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Abstract

We introduce maximum principles for some elliptic partial differential
inequalities, and give some of its applications.

0. Introduction

We consider several types of differential equations and discuss the
maximum principle for them. In general, the maximum principle tells us that
the maximum value of the function, which is a solution of a differential
equation, is attained at the boundary of the region. In this paper, we deal with
elliptic equations. The most important and easy equation is the Laplace
equation. The homogeneous version of Laplace’s equation is

Au = 0.

It is often written with minus sign since the (delta-operator) with this sign
becomes strict monotone operator in the operator theory, which means that it
has a unique solution. The non-homogeneous version of Laplace’s equation

Au = f
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is called Poisson’s equation. It is convenient to include a minus sign here
because A is a negative definite operator.

The Laplace and Poisson equations, and their generalizations, arise in
many different contexts:

(1) Potential theory, e.g., in the Newtonian theory of gravity,
electrostatics, heat flow, and potential flowsin fluid mechanics.

(2) Riemannian geometry, e.g., the Laplace-Beltrami operator.

(3) Stochastic processes, e.g., the stationary Kolmogorov equation for
Brownian motion.

(4) Complex analysis, eg., the real and imaginary parts of an analytic
function of a single complex variable are harmonic.

The classical Dirichlet problem for Poisson’s equation: If D is a bounded

domainin R" for n > 1, thenitisto find afunction u such that
u:D >R ueC?D)NC(D)
and
A= f inD,
u=g onadD.

In Section 1, we consider ordinary differential equations (one-
dimensional) and study the maximum principle in various differential
inequalities. In Sections 2-4, we discuss the maximum principle for
multidimensional equations.

1. The Maximum Principle

A function u(x) that is continuous on the closed interval [a, b] takes on
its maximum at a point on this interval. If u(x) has a continuous second

derivative, and if u has arelative maximum at some point ¢ between a and b,
then we know from elementary cal culus that
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u'(c)=0 and u'(c)<0. (1.1

Suppose that in an open interval (a, b), u is known to satisfy a differential
inequality

Llu] = u" + g(x)u’ > 0, (1.2)

where g(x) is any bounded function. Then it is clear that relation (1.1)
cannot be satisfied at any point c in (a, b). Consequently, whenever (1.2)
holds, the maximum of u in the interval cannot be attained anywhere except
at the endpoints a or b. We have here the simplest case of a maximum
principle.

An essential feature of the above argument is the requirement that the
inequality (1.2) be strict; that is, we assume that u” + g(x)u’ is never zero.
In the study of differential equations and in many applications, such
a requirement is overly restrictive, and it is important that we remove
it if possible. We note, however, that for the nonstrict inequality
u”+ g(x)u’ > 0, the solution u = constant is admitted. For a constant

solution, the maximum is attained at every point. We shall prove that this
exception isthe only one possibility.

2. Maximum Principlesfor Elliptic Equations

2.1. TheLaplace operator

Let u(xg, X, ..., X,) be a twice continuously differentiable function

defined in a domain D in n-dimensional Euclidean space. The Laplace
operator or Laplacian A is defined as

If the equation Au = 0 is satisfied at each point of adomain D, then we say
that u is a harmonic function. Suppose that u has a local maximum at an
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interior point of D. Then we know that

g
oxg O OX,
and
2 2 2
OU g, %M., TNy,
OX{ OX5 ax?]

Therefore, at alocal maximum, the inequality
Au<0

must hold. If afunction satisfies the strict inequality Au > 0, at each point
of adomain D, then u cannot attain its maximum at any interior point of D.
Suppose by(Xq, X9, oy Xn), B2 (X1, X2, vy X))y oo B (X, X0, -y X,y) @€ @Y
bounded functions defined in D. Without any change in the argument above,
we conclude that if u satisfies the strict inequality

au

ax1+bzﬂ+...+b ou

Au+b_|_ 8x2 nﬁ

>0

in D, then u cannot attain its maximum at an interior point.
2.2. Second-order elliptic operator transformations

We shall be concerned with second-order differential operators of the
form Zirjjzlaij (X, Xg, s Xn). Since 07/ox0x; = 07 /ox;0%, we may

define
1
a” = E(aij + aji)

and write the above differential expression as

_N\" 02 o
L= Zi,jzlaij(xl’ X2y wen xn)m, aj =a5, Lj=12.,n
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In other words, there is no loss of generality in supposing that the
coefficients of the second-order operator £ are symmetric.

