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SEQUENTIAL ESTIMATION OF RATIO OF SCALE
PARAMETERS IN EXPONENTIAL DISTRIBUTIONS
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Abstract

Fixed-width confidence intervals for the ratio of scale parameters in
exponential distributions are considered. The first-order asymptotic
results of the sequential procedure are established. An application to
estimating certain reliability is provided.

1. The Formulation of the Problem

Let (X;,Y;),i=1,..,n be a random sample from the bivariate

density f(x, y) = fi(x)f2(y), where

fi(x) = (u0) " exp(- x/p0)
and
foy) = u™" exp(= y/w).
We are interested in estimating 6 by én such that

POe(,+d)>1-a, (1.1)
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where d and a are the specified constants. One can easily obtain the

likelihood equations for 6 and p to be

no = X,

and

u=204Y,, (1.2)

G‘NI

where X, and Y, denote the sample means of the X and Y samples.

Thus,
f=Y, and 6=2X,/Y,. (1.3)

Further, the information matrix is given by

-2 -1
10w = "((eem—l (2?2 ]

from which we obtain the asymptotic variance of é, namely cg as
og = 20%/n. (1.4)

From the large-sample properties of the maximum likelihood estimates,
we have

6 - 0)/o4 £ normal (0, 1). (1.5)

For sufficiently large n, (1.1) implies that

d? 9

— 2z

o2 a/2
0

or
n > 20%22/d?® = n*, (say)
where z = z,/9 denotes the upper 100(1 - a/2) th percentile of the standard

. . . * .
normal distribution. However, n~ involves the unknown parameter 0.

Hence, we resort to the following adaptive sequential rule: sample pairs
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(X;, Y;), i =1, ... sequentially and stop at N, where
2 A
N = inf{n >m:n 2 2%9,21}, (1.6)
d
and m denotes the initial sample size.

2. Properties of the Sequential Procedure

Property 1. The sequential procedure has a finite termination with
probability one.

Proof. Let b = 222/d? and consider

P(N =) = lim P(N > n) < lim P(n < b0) = 0

since én converges to 0 in probability.

Property 2.
N - o a.s.,, EN - « as d - 0 and (%in})(N/n*) =1 as. 2.1)
%

Let Z, = (0,/0)%, f(n) =n and t = b62. Then we can rewrite the stopping
time as

N =N(@)=inf{n > m : Z, < f(n)/t}. (2.2)
Thus Z, is a sequence of random variables such that Z, >0 and

limy_,o0 Z,, =1 a.s. due to the fact that én/e —1 as n—>w. Nis well-

defined and non-decreasing as a function of ¢ and one can easily verify
that

N — o a.s.and EN — o ast - o.
Next, for N > 1, (proceedings as in Chow and Robbins [2]), we have

N > b6% and N -1 < bb%_;
from which we obtain

b0% < N <1+b6% 4

N2 A2
0 (N _ 1 0%y
02 an* nt 02

|
IA
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By taking limits on both sides of the preceding inequality as d — 0 (and
hence, b — »), we establish the last part of (2.1).

Property 3. The coverage probability of the fixed-width interval
tends to the nominal level, 1 — o as d — 0.

Proof. Consider

by —0= N _k_ Xyt Oy -w)

(2.3)
Yy u Yy Yy

Because Anscombe’s [1] theorem holds for sum of 1.1.d. variables, we infer
that
2 —
n*/ Xy —2) £ normal 0, 1)

and
V2 —
n*/ Yy — ) £ normal (0, 1),

where A = 6u. Thus, ?N converges to p in probability as d — 0. Hence,
we can rewrite (2.3) (after using Slutsky’s theorem) as

o /2
n" (O —0)x
b -0)=

(Xn ~2) -6y — )}

12 !
~nt U W, (2.4)
1

where {W; = X; —A —0(Y; — )} form an ii.d. sequence. Thus applying

again Anscombe’s [1] theorem, we infer that

12
n*/ (65 — 0) ~ normal (0, varW; = 202). (2.5)
Hence,
- d |n*

Finally, in order to establish the asymptotic efficiency of the sequential
procedure, namely, that EN/n" tends to 1 as d tends to zero, we need the

following lemma.
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Lemma 2.1 [3]. Let {Z;, k > 1} be a sequence of positive random
variables and {my,, k > 1} be a sequence of positive real numbers such
that my, increases with k and Zy/mj, ->1 a.s. as k— «. Also, for any

b>0, let

T®)=inf{k >1:Z;, > b}, t(b) = inf{k >1: m;, > b} 2.7
and assume that
lim lim [t(bp)/t(b)] = 1. (2.8
p—1b—w
If for some & > 0,
> P{z), < smy} < o0, (2.9)
k=1
then,as b — oo,
E{T(®)/t(b)} — 1. (2.10)

Property 4. We have
lim (EN/n") = 1. (2.11)
d—0

Proof. In Lemma 2.1, set Z, = 62, b = 22%/d® and it suffices to

verify (2.9).
Let g(A, p) = A/u and expand g(X,,, Y,) as

5 - 0 - 0,
g(Xn> Yn) = g(k, H)"’_ (Xn _}")%"_ (Yn - “)%"' R7 (2-12)
where
g _1 o8 _-+_-0
T T T

and the remainder term involves higher powers of (X, — 1) and (Y,, — p).
Consider, for some 0 < 8 < 1,

P(g(X,, V) < 8g(, n)) = P(X,, = 1) = 6(Y, — ) + uR < (5 -1)1)

= P(nY*{X,, -1~ 0(Y, —w)}+0,(1) < (3-1)n"?1)

Zp nl/ZZWi +0,(1) < (5 -1)n¥% |,
1
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where 0,(1) tends to zero in probability as n — . Consider

iP(% > 89} = §:+ i P(nlﬂznlwi/\@k <Vn(3-1)/V2 |,
1 n 1 1

my+1

where m,, is chosen large enough so that the central limit theorem holds

for the sum of W; random variables. Note that

EW, = 0 and var W, = 2)2.

Hence,

S (% 0] 3 of-0-03)

n mg+1

<m, + J.:O @[— - 6)\/%jdx

me s
~L-57m,

1 e 4
<m, + p 1 5
(-8 7-3) Va2

1
_2(1_5)2 mo

dx

4
myT

=m, + 1-8)"e

which is finite. This completes the proof of Property 4.
3. An Application

Suppose X and Y are independent having exponential distributions
with scale parameters A and p respectively. Suppose we are interested in

estimating
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p=PX<Y)=1-20+pw)t =pr+pt =@1+0)"

Estimating 0 with a fixed-width confidence interval having width 2d

(when d 1s small) is equivalent to estimating p with width 2p2d with

confidence at least 1 — a because
l-a=PO-d<0y <0+d)

=PQ+0-d<1+6y <1+0+d)

:P(l—ds#sl+dj
P pN P

_ p . p
_P(1+pdSpNS1—pd)
= P(p(1 - pd) < py < p(1 + pd))

A 2
= P(|py - p| < p*d).
Alternatively, if we are estimating p with a fixed width confidence

interval having 2d is equivalent to estimating 0 with width 2d(1 + 6)2

with confidence at least 1 — a for the following reason:

l-a=P(p-d<py <p+d)
1 1 1
=P < <—
(p+d PN p—d)
-1 -1
=P(l(1+i) <1+6yN Sl(l—i) J
p p p p

P(l(1—ij <1+0y < l(1+i)j
pU p pU p

=PA+0-d1+02 <1+0y <1+0+d(1+0))

= P(|6n — 6] < d(1+6)%).
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