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Abstract 

We introduce maximum principles for some elliptic partial differential 
inequalities, and give some of its applications. 

0. Introduction 

We consider several types of differential equations and discuss the 
maximum principle for them. In general, the maximum principle tells us that 
the maximum value of the function, which is a solution of a differential 
equation, is attained at the boundary of the region. In this paper, we deal with 
elliptic equations. The most important and easy equation is the Laplace 
equation. The homogeneous version of Laplace’s equation is 

.0=Δu  

It is often written with minus sign since the (delta‐operator) with this sign 
becomes strict monotone operator in the operator theory, which means that it 
has a unique solution. The non-homogeneous version of Laplace’s equation 

fu =Δ  
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is called Poisson’s equation. It is convenient to include a minus sign here

because  is a negative definite operator.

The Laplace and Poisson equations, and their generalizations, arise in

many different contexts:

(1) Potential theory, e.g., in the Newtonian theory of gravity,

electrostatics, heat flow, and potential flows in fluid mechanics.

(2) Riemannian geometry, e.g., the Laplace‐Beltrami operator.

(3) Stochastic processes, e.g., the stationary Kolmogorov equation for

Brownian motion.

(4) Complex analysis, e.g., the real and imaginary parts of an analytic

function of a single complex variable are harmonic.

The classical Dirichlet problem for Poisson’s equation: If D is a bounded

domain in nR for ,1n then it is to find a function u such that

   DCDCuRDu 2,: 

and

f  in D,

gu   on D.

In Section 1, we consider ordinary differential equations (one-

dimensional) and study the maximum principle in various differential

inequalities. In Sections 2-4, we discuss the maximum principle for

multidimensional equations.

1. The Maximum Principle

A function  xu that is continuous on the closed interval  ba, takes on

its maximum at a point on this interval. If  xu has a continuous second

derivative, and if u has a relative maximum at some point c between a and b,

then we know from elementary calculus that



Generalized Maximum Principles … 1743

  0 cu and   .0 cu (1.1)

Suppose that in an open interval  ,, ba u is known to satisfy a differential

inequality

    ,0 uxguuL (1.2)

where  xg is any bounded function. Then it is clear that relation (1.1)

cannot be satisfied at any point c in  ., ba Consequently, whenever (1.2)

holds, the maximum of u in the interval cannot be attained anywhere except

at the endpoints a or b. We have here the simplest case of a maximum

principle.

An essential feature of the above argument is the requirement that the

inequality (1.2) be strict; that is, we assume that  uxgu  is never zero.

In the study of differential equations and in many applications, such

a requirement is overly restrictive, and it is important that we remove

it if possible. We note, however, that for the nonstrict inequality

  ,0 uxgu the solution u constant is admitted. For a constant

solution, the maximum is attained at every point. We shall prove that this

exception is the only one possibility.

2. Maximum Principles for Elliptic Equations

2.1. The Laplace operator

Let  nxxxu ...,,, 21 be a twice continuously differentiable function

defined in a domain D in n‐dimensional Euclidean space. The Laplace

operator or Laplacian  is defined as

.
2

2

2
2

2

2
1

2

nxxx 







 

If the equation 0u is satisfied at each point of a domain D, then we say

that u is a harmonic function. Suppose that u has a local maximum at an
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interior point of D. Then we know that

0...,,0,0
21













nx

u

x

u

x

u

and

.0...,,0,0
2

2

2
2

2

2
1

2












nx

u

x

u

x

u

Therefore, at a local maximum, the inequality

0u

must hold. If a function satisfies the strict inequality ,0u at each point

of a domain D, then u cannot attain its maximum at any interior point of D.

Suppose      nnnn xxxbxxxbxxxb ...,,,...,,...,,,,...,,, 21212211 are any

bounded functions defined in D. Without any change in the argument above,

we conclude that if u satisfies the strict inequality

0
2

2
1

1 









n
n x

u
b

x
u

b
x
u

bu 

in D, then u cannot attain its maximum at an interior point.

