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Abstract 

Let 1,pS  be a hyperbolic Riemann surface of genus 1>p  with one 

puncture x. In this paper, we consider the subgroup F  of the 

mapping class group of 1,pS  that consists of point-pushing mapping 

classes, and show that the minimum ( )FCL  of stable translation 

lengths for the actions of all pseudo-Anosov elements of F  on the 

curve complex ( )1,pSC  is one. It is well known that every pseudo-

Anosov element F∈f  determines an oriented filling closed 

geodesic γ on { }.1, xS p ∪  We further show that ( )FCL  can be 

achieved by those pseudo-Anosov elements f so that γ intersect some 
simple closed geodesics only once. As consequences, we prove that 
the set of the stable translation lengths for the actions of all pseudo-
Anosov elements of F  is unbounded. We also give a sufficient 
condition for a pseudo-Anosov element F∈f  to have invariant bi-

infinite geodesics in ( ).1,pSC  
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1. Introduction and Main Results 

Let npS ,  be a hyperbolic Riemann surface of genus 0≥p  with 0≥n  

punctures. Let x be a puncture if .1≥n  Assume that { }xSS npnp ∪,1, =−  is 

also hyperbolic. Let F  be the subgroup of the mapping class group 
( )npSMod ,  consisting of mapping classes projecting to the trivial mapping 

class on .1, −npS  

It is well-known (Kra [7]) that there are infinitely many pseudo-Anosov 
mapping classes in ,F  each of which contains a homeomorphism :f  

npnp SS ,, →  that keeps invariant a pair ( )−+ FF ,  of transverse measured 

foliations on npS ,  with the property that there is a real number 1>λ  such 

that 

( ) ++ λ= FFf  and ( ) ( ) .1 −− λ= FFf  

λ is called the dilatation of f. Thurston [10] showed that λ is an algebraic 
number. It is important to note that f is irreducible, by which we mean that 

for every simple closed geodesic u on npS ,  and any positive integer i, ( )uf i  

is not homotopic to u. Here and throughout the paper, we denote by ( )uf i  

the geodesic homotopic to the image curve of u under the map .if  

We can thereby consider the if -iterations of u and obtain an infinite 
orbit 

{ ( ) ( ) }....,,, 2 ufufu=S  

Geodesics in S  are distinct and can be viewed as vertices on the curve 
complex ( )npS ,C  (see Harvey [5] for the definition of the curve complex). 

Denote by ( )npS ,0C  the set of vertices of ( )., npSC  ( )npS ,C  is equipped 

with the path metric Cd  defined as follows. For any two vertices ∈vu,  

( ),,0 npSC  we declare ( ) 1, =vudC  if and only if u and v are disjoint; 
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otherwise, ( )vud ,C  is one more than the minimum number of geodesics 

svv ...,,1  that lie in between u and v and satisfy the conditions 

( ) ( ) ,1,,1, 1 == vvdvud sCC  and ( ) 1, 1 =+jj vvdC  for .1...,,1 −= sj  

It is obvious that 

( ( )) mufud m ≥,C  (1.1) 

for .1,0=m  From Proposition 4.6 of Masur-Minsky [8], ( ( )) 3, ≥ufud m
C  

for all large integers m. In [15, 16], we showed that (1.1) is true for 
113 ≤≤ m  for surfaces .1,pS  

For surfaces npS ,  with 043 >+− np  and ,0>n  it was shown in           

[13, 14] that (1.1) remains true for .4,3=m  

The stable (or asymptotic) translation length ( )fCτ  for the action of f on 

( )npS ,C  is defined as 

( ) ( ( ))
m

ufudf
m

m

,inflim C
C

∞→
=τ  

for a vertex ( ).,0 npSu C∈  It is easy to show that ( )fCτ  does not depend                

on the choice of u. So ( )fCτ  is well defined. By the same result of [8],             

as mentioned earlier, there is a positive constant ,, npc  depending only on            

p and n, such that for all pseudo-Anosov elements ,F∈f  we have 

( ) ,, npcf ≥τC  which means that 

( ) ( ){ ;inf fL CC τ=F  for any pseudo-Anosov mapping class }F∈f  

has a positive lower bound .pc  In [15, 16], we showed that 8.0≥pc  for 

surfaces 1,pS  with .1>p  

An upper bound for ( )FCL  can be easily obtained from the triangle 

inequality. Observe that every pseudo-Anosov element F∈f  determines 
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(via an isotopy) an oriented closed filling closed geodesic γ on .1, −npS  That 

