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Abstract 

This paper presents the Levenberg-Marquardt (LV) approach for 
solving fuzzy nonlinear problems, in which the LV steps are computed 
at every iteration. We begin by transforming the fuzzy quantities       
into its equivalent parametric form. Numerical experiments with 
encouraging results are presented to illustrate the efficiency of the 
proposed method. 

1. Introduction 

The development of methods for numerical evaluations was a response  
to the continuous demand of numerical computation, mainly in systems 
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nonlinear equations. This is due to its role in solving problems arising          
from areas such as engineering, medicine, social sciences. However, most 
parameters of these systems are usually represented by fuzzy numbers rather 
than crisp numbers. Therefore, the outcome depends on the roots of fuzzy 
equations (Abbasbandy and Asady [9]). Standard analytical techniques such 
as Buckley and Qu [7, 8], and Muzzioli and Reynaerts [12] are not suitable 
for solving nonlinear equations such as: 

  (I) ,234 fedxcxbxax =−+++  

 (II) ,dbaex =+  

(III) ( ) ,sin gxx =−  

where x, a, b, c, d, e, f, g are fuzzy numbers. Thus, there is a need to explore 
numerical methods for solving fuzzy nonlinear equations. New ideas on 
numerical methods spread quickly across the globe. Recently, Sulaiman et al. 
[14] applied the Regula Falsi method to solve fuzzy nonlinear equation. 
Abbasbandy and Asady [9] parameterized some fuzzy quantities and applied 
Newton’s approach to solve the equivalent fuzzy nonlinear equations. Waziri 
and Moyi [6] employed the Chord’s Newton method to solve dual fuzzy 
nonlinear equations. Also, Amirah et al. [10] introduced the Broyden’s 
method to obtain the solutions of a fuzzy nonlinear equation. Broyden and 
Chord’s Newton’s methods are variants of Newton’s method and possess 
most properties of Newton’s method. The convergence of Newton’s method 
is straightforward particularly when the function is quadratic [4]. However, 
the method may be undefined if the Jacobian is singular. In a major 
revolution in numerical practice and to overcome some of these drawbacks, 
we suggested the Levenberg-Marquardt method for the solution of fuzzy 
nonlinear equation. This method introduces a parameter kμ  to Newton’s 

algorithm and also possesses quadratic rate of convergence of Newton’s 

method if the Jacobi at the solution point ∗x  is nonsingular and if kμ  is 

adequately chosen at each iteration. 
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This paper is structured as follows: Section 2 discusses the brief 
overview and some fundamental results of fuzzy numbers. In Section 3, we 
present the description of the Levenberg-Marquardt method. In Section 4, we 
propose Levenberg-Marquardt algorithm for the solution of fuzzy nonlinear 
equation. Numerical examples on well-known benchmark problems are 
illustrated in Section 5. Finally, we present the conclusion in Section 6. 

2. Preliminaries 

This section presents some useful definitions of fuzzy numbers. 

Definition 1 [11]. A fuzzy number is a set like [ ]1,0: =→ IRu  which 

satisfies the following: 

(1) u is upper semi-continuous, 

(2) ( ) 0=xu  outside some interval [ ],, dc  

(3) there are real numbers a, b such that dbac ≤≤≤  and, 

(3.1) ( )xu  is monotonic increasing on [ ],, ac  

(3.2) ( )xu  is monotonic decreasing on [ ],, db  

(3.3) ( ) .,1 bxaxu ≤≤=  

The set of all these fuzzy numbers is denoted by E. An equivalent 
parametric is as also given in [13]. 

Definition 2 [11]. Fuzzy number u in parametric form is a pair ( )uu,  of 

function ( ) ( ) 10,, ≤α≤αα uu  which satisfies the following requirement: 

(1) ( )αu  is a bounded monotonic increasing left continuous function, 

(2) ( )αu  is a bounded monotonic decreasing left continuous function, 

(3) ( ) ( ) .10, ≤α≤α≤α uu  

A popular fuzzy number is the trapezoidal fuzzy number =u  
( )βσ,,, 00 yx  with interval defuzzifier [ ]00, yx  and left fuzziness σ and 
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right fuzziness β, where the membership function is 
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Its parametric form is 

( ) ( ) ., 00 ryrurxru β−β+=σ+σ−=  

Let ( )RTF  be the set of all trapezoidal fuzzy numbers. The addition and 

scalar multiplication of fuzzy numbers are defined by the extension principle 
and can be equivalently represented as follows [9]. 

