real variables $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ can be written as a function of the split-quaternion variable p and its involutions $\left(p^{i}, p^{j}, p^{k}\right)$.

3. Representation of the $S R$ Derivative

Consider the derivatives of a split-quaternion-valued function and a corresponding composite function of the four real variables. Let $f: \mathbb{H}_{\mathcal{S}} \rightarrow \mathbb{H}_{\mathcal{S}}$ be a function such that

$$
f(p)=f\left(x_{0}+i x_{1}+j x_{2}+k x_{3}\right)=u_{0}+i u_{1}+j u_{2}+k u_{3},
$$

where $u_{r}=u_{r}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}(r=0,1,2,3)$ are real-valued functions.
Since $\mathbb{H}_{\mathcal{S}}$ and \mathbb{R}^{4} are isomorphic, we let $g: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a corresponding composite function satisfying

$$
g\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(u_{0}, u_{1}, u_{2}, u_{3}\right)
$$

where $g\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \cong f(p)$ and $u_{r}=u_{r}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)(r=0,1,2,3)$.

By the chain rule for the function of the four real variables, we have the differential of the function g of the four real variables as follows:

$$
\begin{aligned}
d g & =\frac{\partial g}{\partial x_{0}} d x_{0}+\frac{\partial g}{\partial x_{1}} d x_{1}+\frac{\partial g}{\partial x_{2}} d x_{2}+\frac{\partial g}{\partial x_{3}} d x_{3} \\
& =\frac{\partial f(p)}{\partial x_{0}} d x_{0}+i \frac{\partial f(p)}{\partial x_{1}} d x_{1}+j \frac{\partial f(p)}{\partial x_{2}} d x_{2}+k \frac{\partial f(p)}{\partial x_{3}} d x_{3} .
\end{aligned}
$$

Since each of real variables x_{0}, x_{1}, x_{2} and x_{3} can be written by using p^{i}, p^{j} and $p^{k}\left(\right.$ see (2) and (3)), we have a function $h: \mathbb{H}_{\mathcal{S}}^{4} \rightarrow \mathbb{H}_{\mathcal{S}}$ which is a corresponding composite function such that

$$
\left(p, p^{i}, p^{j}, p^{k}\right) \mapsto h\left(p, p^{i}, p^{j}, p^{k}\right) \in \mathbb{H}_{\mathcal{S}}
$$

Example 3.1. For $p=x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}_{\mathcal{S}}$, a function $f(p)=$ p^{2} is

$$
\begin{aligned}
f(p)= & f\left(x_{0}+i x_{1}+j x_{2}+k x_{3}\right)=\left(x_{0}+i x_{1}+j x_{2}+k x_{3}\right)^{2} \\
= & \left(x_{0}^{2}-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+i 2 x_{0} x_{1}+j 2 x_{0} x_{2}+k 2 x_{0} x_{3} \\
= & \frac{1}{8}\left\{10 p^{2}+2\left(p^{i}\right)^{2}+2\left(p^{j}\right)^{2}+2\left(p^{k}\right)^{2}+6 p p^{i}+4 p p^{j}\right. \\
& \left.+4 p p^{k}-4 p^{i} p^{j}-4 p^{i} p^{k}-4 p^{j} p^{k}-2 p p^{k}\right\} \\
= & h\left(p, p^{i}, p^{j}, p^{k}\right) .
\end{aligned}
$$

From equations (2) and (3), we also have the derivatives of the function h and the components of a split-quaternion as follows:

$$
\begin{array}{ll}
d x_{0}=\frac{1}{4}\left(d p+d p^{i}+d p^{j}+d p^{k}\right), & d x_{1}=-\frac{1}{4} i\left(d p+d p^{i}-d p^{j}-d p^{k}\right), \\
d x_{2}=\frac{1}{4} j\left(d p-d p^{i}+d p^{j}-d p^{k}\right), & d x_{3}=\frac{1}{4} k\left(d p-d p^{i}-d p^{j}+d p^{k}\right), \tag{4}
\end{array}
$$

and

$$
\begin{equation*}
d h=\frac{\partial h}{\partial p} d p+\frac{\partial h}{\partial p^{i}} d p^{i}+\frac{\partial h}{\partial p^{j}} d p^{j}+\frac{\partial h}{\partial p^{k}} d p^{k} . \tag{5}
\end{equation*}
$$