52

The operator L = Zirjj=1aij (X, X9, oy Xn)m %

1 2, .., n iscdled dliptic a a point X = (X, Xp, ..., X,) if and only if
there is a positive quantity p(X) such that

D ai(X)gig; = u(X) D g

i, j=1 i=1
for al n-tuples of real numbers (&4, &5, ..., §,,)- The operator L is said to be
éliptic in a domain D if it is €eliptic at each point of D. It is uniformly
dliptic in D if (Zi’jjzlaij(x)gigj > u(x)zi“:la?j holds for each point
of D and if there is a positive constant pg such that p(X) > pg for al X
inD.
2.3. Themaximum principle of Hopf [2]

Consider the strict differential inequality

Hu] = Za‘l 8x,6x Zh

i,j=1
in a domain D, and assume that L is elliptic in D. If u has a relative
maximum at a point X = (X4, Xo, ..., X), then we know from the calculus

of several variablesthat at X,

2
U _0 and S0 <0, k=120

aZk aZk

for any coordinates z, z,, ..., z, obtained from the coordinates

X1, X2, ..., Xn by @ linear transformation. In particular, if £, the principal
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part of L, isthe Laplace operator in z-coordinates, then
n 2 n
_ AL o
Hul = Z %j 0% 0X; +;Q o 0

cannot hold at X. Whenever L iselliptic, we can find alinear transformation
of coordinates so that at X, the operator £ becomes the Laplace operator.
We conclude that if L is lliptic, then a function u which satisfies L[u] > 0

in adomain D cannot have amaximum in D. Asin the one-dimensional case,
we shall extend the maximum principle to include the possibility that L[u]

satisfies an inequality which may not be strict.

Theorem 2.1 [5]. Let (¥, Xo, ..., X,) satisfy the differential inequality

in a domain D, where L is uniformly elliptic. Suppose the coefficients &;
and by are uniformly bounded. If u attains maximum at a point of D, then
u(x) =M inD.
Theorem 2.2 [3]. Let u satisfy the differential inequality
(L+h)u]l=0

with h <0, L uniformly eliptic in D, and the coefficients of L and h
bounded. If u attains a nonnegative maximum M at an interior point of D,
then u = M.

Remark 2.1. The restriction h < 0 is essential, as a counterexample for
if h>0.

2
Example 2.1 [3]. The function u=e" has an absolute maximum

a r=0 and is a solution of the equation Au+(2n—4r?)u=0 inn
dimensions.
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Let u satisfy L[u] > 0 in a domain D with a smooth boundary 6D. We

know that if u takes on a maximum at all, then it must do so at a boundary
point. We shall now suppose that u is continuous and bounded on D U oD
and that thereisapoint P on oD at which u takes on its maximum value. If D
is bounded, then such a point P will always exist. First of al, we observe
that the directional derivative of u at P taken in any direction on the
boundary that points outward from cannot be negative. If it were, the
function u would start increasing as we enter the domain D at P, and so the
maximum could not occur a P. Let n = (ng, no, ..., ny) be the unit normal

vector in an outward direction at a point P on the boundary of D. We say that
the vector v = (v, V5, ..., V,;) points outward from D at the boundary point
Pif

v-n<0.

We define the directional derivative of u at the boundary point P in the
direction v as

o)

XM _ Jim [v- grad u(x)] = Iim(vla—u+-'-+vnﬂj,
N xpP x—>P\ "~ 0X OXn

if it exists. The directional derivative is said to be outward if v points
outward from D. Then, if u has a maximum at P, we have ou/ov > 0 at

P. We shall now show that unless u is a constant, the strict inequality
ou/év > 0 holds at P.

Theorem 2.3 [5]. Let u satisfy the inequality

L[u] = n ai azu + y h ﬂ >0
- : : J - AX : : =
] 0X;0X| = 0X;

in a domain D in which L is uniformly elliptic. Suppose that u <M in D
and that u = M at a boundary point P. Assume that P lies on the boundary
of aball 0K; inD. If uiscontinuousin D U P and an outward directional

derivative du/ov existsat P, then
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%\lj>0atP

unlessu = M.