For arbitrary ( ),, uuu =  ( ),, vvv =  and ,0>k  the addition ( )vu +  

and multiplication by scalar k are defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),, α+α=α+α+α=α+ vuvuvuvu  

( ) ( ) ( ) ( ) ( ) ( )., α=αα=α ukkuukku  

3. Levenberg-Marquardt Modification (LVM) 

Consider a system of nonlinear equations 

 ( ) .0=kxF  (3.1) 

The Levenberg-Marquardt modification is classical and one of the most 
popular solution methods for solving (3.1) [2]. The technique introduces           
a parameter kμ  to Newton’s method to ensure that the search direction is        

a descent direction even when ( )kxJ  is not positive definite. Given the 

Newton algorithm as 

 ( ) ( ),1
1 kkkk xFxJxx −

+ −=  (3.2) 
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or 

 ( ) ( ).1
1 kkkk xFxJxxd −
+ −=−=  (3.3) 

Levenberg-Marquardt modification introduces kμ  to (3.2) and hence, 

replaces 

 ( ) ( )( ) ,11 −− μ+= IxJxJ kkk  (3.4) 

where 0≥μk  is a parameter being updated from iteration to iteration, and         

I an identity matrix. The parameter kμ  plays an important role in the 

convergence of the method. It prevents the search direction from being too 
large when ( )kxJ  is nearly singular [3]. During the iteration process, we 

start with a small value for the parameter ,kμ  and then increase the value 

slowly during the iteration process until the descent condition, that is 
( ) ( )kk xfxf <+1  is achieved [4]. However, it has always been difficult 

choosing the initial value. Numerous studies have been done that focus on 
choosing the value of the parameter .kμ  Yamashita and Fukushima [2] 

suggested the choice of ( ) .2
kk xF=μ  However, Fan and Yuan [3] 

pointed out that when the sequence { }nx  is close to the solution set, 

( ) 2
kk xF=μ  may be very small and hence loose its role. Also, when the 

sequence is far from the solution set, ( ) 2
kk xF=μ  may be too large 

which makes the search direction to be too small, hence slow the               
rate of convergence of the sequence. Thus, they suggested the choice              
of ( )kk xF=μ  and proved that the quadratic convergence of the  

Levenberg-Marquardt method still holds using this parameter. Moreover, 
when ,0→μk  the Levenberg-Marquardt modification approaches the 

behavior of simple Newton’s method, and also when ,∞→μk  approaches 

the pure gradient method [4]. 
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Definition 3.1 [2]. Let N be a subset of nR  such that .∅≠∗XN ∩  We 

say that ( )xF  provides a local error bound on N for system (3.1), if there 

exists a positive constant 0>c  such that ( ) ( ) .,, NxXxdistcxF ∈∀≥ ∗  

To study the convergence of the method, we consider the following: 

Assumption 3.1 [3]. (a) Suppose ( )xF  is continuously differentiable, 

and the Jacobi ( )xJ  is Lipschitz continuous on some neighborhood of 

,∗∗ ∈ Xx  that is, there exist positive constants 1L  and 11 <b  such that 

( ) ( ) ( ) { }.,,, 11 bxxxbxNyxxyLxJyJ ≤−=∈∀−≤− ∗∗  (3.5) 

 (b) ( )xF  provides a local error bound of ( )1, bxN ∗  for (3.1), there 

exists a constant say 01 >c  such that 

 ( ) ( ) ( ).,,,, 11 bxNyxXxdistcxF ∗∗ ∈∀≥  (3.6) 

Assumption 3.2 [3]. Suppose ( ) ,kk xF=μ  .k∀  Let kx  denote the 

vector in ∗X  satisfying the condition 

( )., ∗=− Xxdistxx kk  

Theorem 3.1 [3]. Suppose 0x  is chosen sufficiently close to ,∗X  if the 

conditions of Assumptions 3.1 and 3.2 hold, then we say equation (3.2) 
converges superlinearly. 

Theorem 3.2 [3]. Suppose the sequence { }kx  is generated by the 

Levenberg-Marquardt modification without line search, with the initial point 

0x  sufficiently close to the solution point .∗x  If conditions of Assumptions 

3.1 and 3.2 hold true, then we say { }kx  converges to the solution ∗x  

quadratically. 
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4. Levenberg-Marquardt Modification for Solving  
Fuzzy Nonlinear Equation 

Consider a fuzzy nonlinear equation 

 ( ) .cxF =  (4.1) 

And its parametric form is defined as 

 
( ) ( )

( ) ( )
[ ].1,0

,,,

,,,

⎪⎩

⎪
⎨
⎧

∈∀
=

=
r

rcrxxF

rcrxxF
 (4.2) 

To obtain the solution of the above equation, we start with a given initial 
point ,0x  employing the Levenberg-Marquardt method, we generate a 

sequence of points { }nx  that converge to the solution .∗x  We describe the 

method by the following algorithm: 

Algorithm 1 (Levenberg-Marquardt algorithm) 

Step 1. Given a fuzzy nonlinear equation, transform it into parametric 
form. 

Step 2. Solve the parametric form for 0=r  and 1=r  to obtain the 
initial guess .0x  

Step 3. Evaluate the function ( )rxxF ,,  and compute the parameter 

( )
( )

( )
.