is, γ  intersects every simple closed geodesic on .1, −npS  Let 1, −⊂γ npS  be 

such a filling geodesic that intersects some simple geodesics u~  only once. 
Let u be the vertex in ( )npS ,0C  obtained from u~  by removing a point 

.γ∈x  Let f be a pseudo-Anosov mapping class constructed from pushing    

x along γ in a full cycle. Then F∈f  (Theorem 2 of [7]) and u is disjoint 

from ( ),uf  and so we have ( )( ) .1, =ufudC  By the triangle inequality and 

the fact that f acts on ( )npS ,C�  as an isometry with respect to the metric ,Cd  

we get ( ( )) mufud m ≤,C  for all .1≥m  It follows that ( ) 1≤τ fC  and thus 

( ) .1≤FCL  

The main purpose of this paper is to fill in the gap between the lower and 
upper bounds of ( )FCL  mentioned above. We will prove the following 

result: 

Theorem 1.1. For any Riemann surface 1,pS  with ,1>p  we have 

( ) ,1=FCL  which can be achieved by those ( )fCτ  for which f determines 

filling geodesics that intersect some simple closed geodesics only once. 

Well-known results. For any subgroup H of ( ),, npSMod  let ( )HLC  

{ ( );inf fCτ=  for any pseudo-Anosov mapping class }.Hf ∈  From 

Proposition 4.6 of Masur-Minsky [8], there is a positive lower bound for 
( ( ))., npSModLC  Bowditch [2] proved that ( )fCτ  is a rational number with 

bounded denominator for every pseudo-Anosov element ( )., npSModf ∈  

For a closed Riemann surface 0,pS  of genus ,1>p  an upper bound for 

( ( ))0,pSModLC  is given by [3], where Farb-Leininger-Margalit proved that 

( ( )) ( ) .

2
1log

32log4
0,

⎟
⎠
⎞⎜

⎝
⎛ −

+<
pp

SModL pC  
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Later, Gadre-Tsai [4] improved their results by showing that 

( ) ( )
( ( )) .

4
4

223022162
1

20,2 −+
≤<

−+− pp
SModL

pp
pC  (1.2) 

For real valued functions ( )tF  and ( ),tG  we write ( ) ( )tGtF T  if there 

is a constant C such that ( ) ( ) CtGtFC <<1  for all .R∈t  Using this 

notation, we can write (1.2) as ( ( )) 2
0, 1 pSModL p TC  as .+∞→p  

Valdivia [9] showed that for all sufficiently large integers n with 2≥p                     

fixed, ( ( )) .1, nSModL np TC  He also showed that ( ( ))nSModL ,0C      

21 nT  and ( ( )) .1 2
2,1 nSModL n TC  Recently, Kin-Shin [6] proved that 

( ( )) .1 2
,1 nSModL n TC  

Quantitative estimations of ( )HLC  for certain subgroups H of a mapping 

class group were also obtained in [3] and [6]. Let 0Γ  be the fundamental 

group of .0,pS  For any ,1≥k  let kΓ  be the kth term of the lower central 

series for .0Γ  Denote by kN  the kernel of the natural homomorphism of 

( )0,pSMod  onto ( ).kOut ΓΓ  Then for the sequence of the subgroups ,kN  

Theorem 6.1 of [3] asserts that for all ,1≥k  we have ( ) 0→kL NC  as 
.+∞→p  

Let ( )0,, pSMod<′HH  denote the handlebody and hyperelliptic 

subgroups, respectively. It was shown in [6] that ( ) ,1 2pL TC H  

( ) ,1 2pL TC H ′  and ( ) .1 2pL TC HH ′∩  Additionally, let nD  denote 

a closed disk with n points nxxx ...,,, 21  removed. There is a natural 

homomorphism ( ) ( )1,0: +→ nn SModDModι  defined by collapsing the disk 

nD  to the ( )1+n st puncture 1+nx  on { }.,,...,\ 11
2

1,0 ++ = nnn xxxS S  Kin-

Shin [6] also proved that ( ( ( ))) .1 2nDModL n TC ι  
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Theorem 1.1 follows from the following result: 