Theorem 3.2. For $p \in \mathbb{H}_{\mathcal{S}}$, let $h: \mathbb{H}_{\mathcal{S}}^{4} \rightarrow \mathbb{H}_{\mathcal{S}}$ be a differentiable function in $\mathbb{H}_{\mathcal{S}}$. Then the complete set of the $S R$ derivatives is

$$
\left(\frac{\partial h}{\partial p} \frac{\partial h}{\partial p^{i}} \frac{\partial h}{\partial p^{j}} \frac{\partial h}{\partial p^{k}}\right)^{t}=\frac{1}{4}\left(\begin{array}{cccc}
1 & -i & j & k \tag{6}\\
1 & -i & -j & -k \\
1 & i & j & -k \\
1 & i & -j & k
\end{array}\right)\left(\frac{\partial h}{\partial x_{0}} \frac{\partial h}{\partial x_{1}} \frac{\partial h}{\partial x_{2}} \frac{\partial h}{\partial x_{3}}\right)^{t}
$$

where $h=h\left(p, p^{i}, p^{j}, p^{k}\right)$ and ()t is a transposed matrix of ().
Proof. By using variables p, p^{i}, p^{j} and p^{k}, we give an expression of the derivative of g through the process and result of the formation of h as follows:

$$
\begin{equation*}
d h=D_{0} d q+D_{1} d p^{i}+D_{2} d p^{j}+D_{3} d p^{k} \tag{7}
\end{equation*}
$$

To find the solution $D_{r}(r=0,1,2,3)$ in equation (7), we calculate equation (7), applying equations (4) and (5) as follows:

$$
\begin{aligned}
\frac{\partial h}{\partial p} & =\frac{\partial x_{0}}{\partial p} \frac{\partial h}{\partial x_{0}}+\frac{\partial x_{1}}{\partial p} \frac{\partial h}{\partial x_{1}}+\frac{\partial x_{2}}{\partial p} \frac{\partial h}{\partial x_{2}}+\frac{\partial x_{3}}{\partial p} \frac{\partial h}{\partial x_{3}}, \\
& =\frac{1}{4} \frac{\partial h}{\partial x_{0}}+\frac{-i}{4} \frac{\partial h}{\partial x_{1}}+\frac{j}{4} \frac{\partial h}{\partial x_{2}}+\frac{k}{4} \frac{\partial h}{\partial x_{3}}, \\
\frac{\partial h}{\partial p^{i}} & =\frac{\partial x_{0}}{\partial p^{i}} \frac{\partial h}{\partial x_{0}}+\frac{\partial x_{1}}{\partial p^{i}} \frac{\partial h}{\partial x_{1}}+\frac{\partial x_{2}}{\partial p^{i}} \frac{\partial h}{\partial x_{2}}+\frac{\partial x_{3}}{\partial p^{i}} \frac{\partial h}{\partial x_{3}} \\
& =\frac{1}{4} \frac{\partial h}{\partial x_{0}}+\frac{-i}{4} \frac{\partial h}{\partial x_{1}}+\frac{-j}{4} \frac{\partial h}{\partial x_{2}}+\frac{-k}{4} \frac{\partial h}{\partial x_{3}}, \\
\frac{\partial h}{\partial p^{j}} & =\frac{\partial x_{0}}{\partial p^{j}} \frac{\partial h}{\partial x_{0}}+\frac{\partial x_{1}}{\partial p^{j}} \frac{\partial h}{\partial x_{1}}+\frac{\partial x_{2}}{\partial p^{j}} \frac{\partial h}{\partial x_{2}}+\frac{\partial x_{3}}{\partial p^{j}} \frac{\partial h}{\partial x_{3}} \\
& =\frac{1}{4} \frac{\partial h}{\partial x_{0}}+\frac{i}{4} \frac{\partial h}{\partial x_{1}}+\frac{j}{4} \frac{\partial h}{\partial x_{2}}+\frac{-k}{4} \frac{\partial h}{\partial x_{3}},
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial h}{\partial p^{k}} & =\frac{\partial x_{0}}{\partial p^{k}} \frac{\partial h}{\partial x_{0}}+\frac{\partial x_{1}}{\partial p^{k}} \frac{\partial h}{\partial x_{1}}+\frac{\partial x_{2}}{\partial p^{k}} \frac{\partial h}{\partial x_{2}}+\frac{\partial x_{3}}{\partial p^{k}} \frac{\partial h}{\partial x_{3}} \\
& =\frac{1}{4} \frac{\partial h}{\partial x_{0}}+\frac{i}{4} \frac{\partial h}{\partial x_{1}}+\frac{-j}{4} \frac{\partial h}{\partial x_{2}}+\frac{k}{4} \frac{\partial h}{\partial x_{3}} .
\end{aligned}
$$

