SEQUENTIAL ESTIMATION OF RATIO OF SCALE PARAMETERS IN EXPONENTIAL DISTRIBUTIONS

Z. GOVINDARAJULU

Department of Statistics University of Kentucky Lexington, KY 40506, U.S.A.

Abstract

Fixed-width confidence intervals for the ratio of scale parameters in exponential distributions are considered. The first-order asymptotic results of the sequential procedure are established. An application to estimating certain reliability is provided.

1. The Formulation of the Problem

Let (X_i, Y_i) , i = 1, ..., n be a random sample from the bivariate density $f(x, y) = f_1(x)f_2(y)$, where

$$f_1(x) = (\mu \theta)^{-1} \exp(-x/\mu \theta)$$

 $f_2(y) = \mu^{-1} \exp(-y/\mu).$

and

$$f_2(y) = \mu^{-1} \exp(-y/\mu)$$

We are interested in estimating θ by $\hat{\theta}_n$ such that

$$P(\theta \in (\hat{\theta}_n \pm d)) \ge 1 - \alpha, \tag{1.1}$$

2000 Mathematics Subject Classification: Primary 62L12; Secondary 62E20.

Key words and phrases: fixed-width confidence interval, ratio of scale parameters.

Communicated by Hideo Hirose

Received September 25, 2004

© 2005 Pushpa Publishing House

where d and α are the specified constants. One can easily obtain the likelihood equations for θ and μ to be

$$\mu\theta = \overline{X}_n$$

and

$$2\mu = \frac{\overline{X}_n}{\theta} + \overline{Y}_n,\tag{1.2}$$

where \overline{X}_n and \overline{Y}_n denote the sample means of the X and Y samples. Thus,

$$\hat{\mu} = \overline{Y}_n \text{ and } \hat{\theta} = \overline{X}_n / \overline{Y}_n.$$
 (1.3)

Further, the information matrix is given by

$$I(\theta, \mu) = n \begin{pmatrix} \theta^{-2} & (\theta \mu)^{-1} \\ (\theta \mu)^{-1} & 2\mu^{-2} \end{pmatrix}$$

from which we obtain the asymptotic variance of $\hat{\theta},$ namely $\sigma^2_{\hat{\theta}}$ as

$$\sigma_{\hat{n}}^2 = 2\theta^2/n. \tag{1.4}$$

From the large-sample properties of the maximum likelihood estimates, we have

$$(\hat{\theta} - \theta)/\sigma_{\hat{\theta}} \stackrel{d}{\approx} \text{normal } (0, 1).$$
 (1.5)

For sufficiently large n, (1.1) implies that

$$\frac{d^2}{\sigma_{\hat{\alpha}}^2} \ge z_{\alpha/2}^2$$

or

$$n \ge 2\theta^2 z^2 / d^2 = n^*$$
, (say)

where $z=z_{\alpha/2}$ denotes the upper $100(1-\alpha/2)$ th percentile of the standard normal distribution. However, n^* involves the unknown parameter θ . Hence, we resort to the following adaptive sequential rule: sample pairs

 (X_i, Y_i) , i = 1, ... sequentially and stop at N, where

$$N = \inf \left\{ n \ge m : n \ge \frac{2z^2}{d^2} \, \hat{\theta}_n^2 \right\}, \tag{1.6}$$

and m denotes the initial sample size.

2. Properties of the Sequential Procedure

Property 1. The sequential procedure has a finite termination with probability one.

Proof. Let $b = 2z^2/d^2$ and consider

$$P(N = \infty) = \lim_{n \to \infty} P(N > n) \le \lim_{n \to \infty} P(n < b\hat{\theta}_n^2) = 0$$

since $\hat{\theta}_n$ converges to θ in probability.

Property 2.

$$N \to \infty$$
 a.s., $EN \to \infty$ as $d \to 0$ and $\lim_{d \to 0} (N/n^*) = 1$ a.s. (2.1)

Let $Z_n = (\hat{\theta}_n/\theta)^2$, f(n) = n and $t = b\theta^2$. Then we can rewrite the stopping time as

$$N = N(t) = \inf\{n \ge m : Z_n \le f(n)/t\}.$$
 (2.2)

Thus Z_n is a sequence of random variables such that $Z_n>0$ and $\lim_{d\to 0} Z_n=1$ a.s. due to the fact that $\hat{\theta}_n/\theta\to 1$ as $n\to\infty$. N is well-defined and non-decreasing as a function of t and one can easily verify that

$$N \to \infty$$
 a.s. and $EN \to \infty$ as $t \to \infty$.

Next, for N > 1, (proceedings as in Chow and Robbins [2]), we have

$$N \ge b\hat{\theta}_N^2$$
 and $N - 1 < b\hat{\theta}_{N-1}^2$

from which we obtain

$$b\hat{\theta}_N^2 \le N \le 1 + b\hat{\theta}_{N-1}^2$$

$$\frac{\hat{\theta}_N^2}{\theta^2} \leq \frac{N}{n^*} \leq \frac{1}{n^*} + \frac{\hat{\theta}_{N-1}^2}{\theta^2}.$$

By taking limits on both sides of the preceding inequality as $d \to 0$ (and hence, $b \to \infty$), we establish the last part of (2.1).