Theorem 1.2. Let 1,pS  be a Riemann surface of genus 1>p  with one 

puncture. Let F∈f  be any pseudo-Anosov element. Then there exists 

( )1,0 pSu C∈  such that (1.1) holds for any nonnegative integer m. 

Outline of proof of Theorem 1.2. Throughout we fix 1,pSS =  and let 

{ }.~ xSS ∪=  We use the same notations and assumptions as in [15, 16]. Let 

F∈f  be a pseudo-Anosov element. From Theorem 2 of [7], we know that 
f can be identified with an essential hyperbolic Möbius transformation g on a 

hyperbolic plane H which has two distinct fixed points on .1S  Denote by 

{ } { }.ofpointsfixed\, 1 gS=RL  Points on L  or R  are naturally ordered. 

Thus, it makes sense to write UU ′≤  or UU ′>  for points L∈′UU ,  or 

., R∈′UU  

Every vertex ( )Su 0C∈  is homotopic to a vertex ( )Su ~~
0C∈  as the 

puncture x is filled in. (2.3) tells us that u can be mapped to a convex and 
unbounded region uΩ as shown in Figure 1: 

 
Figure 1 

The complement uΩ\H  is a disjoint union of half-planes each of which 
contains infinitely many geodesics projecting to u~  under the universal 

covering map .~: S→H�  In particular, every component of uΩ∂  projects 
to u~  under .�  



On Unit Stable Lengths of Translations of Point-pushing … 7 

All such regions uΩ  can be classified as type (I) or type (II) regions with 

respect to g as drawn in Figures 2(a) and 2(b), where { } uuu YX Δ∂= ∩1, S  

and uΔ  is the half-plane in uΩ\H  covering the attracting fixed point of g. 

 

              (a) type (II) region                                    (b) type (I) region 

Figure 2 

Let ( )Svu 0, C∈  be mapped to uΩ  and ,vΩ  respectively. Note that 

( ) 1, =vudC  implies that either ( ) 1~,~ =vudC  or ( ) ( ).~~.,e.i0~,~ vuvud ==C  

By Lemma 2.1, Lemma 2.2 of [15] and Lemma 4 of [12], ( ) 1, =vudC  with  

( ) 1~,~ =vudC  if and only if ∅=Ω∂Ω∂ vu ∩  and ;∅≠ΩΩ vu ∩  and 

( ) 1, =vudC  with ( ) 0~,~ =vudC  if and only if uΩ  and vΩ  are adjacent 

components of { ( )}u~\ 1−�H  in the sense that vu ΩΩ ∩  is a geodesic in 

{ ( )}.~1 u−�  

Let ( ).00 Su C∈  Write ( )0ufu m
m =  and consider a geodesic 

[ ]ms uvvvu ,...,,,, 210=G  

joining from 0u  to .mu  These vertices are mapped to regions 

ms Ω′ΩΩΩ′ ,...,,, 10  in H that all look like the region depicted in Figure 1. 

{ }ms Ω′ΩΩΩ′ ,...,,, 10  satisfies the conditions: 
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(A1) ∅≠ΩΩ∅≠Ω′Ω∅≠ΩΩ′ +110 ,, iims ∩∩∩  for ...,,1=i  

,1−s  and 

(A2) ,10 ∅=Ω∂Ω′∂ ∩  ,∅=Ω′∂Ω∂ ms ∩  ∅=Ω∂Ω∂ +1ii ∩  for ,1=i  

..., .1−s  

Notice that each iΩ  is either a type (I) or a type (II) region with respect to g. 