2.2. Second-order elliptic operator transformations

We shall be concerned with second-order differential operators of the

form    
n

ji nij xxx
1, 21 ....,,, Since ,22

ijji xxxx  we may

define

 jiijija 
2
1

and write the above differential expression as

  





n

ji jiij
ji

nij njiaa
xx

xxx
1,

2

21 ....,,2,1,,,...,,,
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In other words, there is no loss of generality in supposing that the

coefficients of the second‐order operator  are symmetric.

The operator    
 n

ji ji
nij xx

xxx
1,

2

21 ,...,,, ,jiij aa  ji,

n...,,2,1 is called elliptic at a point  nxxxX ...,,, 21 if and only if

there is a positive quantity  X such that

    
 


n

ji

n

i
ijiij XXa

1, 1

2

for all n‐tuples of real numbers  ....,,, 21 n The operator L is said to be

elliptic in a domain D if it is elliptic at each point of D. It is uniformly

elliptic in D if     





   

n
ji

n
i ijiij XXa

1, 1
2 holds for each point

of D and if there is a positive constant 0 such that   0 X for all X

in D.

2.3. The maximum principle of Hopf [2]

Consider the strict differential inequality

   
 








n

ji

n

i i
i

ji
ij x

u
b

xx
u

auL
1, 1

2
0

in a domain D, and assume that L is elliptic in D. If u has a relative

maximum at a point  ,...,,, 21 nxxxX  then we know from the calculus

of several variables that at ,X

0



kz
u

and nk
z

u

k

...,,2,1,0
2

2





for any coordinates nzzz ...,,, 21 obtained from the coordinates

nxxx ...,,, 21 by a linear transformation. In particular, if , the principal
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part of L, is the Laplace operator in z‐coordinates, then

   
 








n

ji

n

i i
i

ji
ij x

u
b

xx
u

auL
1, 1

2
0

cannot hold at .X Whenever L is elliptic, we can find a linear transformation

of coordinates so that at ,X the operator  becomes the Laplace operator.

We conclude that if L is elliptic, then a function u which satisfies   0uL

in a domain D cannot have a maximum in D. As in the one‐dimensional case,

we shall extend the maximum principle to include the possibility that  uL

satisfies an inequality which may not be strict.

Theorem 2.1 [5]. Let  nxxx ...,,, 21 satisfy the differential inequality

   
 








n

ji

n

i i
i

ji
ij x

u
b

xx
u

auL
1, 1

2
0

in a domain D, where L is uniformly elliptic. Suppose the coefficients ija

and ib are uniformly bounded. If u attains maximum at a point of D, then

  Mxu  in D.

Theorem 2.2 [3]. Let u satisfy the differential inequality

   0 uhL

with ,0h L uniformly elliptic in D, and the coefficients of L and h

bounded. If u attains a nonnegative maximum M at an interior point of D,

then .Mu 

Remark 2.1. The restriction 0h is essential, as a counterexample for

if .0h

Example 2.1 [3]. The function
2reu  has an absolute maximum

at 0r and is a solution of the equation   042 2  urnu in n

dimensions.
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Let u satisfy   0uL in a domain D with a smooth boundary D. We

know that if u takes on a maximum at all, then it must do so at a boundary

point. We shall now suppose that u is continuous and bounded on DD 
and that there is a point P on D at which u takes on its maximum value. If D

is bounded, then such a point P will always exist. First of all, we observe

that the directional derivative of u at P taken in any direction on the

boundary that points outward from cannot be negative. If it were, the

function u would start increasing as we enter the domain D at P, and so the

maximum could not occur at P. Let  nn  ...,,, 21 be the unit normal

vector in an outward direction at a point P on the boundary of D. We say that

the vector  nvvvv ...,,, 21 points outward from D at the boundary point

P if

.0 nv

We define the directional derivative of u at the boundary point P in the

direction v as

   ,limlim
1

1 
















 n
n

PxPx x
u

v
x
u

vxugradv
v
u 

if it exists. The directional derivative is said to be outward if v points

outward from D. Then, if u has a maximum at P, we have 0 vu at

P. We shall now show that unless u is a constant, the strict inequality

0 vu holds at P.