Proof. By shrinking K; slightly if necessary, we may assume that oK4

liesentirely in D U P. Construct aball K, with center at P and radius %rl,

where r; istheradius of K;. We illustrate this figure below. We define the
function zagain as

N % )2
DR 2

z(x) = e e

selecting o so large that L[z] > 0 in K,. The function w=u + &z is now
formed. According to Theorem 2.1, if u= M, then u<M in K4, and on

its boundary except at the point P. We recall that z = 0 on the boundary of
K. Weselect ¢ > 0 so small that w < M on the portion of the boundary of

Ky, lyingin K;. Then w < M on the entire boundary of the shaded region
shown in the figure above. Because L[w] > 0 in this region, the maximum
of woccursat P and w(P) = M. Therefore, at P,

ow ou 0z
_—— _— >
+¢& > 0.

We shall now show that dz/ov <0 a P, so that ou/ov >0 at P.

Selecting X as the origin of our coordinate system and letting r represent
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Euclidean distance from X, we have

Z = e_ar e_arlz.
Then
0z _ar?
22— oaxe
% ox; e
and
_ X
ni = r
Hence
0z _ar? :
& = —Z(Xre ZVﬂ]l < 0.

i=0

Therefore, du/ov > 0, establishing the conclusion of the theorem.

Theorem 2.4. Let u satisfy the inequality

82

Lenll= Y & (gt ZQ(X)S—Z +h(x)u =0,
i=1

u
ij=1 Xj

1749

and h <0 inD. Supposethat u < M inD, that u = M at a boundary point
P, and that M > 0. Assume that P lies on the boundary of aball in D. If uis
continuous in D U P, then any outward directional derivative of u at P is

positiveunless u = M inD.

Proof. The proof of this theorem follows exactly the same lines as that

of Theorem2.3when h<0and M = 0.

This time choose o so large that (L + h)[z] > 0 in K5 (this was shown

to be possible in the previous theorem).

Proceed as before to define w and ¢ suitably and conclude again that at

P,
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oW ou 0z
_ = _— >
+& > 0.

Defining X and r2 asbefore, we again conclude that

92 _ ouxe
- 2ox;€ .

Finally, we again notethat n; = é and conclude that

0z s 0z _0“,2 4
E:Z "ia_>q = —2ore vai<0

i=1 i=1

as before. Again, this shows that % > 0, which proves the theorem.

Example 2.2 [5]. A solution of

2 2
a—g+a—g—u2=0
oX oy

inadomain D  R? cannot attain amaximum in D unless u = 0, because

2 2
6_121 + 8_[21 —u?=0
OX oy
reducesto

Au = U2

Now suppose that u attains a non-zero maximum in D. By basic calculus,
Au < 0 at alocal maximum. But u non-zero gives u? > 0, and the above
equation then forces Au > 0, which is a contradiction. Now suppose that u
attains a maximum at some point u(d) = 0. Then Au=0. Hence u is a

constant, and since u(d) = 0, we have u = 0.
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Example 2.3. We show that

o%u o4 3

- 4+ —=u

ox2 ay2
inthe domain D : x* + y2 < 1 with

u=0 for x2+y2=1
has no solution other than u = 0.

Solution. Suppose that u > 0 at some point in D. Then u>0 and

hence Au = (@ﬂa—zlﬂ > 0 since a—zg + a—zg - ud. Sinceu IS continuous,
ox= oy OX oy

each point at which u > 0 liesin an open ball contained entirely in D, and
such that u(x) > 0 at each point x in B. Hence for each u > 0 in D, the
above equations hold in an open connected subset of D (a domain). We
consider the largest possible such domain in each case. Then by Theorem
2.1, since u =0 on ¢D and by continuity on the boundary of each of the
domains described above, u < 0 on each of these domains. Hence there are

no points at which uis strictly positive.

Suppose now that u < 0. Then u® < 0 and hence Au < 0 for the same
reasons as before. We again construct the relevant domains (this time the
domains in which u < 0). Applying Theorem 2.1 to (-u), we see as above

that (—u) < 0 on each of the described domains. Hence there are no points at

which uis strictly negative.
3. The Generalized Maximum Principle

The condition h(x) < 0 in Theorem 2.4 cannot be removed entirely. As

in Section 1, the methods used to prove a maximum principle with h <0
can be extended to establish a generalized maximum principle.
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Theorem 3.1[5]. Let u(X) satisfy the differential inequality
(L+h)u] = Zlq () ax,ax + Zq(x)—+ h(x)u > 0
i

in a domain D, where L is uniformly elliptic. If there exists a function w( X)

such that
w(X)>0on DUaD,
(L+h)[w]<0inD,

then u(X)/w(X) cannot attain a nonnegative maximum in D unless it is a
constant. If u(X)/w(X) attains its nonnegative maximum at a point P on

oD which lies on the boundary of a ball in D and if u/w isnot constant, then

o(u
E(V_V) >0 at P,

where &/ov isany outward directional derivative.