One may assume that 0Ω′  is of type (II) so that { }000 ,\ Δ′Δ⊂Ω′ H  (refer to 

Figure 3). Then all ( ) ,0,0 ≥Ω′=Ω′ igi
i  are also type (II) regions. 

We must compare the geodesic G  with the quasi-geodesic 

[ ( ) ( ) ]muufufu ...,,,, 0
2

00=QG  

through their vertices. QG  determines a sequence mΔ′⊂⊂Δ′⊂Δ′ "10  of 

nested half-planes in H for ( ),0Δ′=Δ′ i
i g  as well as those labeled points { }iP  

and { }.iQ  See Figure 3 also: 

 

Figure 3 

We see that 010 \ Δ′Δ′⊂Ω′  and for every ,0≥i  .\1 iii Δ′Δ′⊂Ω′ +  

Unfortunately, iΩ  may not sit in .\1 ii Δ′Δ′+  In any event, however, the 
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conditions mm Δ′⊂Ω′ \H  and ( ) 1, =ms uvdC  imply that ,∅≠Ω′Ω ms ∩  

which tells us that the sequence { }iΩ  moves to catch up .mΩ′  So necessarily 

we have smsm XQYP ≤≤ ,  if sΩ  is of type (II); ssm XYQ <<  if sΩ  is 

of type (I) and is supported on ;L  and ssm XYP <<  if sΩ  is of type (I) 

and is supported on .R  

Our purpose is to determine the least number of regions { }iΩ  needed to 

satisfy (A1) and (A2) above, and to move across over all iΔ′ ’s so that { }iΩ  

can get out of .mΔ′  There is a strong indication, due to (A1) and (A2), that 

the motion cannot be too rapid. Consider the subsequence { }jiΩ  consisting 

of type (II) regions. We need to rule out the possibility that one endpoint 
L∩jj iiX Δ∂=  moves slowly towards the attracting fixed point A of g, 

while the other endpoint R∩jj iiY Δ∂=  moves far down to A. 

As a major step of the proof of Theorem 1.2, we show that the inclusion 
of type (I) regions in { }iΩ  will not increase the motion efficiency. That is to 

say, the least value s can be achieved by a sequence { }iΩ  whose members 
are all type (II) regions. 

To carry this out, among other works, we let [ ] G⊂+110 ...,,, rwww  be 

a segment so that all iwΩ  are type (I) regions. Then they stay on one side of 

( ),gaxis  which is the geodesic connecting the two fixed points of g. Denote 

.\ ii ww Δ=σ H  Note that iwσ  is the half-plane containing iwΩ  so that 

{ }.ii ww Ω∂∈σ∂  Hence iwσ  is disjoint from ( ).gaxis  Suppose that ∪ iwσ  

is supported on L  and covers an interval [ ]1−+djjQQ  for some integer 

.2≥d  Then a sequence { } 10 +≤≤γ rii  of geodesics can be found so that 

(B1) { ( ( ))},1
iwi σ∂∈γ − ��  

(B2) iwi Δ⊂γ  crosses ( ),gaxis  and 

(B3) iγ  intersects [ ].1−+djjQQ  
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Note that for ,0 ri ≤≤  either ,1+γ=γ ii  or iγ  and 1+γi  are disjoint. 

From (B1), iγ  and iwσ∂  are also disjoint. Figure 4 demonstrates two special 

cases where .2=d  It is known that at least four type (I) regions are needed 
to cover an interval [ ].1+jjQQ  

 

Figure 4 

In each of the two figures, two finite sequences { }3210 ,,, σ∂σ∂σ∂σ∂  

and { }3210 ,,, γγγγ  of geodesics are drawn that satisfy (B1)-(B3) as well as 

the property that ∪ iσ  covers [ ].1+jjQQ  As we can see, in both examples, 

the sequence { }3210 ,,, γγγγ  is not properly ordered. 