Property 3. The coverage probability of the fixed-width interval tends to the nominal level, $1 - \alpha$ as $d \rightarrow 0$.

Proof. Consider

$$\hat{\theta}_N - \theta = \frac{\overline{X}_N}{\overline{Y}_N} - \frac{\lambda}{\mu} = \frac{\overline{X}_N - \lambda}{\overline{Y}_N} - \theta \frac{(\overline{Y}_N - \mu)}{\overline{Y}_N}.$$
 (2.3)

Because Anscombe's [1] theorem holds for sum of i.i.d. variables, we infer that

$$n^{*1/2}(\overline{X}_N - \lambda) \stackrel{d}{\approx} \text{normal } (0, 1)$$

and

$$n^{*^{1/2}}(\overline{Y}_N - \mu) \stackrel{d}{\approx} \text{normal } (0, 1),$$

where $\lambda = \theta \mu$. Thus, \overline{Y}_N converges to μ in probability as $d \to 0$. Hence, we can rewrite (2.3) (after using Slutsky's theorem) as

$$n^{*1/2}(\hat{\theta}_{N} - \theta) \approx \frac{n^{*1/2}}{\mu} \{ (\overline{X}_{N} - \lambda) - \theta(\overline{Y}_{N} - \mu) \}$$

$$\approx n^{*-1/2} \sum_{i=1}^{N} W_{i}, \qquad (2.4)$$

where $\{W_i = X_i - \lambda - \theta(Y_i - \mu)\}$ form an i.i.d. sequence. Thus applying again Anscombe's [1] theorem, we infer that

$$n^{*1/2}(\hat{\theta}_N - \theta) \approx \text{normal } (0, \text{var}W_1 = 2\theta^2).$$
 (2.5)

Hence,

$$P(|\hat{\theta}_N - \theta| \le d) \approx 2\Phi\left(\frac{d}{\theta}\sqrt{\frac{n^*}{2}}\right) - 1 = 2\Phi(z) - 1 = 1 - \alpha. \tag{2.6}$$

Finally, in order to establish the asymptotic efficiency of the sequential procedure, namely, that EN/n^* tends to 1 as d tends to zero, we need the following lemma.

Lemma 2.1 [3]. Let $\{Z_k, k \geq 1\}$ be a sequence of positive random variables and $\{m_k, k \geq 1\}$ be a sequence of positive real numbers such that m_k increases with k and $Z_k/m_k \rightarrow 1$ a.s. as $k \rightarrow \infty$. Also, for any b > 0, let

$$T(b) = \inf\{k \ge 1 : Z_k \ge b\}, t(b) = \inf\{k \ge 1 : m_k \ge b\}$$
 (2.7)

and assume that

$$\lim_{\rho \to 1} \lim_{b \to \infty} \left[t(b\rho)/t(b) \right] = 1. \tag{2.8}$$

If for some $\delta > 0$,

$$\sum_{k=1}^{\infty} P\{Z_k < \delta m_k\} < \infty, \tag{2.9}$$

then, as $b \to \infty$,

$$E\{T(b)/t(b)\} \to 1.$$
 (2.10)

Property 4. We have

$$\lim_{d \to 0} (EN/n^*) = 1. \tag{2.11}$$

Proof. In Lemma 2.1, set $Z_n = \hat{\theta}_n^2$, $b = 2z^2/d^2$ and it suffices to verify (2.9).

Let $g(\lambda, \mu) = \lambda/\mu$ and expand $g(\overline{X}_n, \overline{Y}_n)$ as

$$g(\overline{X}_n, \overline{Y}_n) = g(\lambda, \mu) + (\overline{X}_n - \lambda) \frac{\partial g}{\partial \lambda} + (\overline{Y}_n - \mu) \frac{\partial g}{\partial \mu} + R, \qquad (2.12)$$

where

$$\frac{\partial g}{\partial \lambda} = \frac{1}{\mu}, \frac{\partial g}{\partial \mu} = \frac{-\lambda}{\mu^2} = \frac{-\theta}{\mu}$$

and the remainder term involves higher powers of $(\overline{X}_n - \lambda)$ and $(\overline{Y}_n - \mu)$. Consider, for some $0 < \delta < 1$,

$$\begin{split} P(g(\overline{X}_n,\,\overline{Y}_n) < \delta g(\lambda,\,\mu)) &= P((\overline{X}_n-\lambda) - \theta(\overline{Y}_n-\mu) + \mu R < (\delta-1)\lambda) \\ &= P(n^{1/2}\{\overline{X}_n-\lambda - \theta(\overline{Y}_n-\mu)\} + o_p(1) \le (\delta-1)n^{1/2}\lambda) \\ & \stackrel{.}{=} P\Bigg(n^{1/2}\sum_1^n W_i + o_p(1) \le (\delta-1)n^{1/2}\lambda\Bigg), \end{split}$$