Theorem 2.3 [5]. Let u satisfy the inequality

   
 








n

ji

n

i i
i

ji
ij x

u
b

xx
u

auL
1, 1

2
0

in a domain D in which L is uniformly elliptic. Suppose that Mu  in D

and that Mu  at a boundary point P. Assume that P lies on the boundary

of a ball 1K in D. If u is continuous in PD  and an outward directional

derivative vu  exists at P, then
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0



v
u

at P

unless .Mu 

Proof. By shrinking 1K slightly if necessary, we may assume that 1K

lies entirely in .PD  Construct a ball 2K with center at P and radius ,
2
1

1r

where 1r is the radius of .1K  We illustrate this figure below. We define the

function z again as

 
  2

11
2~

rxx
eexz

n

i ii 
  

selecting  so large that   0zL in .2K  The function zuw  is now

formed. According to Theorem 2.1, if ,Mu  then Mu  in ,1K and on

its boundary except at the point P. We recall that 0z on the boundary of

.1K We select 0 so small that Mw  on the portion of the boundary of

,2K  lying in .1K  Then Mw  on the entire boundary of the shaded region

shown in the figure above. Because   0wL in this region, the maximum

of w occurs at P and   .MPw  Therefore, at P,

.0









v
z

v
u

v
w

We shall now show that 0 vz at P, so that 0 vu at P.

Selecting x~ as the origin of our coordinate system and letting r represent
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Euclidean distance from ,~x we have

.
2

1
2 rr eez  

Then

2
2 r

i
i

ex
x
z 



and

.
r
xi

i 

Hence




 



n

i
ii

r

i
vre

x
z

0

.02
2

Therefore, ,0 vu establishing the conclusion of the theorem.

Theorem 2.4. Let u satisfy the inequality

         
 








n

ji

n

i i
i

ji
ji uxh

x
u

xb
xx
u

xauhL
1, 1

2

, ,0

and 0h in D. Suppose that Mu  in D, that Mu  at a boundary point

P, and that .0M Assume that P lies on the boundary of a ball in D. If u is

continuous in ,PD  then any outward directional derivative of u at P is

positive unless Mu  in D.

Proof. The proof of this theorem follows exactly the same lines as that

of Theorem 2.3 when 0h and .0M

This time choose  so large that    0 zhL in 2K  (this was shown

to be possible in the previous theorem).

Proceed as before to define w and  suitably and conclude again that at

P,



Mohammad Almahameed1750

.0









v
z

v
u

v
w

Defining x~ and 2r as before, we again conclude that

.2
2r

i
i

ex
x
z 



Finally, we again note that ,
r
xi

i  and conclude that

 
 

 







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


n

i

n

i
ii

r

i
i vre

x
z

v
v
z

1 1

02
2

as before. Again, this shows that ,0



v
u

which proves the theorem.

Example 2.2 [5]. A solution of

02
2

2

2

2








u
y

u

x

u

in a domain 2D cannot attain a maximum in D unless ,0u because

02
2

2

2

2








u

y

u

x

u

reduces to

.2uu 

Now suppose that u attains a non‐zero maximum in D. By basic calculus,

0u at a local maximum. But u non‐zero gives ,02 u  and the above

equation then forces ,0u which is a contradiction. Now suppose that u

attains a maximum at some point   .0du Then .0u Hence u is a

constant, and since   ,0du we have .0u
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Example 2.3. We show that

3
2

2

2

2
u

y

u

x

u 







in the domain 1: 22  yxD with

0u for 122  yx

has no solution other than .0u

Solution. Suppose that 0u at some point in D. Then 03 u and

hence 0
2

2

2

2















y

u

x

u
u since .3

2

2

2

2
u

y

u

x

u 






Since u is continuous,

each point at which 0u lies in an open ball contained entirely in D, and

such that   0xu at each point x in B. Hence for each 0u in D, the

above equations hold in an open connected subset of D (a domain). We

consider the largest possible such domain in each case. Then by Theorem

2.1, since 0u on D and by continuity on the boundary of each of the

domains described above, 0u on each of these domains. Hence there are

no points at which u is strictly positive.

Suppose now that .0u Then 03 u and hence 0u for the same

reasons as before. We again construct the relevant domains (this time the

domains in which .)0u Applying Theorem 2.1 to  ,u we see as above

that   0u on each of the described domains. Hence there are no points at

which u is strictly negative.