This phenomenon is true, in general: for any ,2≥d  and any finite 

sequence { }iσ  passing through ,...,, 1−+djj QQ  a sequence { }iγ  of 

geodesics can be found so as to satisfy (B1)-(B3). Lemma 3.2 asserts that 
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{ } 10 +≤≤γ rii  is not properly ordered. Putting all these sequences together,         

we see that { }iγ  overall moves towards the attracting fixed point of g as 

,+∞→m  but the motion is not monotonic. 

Let { } 1, S∩iii RL γ=  be the two endpoints of iγ  with L∈iL  and 

.R∈iR  Lemma 3.6 asserts that 

{ } ,,max 1010 rLLRR rr ≤++  (1.3) 

where and below UU ′  denotes (for any UU ′,  in L  or in )R  the number 

of the labeled points nP  or nQ  contained in the half-open interval ( ].UU ′  

We then investigate a segment [ ] ,,, G⊂Γ vu  where vu ΩΩ ,  are of 

type (II) and { }kvv ...,,1=Γ  are all mapped to type (I) regions ....,,1 kΩΩ  

Let jQ  be the first labeled point so that .ju QX ≤  We can further divide     

Γ into three sub-sequences ,and, BCA  where A  is a sub-sequence that 

lies prior to the first vertex in Γ whose corresponding (type (I)) region covers 
,jQ  and ,B  if not empty, is the sub-sequence that lies after the first vertex 

in Γ whose corresponding (type (I)) region covers ,1−+djQ  where 2≥d  

and 1−+djQ  is the last labeled point covered by { } .1 kii ≤≤Ω  Thus, the 

vertices in the sub-sequence C  are mapped to those half-planes iσ  so that 

∪ iσ  covers [ ].1−+djjQQ  

It follows from Lemma 4.3 and (1.3) that 

{ } .1,max +≤ kYYXX vuvu  (1.4) 

Notice that G  is the concatenation of segments of forms [ ].,, vu Γ  By using 

(1.4) for each segment [ ],,, vu Γ  we conclude that the least number 

1−≥ ms  if { }iΩ  contains no type (I) regions; and ms ≥  if { }iΩ  contains 

some type (I) regions. Details can be found in Section 5. 
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2. Preliminary Background 

Let H be a hyperbolic plane, and let S~: →H�  be a universal 

holomorphic covering map with a covering group G, where { }xSS ∪=
~  

and G contains only hyperbolic Möbius transformations. For every element 
,Gh ∈  there is an h-invariant geodesic in H joining the repelling fixed point 

to the attracting fixed point of h. This geodesic is called the axis of h and is 
denoted by ( ).haxis  

For any vertex ( ),~~
0 Su C∈  let { ( )}u~1−�  be the collection of all (disjoint) 

geodesics in H projecting to u~  under .�  Denote by u~R  the set of 

components of { ( )}u~\ 1−�H  and by N  the disjoint union of small crescent 

neighborhoods of geodesics in { ( )}u~1−�  so that ( )N�  is a thin cylinder with 

center geodesic .~u  Fix .~uR∈Ω  See Figure 1. 

Notice that every geodesic in { ( )}u~1−�  determines a half-plane which 

does not include ,Ω  and the set U  of half-planes determined by { ( )}u~1−�  

and Ω has an infinite tree structure and thus is of partially ordered defined      
by inclusions. Half-planes in U  are arranged in different levels. All the 

components of Ω\H  are designated as level one half-planes in .U  A half-

plane in U  is a level two element if it is contained in a level one half-plane 
but is not contained in any other half-plane in ,U  and so on. We can 
similarly define a half-plane in U  in any level. There are infinitely many 
half-planes in U  in any level. 

Let ut~  be the Dehn twist about ,~u  which is constructed from cutting S~  

along ,~u  rotating one end °360  in counterclockwise direction, and then 

gluing back with the other end. It is obvious that ut~  is a quasiconformal map 

whose Beltrami coefficient is supported on ( )N�  and can be lifted to an 

automorphism τ of H that keeps the identity on .\NΩ  
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The lift τ can also be constructed as follows: let { ( )}uu ~ˆ 1−∈ �  be a 

boundary component of Ω, and ∗D  the component of { }û\H  containing Ω. 