By calculating the above equations, we can find each $D_{r}(r=0,1,2,3)$. Therefore, we can consider the form by means of the following matrix:

$$
\frac{1}{4}\left(\begin{array}{cccc}
1 & -i & j & k \\
1 & -i & -j & -k \\
1 & i & j & -k \\
1 & i & -j & k
\end{array}\right)
$$

and their products, and then we obtain equation (6).
With this, for a corresponding composite function h if we want to obtain a derivative with the components of a split-quaternion such as p, p^{i}, p^{j} and p^{k}, like equation (6), then it can be induced by a derivative with four real variables.

Example 3.3. For $p \in \mathbb{H}_{\mathcal{S}}$, let $h(p)=p^{*}$. Using the $S R$ derivatives in equation (6) for $h(p)$, we have the result such that

$$
\left(\frac{\partial h}{\partial p} \frac{\partial h}{\partial p^{i}} \frac{\partial h}{\partial p^{j}} \frac{\partial h}{\partial p^{k}}\right)^{t}=\frac{1}{4}\left(\begin{array}{cccc}
1 & -i & j & k \\
1 & -i & -j & -k \\
1 & i & j & -k \\
1 & i & -j & k
\end{array}\right)\left(\begin{array}{c}
1 \\
-i \\
-j \\
-k
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right) .
$$

Furthermore, p^{*} can be written by

$$
p^{*}=\frac{1}{2}\left(p^{i}+p^{j}+p^{k}-p\right) .
$$

Thus, we obtain $h^{\prime}(p)=\left(p^{*}\right)^{\prime}=-\frac{1}{2}$.

Acknowledgement

This work was supported by the Dongguk University Research Fund of 2017.

References

[1] M. Bekar and Y. Yayli, Involutions of complexified quaternions and split quaternions, Adv. Appl. Clifford Algebras 23(2) (2013), 283-299.
[2] J. Cockle, LII, On systems of algebra involving more than one imaginary; and on equations of the fifth degree, Lond. Edin. Dub. Phil. Mag. J. Sci. 35(238) (1849), 434-437.
[3] T. A. Ell and S. J. Sangwine, Quaternion involutions and anti-involutions, Comp. Math. Appl. 53(1) (2007), 137-143.
[4] M. Jafari and Y. Yayli, Matrix theory over the split quaternions, Int. J. Geom. 3(2) (2014), 57-69.
[5] C. Jahanchahi, C. Cheong Took and D. P. Mandic, On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting, Proc. IEEE Inter. Joint Conf. on Neural Networks, 2010, pp. 1-5.
[6] J. E. Kim and K. H. Shon, Polar coordinate expression of hyperholomorphic functions on split quaternions in clifford analysis, Adv. Appl. Clifford Algebras 25(4) (2015), 915-924.
[7] J. E. Kim and K. H. Shon, Hypermeromorphy of functions on split quaternions in Clifford analysis, East Asian Math. J. 31(5) (2015), 653-658.
[8] M. A. Knus, A. Merkurjev, M. Rost and J. P. Tignol, The book of involutions, Amer. Math. Soc. 44, Colloquium Publications, USA, 1998.
[9] L. Kula and Y. Yayli, Split quaternions and rotations in semi-Euclidean space, J. Korean Math. Soc. 44(6) (2007), 1313-1327.
$[10]$ D. P. Mandic, C. Jahanchahi and C. C. Took, A quaternion gradient operator and its applications, IEEE Sig. Proc. Let. 18(1) (2011), 47-50.
[11] A. A. Pogoruy and R. M. Rodríguez-Dagnino, Some algebraic and analytical properties of coquaternion algebra, Adv. Appl. Clifford Algebras 20(1) (2010), 79-84.
[12] B. Russell, The Principles of Mathematics, 2nd ed., W. W. Norton and Company, New York, USA, 1903, 426 pp.