,,

,,
,,

rxxF

rxxF
rxxk =μ  

Step 4. Compute the Jacobian matrix ( ).,, rxxJ  

Step 5. Use Levenberg-Marquardt formula to update the new form of 
Jacobian as 

( ) ( )( ),IxJxJ kkk μ+=  

where ( ).;, rxxxk =  
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Step 6. Compute for the next iterative value 

( )( ) ( ) ....,3,2,1,1
1 =μ+−= −
+ kxFIxJxx kkkkk  

Step 7. Check tolerance if ,10 5−≤ε  then stop. Otherwise. 

Step 8. Repeat Steps 3 to 6 continuously until tolerance criteria are 
satisfied. 

5. Numerical Results 

In this section, we present the solutions of two examples using some 
numerical methods and compare their performance based on their number         
of iterations to illustrate the efficiency of Levenberg-Marquardt. Also, the 
solutions were plotted in Figure 1 and Figure 2, respectively. The considered 
problems are from [9, 10]. 

Example 1. Consider the fuzzy nonlinear equation 

( ) ( ) ( ).3,2,13,2,15,4,3 2 =+ xx  

Without loss of generality, let x be positive, and hence the parametric form of 
this equation is as follows: 

( ) ( ) ( ) ( ) ( ),113 2 rrxrrxr +=+++  

( ) ( ) ( ) ( ) ( ),335 2 rrxrrxr −=−+−  

and can be rewritten as 

( ) ( ) ( ) ( ) ( ) ,0113 2 =+−+++ rrxrrxr  

( ) ( ) ( ) ( ) ( ) .0335 2 =−−−+− rrxrrxr  

To obtain the initial value, we use the above system. 

For ,0=r  

( ) ( ) ,1003 2 =+ xx  

( ) ( ) .30305 2 =+ xx  
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For ,1=r  

( ) ( ) ,212142 =+ x  

( ) ( ) .21214 2 =+ xx  

Hence, we have ( ) ,4343.00 =x  ( ) ,5306.00 =x  and ( ) ( ) ,5.011 == xx  

which is very close to the exact solution. We propose another initial value to 
illustrate the efficiency of the method. Let ( ),6.0,5.0,4.00 =x  applying 

various numerical methods; we obtained the solution after some number of 

iterations as presented in Table 1 with the maximum error less than .10 5−  
See Figure 1 for detail of the solution. 

Example 2. Consider the fuzzy nonlinear equation 

( ) ( ) ( ) ( ).7,6,516,12,84,3,28,6,4 2 =−+ xx  

 

Figure 1. Solution of the Levenberg-Marquardt method for Example 1. 
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Figure 2. Solution of the Levenberg-Marquardt method for Example 2. 

Without loss of generality, assume that x is positive, then the parametric 
form of this equation is as follows: 

( ) ( ) ( ) ( ) ( ) ( ),548224 2 rrrxrrxr +=+−+++  

( ) ( ) ( ) ( ) ( ) ( ).7416428 2 rrrxrrxr −=−−−+−  

After solving the above parametric form for 0=r  and ,1=r  we 
obtained the following initial guess ( ) ,6514.00 =x  ( ) ,8397.00 =x  and 

( ) ( ) ,7808.011 == xx  which is very close to the exact solution. Hence, to 

illustrate the efficiency of the method, we proposed a new initial guess 
( ).9.0,8.0,6.00 =x  See Table 1 for number of iterations. It considers each 

method to obtain the solution using maximum error less than ,10 5−  and 
Figure 2 for details of the solution. 

Table 1. Number of iterations for solutions of Example 1 and Example 2 by 
various methods 

Methods/Problems 
Steepest descent 

method 
Broyden’s 

Method 
Levenberg-

Marquardt method
Newton’s 
method 

Example 1 15 6 2 2 
Example 2 15 6 4 3 
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As can be observed from Table 1, Newton’s method has the least number 
of iterations when applied to solve both problems with maximum error less 

than .10 5−  However, results obtained under the same stopping condition 
show that Levenberg-Marquardt method a variant of Newton method 
possesses lesser number of iterations compared to other numerical methods. 
It takes the same number of iterations with Newton method to obtain the 
solution for Example 1, and four iterations compared to Newton’s three 
iterations for Example 2. This illustrates effectiveness of the proposed 
method and as such can be used as an alternative for solving fuzzy nonlinear 
equations. 

6. Conclusions 

In this paper, we investigated the implementations and applications of 
the Levenberg-Marquardt algorithm with other numerical methods, studying 
their effectiveness on some fuzzy nonlinear problems. A set of numerical 
experiments was presented to illustrate the practical performance of various 
algorithms. Our proposed method has shown efficiency as it performed better 
than steepest descent method by Abbasbandy and Jafarian [15] and slightly 
better than Broyden’s algorithm by Amirah et al. [10] using maximum error 

less than .10 5−  
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