Set .\ ∗= DD H  Let Ghu ∈ˆ  be a primitive hyperbolic element such that 

( ) DDhu =ˆ  (thus ( ) uuhu ˆˆˆ =  and ( ) .)ˆ
∗∗ = DDhu  

For any ,Gh ∈  if ( )Dh  does not include D, i.e., either ( )Dh  and D are 

disjoint, or ( ) ,DDh ⊂  we define a map HH →ζ :h  as 

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

ζ=ζ

−

;\on id

,on continuous  making map q.c a

,\on 1
ˆ

Dh

Dh

Dhhhh

h

u

h

H

N

N

∩  

and if ( ) hDDh ζ⊃ ,  is defined as 

( )

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

ζ=ζ
∗

∗

∗−−

.\on id

,on continuous  making map q.c a

,\on 11
ˆ

Dh

Dh

Dhhhh

h

u

h

H

N

N

∩  

Remark. One of { }1
ˆˆ , −
uu hh  is chosen as uhˆ  so that the quasiconformal 

maps mentioned above are compatible with .~ut  

Let jT  be the product of all hζ ’s for which ( )Dh  or ( )∗Dh  are level j 

half-planes in .U  Then the map τ can be expressed as the product: 

∏
∞

=

=τ
1

.
j

jT  (2.1) 

From the construction, we can verify that 

GG =ττ −1  and the restriction .id\ =|τ Ω N  

Also, τ does not depend on the choice of a boundary component of Ω,       
nor the order of the composition in (2.1); it only depends on the choice of  
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.~uR∈Ω  Different choices of Ω in u~R  give rise to different lifts τ of          

.~ut  Note that τ naturally extends to 1S  homeomorphically, as τ is 

quasiconformal. 

Choose H∈x̂  so that ( ) .ˆ xx =�  Let 

( ){ }.:ˆ Ghxh ∈=D  

The orbit D  does not depend on the choice of .x̂  Thereby we obtain a 
punctured plane D\H  of infinite type. Consider a holomorphic universal 

covering map .\:0 DHH →�  Let Γ denote the covering group of .0�  From 

Bers [1], we know that the composition S→H:0�� D  is a holomorphic 

universal covering map, and if we denote by G�  the covering group of this 
composition, there exists an exact sequence: 

.11 →→→Γ→ GG�  

Following Bers’ construction [1], the map τ, being a lift of the Dehn 
twist ,~ut  satisfies the property that ( ) .DD =τ  Thus, τ also defines a map 

(call it τ also) of D\H  onto itself, which can be further lifted to a map 

,:ˆ HH →τ  and through the universal covering map ,:0 S→H�� D  τ̂  is 

projected to a map ∗τ  on S. 

Notice that the conformal structure on D\H  defined by τ is compatible 

with the conformal structure on the cylinder ( )N�  defined by .~ut  As 0�� D  

is holomorphic, the conformal structure on D\H  is also compatible with the 

conformal structure of S that is given by .∗τ  We see that the map ∗τ  is 

represented by the Dehn twist ut  about a vertex ( ).0 Su C∈  For an alternate 

approach, see Lemma 2.1 of [11]. Since ( ) DD =h  for every ,Gh ∈  h is 

also mapped to ( ).SModh ∈∗  A complete characterization of elements ∗h  

for Gh ∈  can be found in [7]. 
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Let uF~  be the set of vertices of ( )SC  that are all indistinguishable with 

u~  as the puncture x is filled in. Define a map 

uuu F~~~ : →χ R  (2.2) 

by sending each component Ω to u. By Lemma 2.1 and Lemma 2.2 of             
[15], for every vertex ( ),~

0 Su C∈  u~χ  is a bijective map that satisfies the 

equivariance condition 

( )( ) ( ( ))Ωχ=Ωχ ∗
uu hh ~~  for any Gh ∈  and .~uR∈Ω  

Furthermore, if 1Ω  and u~2 R∈Ω  are disjoint, then ( )1~1 Ωχ= uu  and 

( )2~2 Ωχ= uu  intersect, whereas if 1Ω  and 2Ω  are adjacent, in the sense that 

21 ΩΩ ∩  is a geodesic in { ( )},~1 u−�  then { }21, uu  forms an x-punctured 

cylinder embedded in S. 