where $o_p(1)$ tends to zero in probability as $n \to \infty$. Consider

$$\sum_{1}^{\infty} P\left(\frac{\overline{X}_{n}}{\overline{Y}_{n}} > \delta\theta\right) = \sum_{1}^{m_{o}} + \sum_{m_{o}+1}^{\infty} P\left(n^{-1/2} \sum_{1}^{n} W_{i} / \sqrt{2}\lambda < \sqrt{n}(\delta - 1) / \sqrt{2}\right),$$

where m_o is chosen large enough so that the central limit theorem holds for the sum of W_i random variables. Note that

$$EW_i = 0$$
 and $\operatorname{var} W_i = 2\lambda^2$.

Hence,

$$\begin{split} \sum_{1}^{\infty} P \bigg(\frac{\overline{X}_{n}}{\overline{Y}_{n}} > \delta \theta \bigg) &= m_{o} + \sum_{m_{o}+1}^{\infty} \Phi \bigg(-(1-\delta) \sqrt{\frac{n}{2}} \bigg) \\ &\leq m_{o} + \int_{m_{o}}^{\infty} \Phi \bigg(-(1-\delta) \sqrt{\frac{x}{2}} \bigg) dx \\ &\leq m_{o} + \int_{m_{o}}^{\infty} \frac{\phi \bigg(\sqrt{\frac{x}{2}} \left(1 - \delta \right) \bigg)}{\sqrt{\frac{x}{2}} \left(1 - \delta \right)} dx \\ &\leq m_{o} + \frac{1}{\sqrt{\frac{m_{o}}{2}} \left(1 - \delta \right)} \frac{e^{-\frac{1}{4} (1-\delta)^{2} m_{o}}}{\frac{1}{4} \left(1 - \delta \right)^{2} \sqrt{2\pi}} \\ &= m_{o} + \frac{4}{\sqrt{m_{o} \pi}} \left(1 - \delta \right)^{-3} e^{-\frac{1}{4} (1-\delta)^{2} m_{o}} \end{split}$$

which is finite. This completes the proof of Property 4.

3. An Application

Suppose X and Y are independent having exponential distributions with scale parameters λ and μ respectively. Suppose we are interested in estimating

$$p = P(X < Y) = 1 - \lambda(\lambda + \mu)^{-1} = \mu(\lambda + \mu)^{-1} = (1 + \theta)^{-1}.$$

Estimating θ with a fixed-width confidence interval having width 2d (when d is small) is equivalent to estimating p with width $2p^2d$ with confidence at least $1-\alpha$ because

$$1 - \alpha = P(\theta - d \le \hat{\theta}_N \le \theta + d)$$

$$= P(1 + \theta - d \le 1 + \hat{\theta}_N \le 1 + \theta + d)$$

$$= P\left(\frac{1}{p} - d \le \frac{1}{\hat{p}_N} \le \frac{1}{p} + d\right)$$

$$= P\left(\frac{p}{1 + pd} \le \hat{p}_N \le \frac{p}{1 - pd}\right)$$

$$= P(p(1 - pd) \le \hat{p}_N \le p(1 + pd))$$

$$= P(|\hat{p}_N - p| \le p^2d).$$

Alternatively, if we are estimating p with a fixed width confidence interval having 2d is equivalent to estimating θ with width $2d(1+\theta)^2$ with confidence at least $1-\alpha$ for the following reason:

$$1 - \alpha = P(p - d \le \hat{p}_N \le p + d)$$

$$= P\left(\frac{1}{p+d} \le \frac{1}{\hat{p}_N} \le \frac{1}{p-d}\right)$$

$$= P\left(\frac{1}{p}\left(1 + \frac{d}{p}\right)^{-1} \le 1 + \hat{\theta}_N \le \frac{1}{p}\left(1 - \frac{d}{p}\right)^{-1}\right)$$

$$\stackrel{.}{=} P\left(\frac{1}{p}\left(1 - \frac{d}{p}\right) \le 1 + \hat{\theta}_N \le \frac{1}{p}\left(1 + \frac{d}{p}\right)\right)$$

$$= P(1 + \theta - d(1 + \theta)^2 \le 1 + \hat{\theta}_N \le 1 + \theta + d(1 + \theta)^2)$$

$$= P(|\hat{\theta}_N - \theta| \le d(1 + \theta)^2).$$

References

- [1] F. J. Anscombe, Large sample theory of sequential estimation, Proc. Cambridge Philos. Soc. 48 (1952), 600-607.
- [2] Y. S. Chow and H. Robbins, On the asymptotic theory of fixed-width sequential confidence intervals for the mean, Ann. Math. Statist. 36 (1965), 457-462.
- [3] A. Dmitrienko, Sequential methods in linear and generalized linear models, Doctoral Dissertation, University of Kentucky, 1998.