Proof. We now give a specific method for determining a function w( X)
having properties w> 0 on D U dD and (L + h)[w] < 0 in D, provided the

domain D is contained in a sufficiently narrow slab bounded by two parallel
hyperplanes. Suppose that the bounded domain D is contained in a slab
a < x < b, where x; isthefirst coordinate of X = (xg, X2, ..., X ); we set

w(X) = 1- e,
where o and 3 are to be determined. A computation shows that
(L + h)[w] = —Blorayy (X) + aly(X) + h(X)]e®473) 4 h(X).
By the uniform ellipticity hypothesis, a;; > pg.

We suppose that h(X) is bounded and that by(X) is bounded from
below; that is,
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-m< h(X)< M,
-m< by(X),
where m and M are nonnegative. We choose o so large that
azuo —(a+1)m> 0.
Then we select

M
aug — (o +2)m

B=

Under these circumstances,
(L+h)[w]<0on DU aD.
However, to insurethat w > 0 on D U 6D, we must have
peb-a) .1

That is, the inequality

M < [oczuo —(a+1) m]e—a(b—a)

must be satisfied. We are still free to increase the size of o if we wish. We
may choose o so that the right side of the last inequality is a maximum.
Notice that the right side becomes larger as b — a becomes smaller. Also,
last inequality becomes less restrictive as M, the maximum of h(x),

becomes smaller.

Let w be positiveon D U oD, and define

u(x)

V(X) = ——=%

W(x)
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Then computing (L + h)[u], we seethat
n

2, 3(x gx(ame ) Z 509 %522 + hx) ()

(L + h)[u]

Il
M=
H
=
~
X
=
7N\

Pw v ow 9V
OXOX; 0% OXj OX; OX;

+ Z b (x)(w— + v—j + h(x) (vw)

n n 8W aV
-wz%u%&+z%;%w&¢nm@&

i, j=1 i=1

+[ 09 ez th(x)—m(x)wJ
ij=1
—wZaang+Z{Z%W) +mm%

i, j=1 i=1

+ (L + h)[w]v>0.
Dividing through by % gives
n n 2 n aW aV
—(L+h)[W Zau( 8x,6x +Z Wza”a_><j+h x
i, j=1 i=1 j=1
+i(L+h)[w]v>0
W > 0.

According to the properties of w, we conclude that the maximum
principle as in the previous theorems holds for v(x).
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4. Applications of the Maximum Principle

4.1. The P-method [1]

We now deal with a possible application of the maximum principle,
namely the P function method. The method consists of determining a
function

P =P(x, u, Vu, ...)
satisfying a maximum principle, i.e.,

max P = max P,
XeQ XeoQ

where u isa solution of the studied equation (boundary value problem).

We start with a simple example. We consider the one-dimensional
equation

u"+2=0inD=(0, o)
and multiply it by 2u’" and then integrate. We get

(U)? + 4u = const. in Q.
Hence, we can define the function

R = (u)? + 4u
satisfying a maximum principle, i.e., the function B takes its maximum
value either at a critical point of u or at some point on the boundary, unlessit
isaconstant. Thisfunction B, isthe one-dimensional version of
P = Vu|)2 + 4u.

Thisfunction is related to the torsion problem (the St.-Venant problem):

Au=-2 inD
u=20 on oD.
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The proof follows from the differential inequality

AR + {4VP1-VU+%|VP1|2}ZO inD,

u|2

and the maximum principle.

Similarly the function

P, = (| Vu|)?

attains its maximum on the boundary. We can actually prove the following
result: The function

2 4
Py =(Vul) +ﬁu

takes its maximum value at some point on the boundary, unless P; is a

constant. Moreover, P; is an identically constant in if and only if isan n

dimensional ball.

(1]

(2]

(3]

[4]

(9]
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