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Abstract

Fixed-width confidence intervals for the ratio of scale parameters in

exponential distributions are considered. The first-order asymptotic

results of the sequential procedure are established. An application to

estimating certain reliability is provided.

1. The Formulation of the Problem

Let ( ) niYX ii ...,,1,, =  be a random sample from the bivariate

density ( ) ( ) ( ),, 21 yfxfyxf =  where

( ) ( ) ( )µθ−µθ= − xxf exp1
1

and

( ) ( ).exp1
2 µ−µ= − yyf

We are interested in estimating θ by nθ̂  such that

( ( )) ,1ˆ α−≥±θ∈θ dP n (1.1)
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where d and α are the specified constants. One can easily obtain the

likelihood equations for θ and µ to be

nX=µθ

and

,2 n
n Y

X
+

θ
=µ (1.2)

where nX  and nY  denote the sample means of the X and Y samples.

Thus,

nY=µ̂   and  .ˆ
nn YX=θ (1.3)

Further, the information matrix is given by

( ) ( )
( ) 









µθµ
θµθ=µθ

−−

−−

21

12

2
, nI

from which we obtain the asymptotic variance of ,θ̂  namely 2
θ̂

σ  as

.2 22
ˆ nθ=σ
θ

(1.4)

From the large-sample properties of the maximum likelihood estimates,

we have

( ) ( ).1,0normalˆ
ˆ

d
≈σθ−θ θ (1.5)

For sufficiently large n, (1.1) implies that

2
22

ˆ

2

α
θ

≥
σ

zd

or

( )say,2 222 ∗=θ≥ ndzn

where 2α= zz  denotes the upper ( )21100 α− th percentile of the standard

normal distribution. However, ∗n  involves the unknown parameter θ.

Hence, we resort to the following adaptive sequential rule: sample pairs
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( ) ...,1,, =iYX ii  sequentially and stop at N, where

,ˆ2:inf 2
2

2









θ≥≥= n
d

znmnN (1.6)

and m denotes the initial sample size.

2. Properties of the Sequential Procedure

Property 1. The sequential procedure has a finite termination with
probability one.

Proof. Let 222 dzb =  and consider

( ) ( ) ( ) 0ˆlimlim 2 =θ<≤>=∞=
∞→∞→ nnn

bnPnNPNP

since nθ̂  converges to θ in probability.

Property 2.

∞→N  a.s., ∞→EN  as 0→d  and ( ) 1lim
0

=∗
→

nN
d

 a.s. (2.1)

Let ( ) ( ) nnfZ nn =θθ= ,ˆ 2  and .2θ= bt  Then we can rewrite the stopping

time as

( ) ( ){ }.:inf tnfZmntNN n ≤≥== (2.2)

Thus nZ  is a sequence of random variables such that 0>nZ  and

1lim 0 =→ nd Z  a.s. due to the fact that 1ˆ →θθn  as .∞→n  N is well-

defined and non-decreasing as a function of t and one can easily verify
that

∞→N  a.s. and ∞→EN  as .∞→t

Next, for ,1>N  (proceedings as in Chow and Robbins [2]), we have

2ˆ
NbN θ≥  and 2

1
ˆ1 −θ<− NbN

from which we obtain
2

1
2 ˆ1ˆ

−θ+≤≤θ NN bNb

.
ˆ1ˆ

2

2
1

2

2

θ

θ
+≤≤

θ

θ −
∗∗

NN

nn

N
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By taking limits on both sides of the preceding inequality as 0→d  (and

hence, ),∞→b  we establish the last part of (2.1).

Property 3. The coverage probability of the fixed-width interval
tends to the nominal level, α−1  as .0→d

Proof. Consider

( )
.ˆ

N

N

N

N

N

N
N Y

Y
Y

X
Y
X µ−

θ−
λ−

=
µ
λ−=θ−θ (2.3)

Because Anscombe’s [1] theorem holds for sum of i.i.d. variables, we infer
that

( ) ( )1,0normal
21 d

NXn ≈λ−∗

and

( ) ( ),1,0normal
21 d

NYn ≈µ−∗

where .θµ=λ  Thus, NY  converges to µ in probability as .0→d  Hence,

we can rewrite (2.3) (after using Slutsky’s theorem) as

( ) {( ) ( )}µ−θ−λ−
µ

≈θ−θ
∗

∗
NNN YXnn

21
21 ˆ

,
1

21 ∑−∗≈
N

iWn (2.4)

where ( ){ }µ−θ−λ−= iii YXW  form an i.i.d. sequence. Thus applying

again Anscombe’s [1] theorem, we infer that

( ) ( ).2var0,normalˆ 2
1

21
θ=≈θ−θ∗ Wn N (2.5)