3. The Generalized Maximum Principle

The condition   0xh in Theorem 2.4 cannot be removed entirely. As

in Section 1, the methods used to prove a maximum principle with 0h

can be extended to establish a generalized maximum principle.
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Theorem 3.1 [5]. Let  Xu satisfy the differential inequality

         
 








n

ji

n

i i
i

ji
ji uxh

x
u

xb
xx
u

xauhL
1, 1

2

, 0

in a domain D, where L is uniformly elliptic. If there exists a function  Xw

such that

  0Xw on ,DD 

   0 whL in D,

then    XwXu cannot attain a nonnegative maximum in D unless it is a

constant. If    XwXu attains its nonnegative maximum at a point P on

D which lies on the boundary of a ball in D and if wu is not constant, then

0









w
u

v
at P,

where v is any outward directional derivative.

Proof. We now give a specific method for determining a function  Xw

having properties 0w on DD  and    0 whL in D, provided the

domain D is contained in a sufficiently narrow slab bounded by two parallel

hyperplanes. Suppose that the bounded domain D is contained in a slab

,1 bxa  where 1x is the first coordinate of  ;...,,, 21 nxxxX  we set

   ,1 1 axeXw 

where  and  are to be determined. A computation shows that

             .1
111

2 XheXhXbXawhL ax  

By the uniform ellipticity hypothesis, .011 a

We suppose that  Xh is bounded and that  Xb1 is bounded from

below; that is,
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  ,MXhm 

 ,1 Xbm 

where m and M are nonnegative. We choose  so large that

  .010
2  m

Then we select

 
.

10
2 m

M




Under these circumstances,

   0 whL  on .DD 

However, to insure that 0w on ,DD  we must have

  .1  abe

That is, the inequality

     abemM  10
2

must be satisfied. We are still free to increase the size of  if we wish. We

may choose  so that the right side of the last inequality is a maximum.

Notice that the right side becomes larger as ab  becomes smaller. Also,

last inequality becomes less restrictive as M, the maximum of  ,xh

becomes smaller.

Let w be positive on ,DD  and define

   
  .xw
xu

xv 
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Then computing   ,uhL  we see that

               
 








n

ji

n

i i
i

ji
ij vwxh

x
vw

xb
xx

vw
xauhL

1, 1

2

 






















n

ji jijiji
ij xx

v
w

x
w

x
v

xx
w

xa
1,

22
2

     
















n

i ii
i vwxh

x
w

v
x
v

wxb
1

       
  























n

ji

n

i i

n

j
i

j
ij

ji
ij x

v
wxb

x
w

xa
xx
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    .0 vwhL

Dividing through by
w
1

gives
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2 21

   .0
1  vwhL
w

According to the properties of w, we conclude that the maximum

principle as in the previous theorems holds for  .xv
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4. Applications of the Maximum Principle

4.1. The P-method [1]

We now deal with a possible application of the maximum principle,

namely the P function method. The method consists of determining a

function

 ...,,, uuxPP 

satisfying a maximum principle, i.e.,

,maxmax PP
xx 


where u is a solution of the studied equation (boundary value problem).

We start with a simple example. We consider the one-dimensional

equation

02 u in   ,0D

and multiply it by u2 and then integrate. We get

  .const42  uu  in .

Hence, we can define the function

  uuP 42
1 

satisfying a maximum principle, i.e., the function 1P takes its maximum

value either at a critical point of u or at some point on the boundary, unless it

is a constant. This function 1P is the one-dimensional version of

  .42
1 uuP 

This function is related to the torsion problem (the St.‐Venant problem):








.on0

in2

Du

Du
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The proof follows from the differential inequality

0
2
1

4
1 2

1121 




 


 PuP

u
P  in D,

and the maximum principle.

Similarly the function

 22 uP 

attains its maximum on the boundary. We can actually prove the following

result: The function

  u
n

uP
42

3 

takes its maximum value at some point on the boundary, unless 3P is a

constant. Moreover, 3P is an identically constant in if and only if is an n

dimensional ball.
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