Hence,

( ) ( ) .1121
2

2ˆ α−=−Φ=−














θ
Φ≈≤θ−θ

∗
znddP N (2.6)

Finally, in order to establish the asymptotic efficiency of the sequential

procedure, namely, that ∗nEN  tends to 1 as d tends to zero, we need the

following lemma.
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Lemma 2.1 [3]. Let { }1, ≥kZk  be a sequence of positive random

variables and { }1, ≥kmk  be a sequence of positive real numbers such

that km  increases with k and 1→kk mZ  a.s. as .∞→k  Also, for any

,0>b  let

( ) { } ( ) { }bmkbtbZkbT kk ≥≥=≥≥= :1inf,:1inf (2.7)

and assume that

( ) ( )[ ] .1limlim
1

=ρ
∞→→ρ

btbt
b

(2.8)

If for some ,0>δ

{ }∑
∞

=

∞<δ<
1

,
k

kk mZP (2.9)

then, as ,∞→b

( ) ( ){ } .1→btbTE (2.10)

Property 4. We have

( ) .1lim
0

=∗
→

nEN
d

(2.11)

Proof. In Lemma 2.1, set 222 2,ˆ dzbZ nn =θ=  and it suffices to

verify (2.9).

Let ( ) µλ=µλ,g  and expand ( )nn YXg ,  as

( ) ( ) ( ) ( ) ,,, RgYgXgYXg nnnn +
µ∂
∂µ−+

λ∂
∂λ−+µλ= (2.12)

where

µ
θ−=

µ

λ−=
µ∂
∂

µ
=

λ∂
∂

2
,1 gg

and the remainder term involves higher powers of ( )λ−nX  and ( ).µ−nY

Consider, for some ,10 <δ<

( ( ) ( )) (( ) ( ) ( ) )λ−δ<µ+µ−θ−λ−=µλδ< 1,, RYXPgYXgP nnnn

( { ( )} ( ) ( ) )λ−δ≤+µ−θ−λ−= 2121 11 noYXnP pnn

( ) ( ) ,11
1

2121













λ−δ≤+= ∑⋅

n

pi noWnP
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where ( )1po  tends to zero in probability as .∞→n  Consider

( )∑ ∑ ∑∑
∞

+

−
∞














−δ<λ+=








δθ>

o

o

m

m

n

i
n

n nWnP
Y
X

P
1 1 1

21

1

,212

where om  is chosen large enough so that the central limit theorem holds

for the sum of iW  random variables. Note that

0=iEW  and .2var 2λ=iW

Hence,

( )∑ ∑
∞ ∞

+








δ−−Φ+=








δθ>

1 1
2

1
om

o
n

n nm
Y
X

P

( )∫
∞









δ−−Φ+≤

om
o dxxm

2
1

( )

( )
∫
∞

δ−









δ−φ

+≤
om

o dx
x

x

m
1

2

1
2

( )

( )

( ) πδ−δ−
+≤

δ−−

21
4
1

1
2

1
2

1
4
1 2

om

o
o

e
m

m

( )
( ) om

o
o e

m
m

21
4
1

314 δ−−−δ−
π

+=

which is finite. This completes the proof of Property 4.

3. An Application

Suppose X and Y are independent having exponential distributions

with scale parameters λ and µ respectively. Suppose we are interested in

estimating
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( ) ( ) ( ) ( ) .11 111 −−− θ+=µ+λµ=µ+λλ−=<= YXPp

Estimating θ with a fixed-width confidence interval having width 2d

(when d is small) is equivalent to estimating p with width dp22  with

confidence at least α−1  because

( )ddP N +θ≤θ≤−θ=α− ˆ1

( )ddP N +θ+≤θ+≤−θ+= 1ˆ11







 +≤≤−= d

pp
d

p
P

N

1
ˆ
11








−
≤≤

+
=

pd
pp

pd
pP N 1

ˆ
1

( ) ( )( )pdpppdpP N +≤≤−= 1ˆ1&

( ).ˆ 2dpppP N ≤−=

Alternatively, if we are estimating p with a fixed width confidence

interval having 2d is equivalent to estimating θ with width ( )212 θ+d

with confidence at least α−1  for the following reason:

( )dppdpP N +≤≤−=α− ˆ1









−
≤≤

+
=

dppdp
P

N

1
ˆ
11














 −≤θ+≤





 +=

−− 11
11ˆ111

p
d

pp
d

p
P N






 





 +≤θ+≤





 −=

p
d

pp
d

p
P N 11ˆ111

&

( ( ) ( ) )22 11ˆ111 θ++θ+≤θ+≤θ+−θ+= ddP N

( ( ) ).1ˆ 2θ+≤θ−θ= dP N
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