The bijection uuu F~~~ : →χ R  naturally extends (fiberwise) to a bijection 

{ ( )} ( )SSuu 00~
~~verticesall:: CC →∈χ R∪  (2.3) 

satisfying the equivariance condition 

( )( ) ( )( )Ωχ=Ωχ ∗hh  (2.4) 

for any ( ) ,,~~ ~0 uSu R∈Ω∈ C  and any .Gh ∈  

Let ( )Svu 0, C∈  be such that ( ) ,1, =vudC  i.e., u and v are disjoint.       

Let { }uvu ~, R∪∈ΩΩ  be such that ( ) uu =Ωχ  and ( ) .vv =Ωχ  Then either 

vu ~~ =  or vu ~,~  are disjoint. In former case, ,, ~uvu R∈ΩΩ  so they are 

adjacent, which says that { }vu,  forms an x-punctured cylinder. In later         

case, ( ) .1~,~ =vudC  By Lemma 2.4 of [15], ∅≠ΩΩ vu ∩  and vu Ω∂Ω∂ ∩  

.∅=  

Let F∈f  be any pseudo-Anosov element. There exists an essential 

hyperbolic element Gg ∈  such that ,fg =∗  which tells us that ( )gaxis  is 
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an oriented geodesic pointing from the repelling fixed point B to the 
attracting fixed point A of g and, ( )( )gaxis�  is a filling closed geodesic on 

.~S  So each vertex ( )Su ~~
00 C∈  intersects ( )( ).gaxis�  This is equivalent to 

that ( )gaxis  intersects { ( )}0
1 ~u−�  infinitely many times. 

Let { } { },,\, 1 BAS=RL  where L  stays on the left side of ( ),gaxis  

while R  stays on the right side of ( ).gaxis  Points on L  and on R  can be 

ordered in the following way. Let L∈′XX ,  be any two points. We declare 

( )XXXX ′≤′< resp.  if and only if the arc on L  connecting B and X is 

contained in (resp. equal to) the arc on L  connecting B and .X ′  We can 
further define open, closed, or semi-open intervals on .L  For example,       

we use ( ]XX ′  to denote the set of points { }.: XXXX ′≤′′<∈′′ L  

Analogously, we can introduce similar notations when points lie on .R  

Choose 0
~0 uFu ∈  so that ( )0

1
0 u−χ=Ω′  crosses ( ).gaxis  Observe that 

one component 0Δ  of 0\Ω′H  covers A (the attracting fixed point of g). Let 

0Δ′  be the component of 0\Ω′H  that covers B, the repelling fixed point of g. 

Refer to Figure 3. Note that 0Δ  and 0Δ′  are level one half-planes in .0U  

For every ,0≥i  we write ( )0Δ′=Δ′ i
i g  and obtain a sequence of nested 

half-planes 

.210 "" ⊂Δ′⊂⊂Δ′⊂Δ′⊂Δ′ m  (2.5) 

By (2.3) and (2.4), ( ) u
m

m Fufu ~0 ∈=  and satisfies ( ) ( ),0
1 Ω′=χ− m

m gu  

which lies outside of .mΔ′  Write ( ).0Ω′=Ω′ m
m g  

Let ii QP ,  denote the endpoints of ,iΔ′∂  where L∈iQ  and .R∈iP  

These points are referred to as labeled points in the sequel which satisfy 

"" <<<<< mPPPP 210  and .210 "" <<<<< mQQQQ  
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The geodesic 0Δ′∂  connecting 0P  and 0Q  projects to .~
0u  Thus, 

( )00 haxis=Δ′∂  for an .0 Gh ∈  It is clear that ( ) ( )211 +++ = iiii PPPPg  and 

( ) ( ).211 +++ = iiii QQQQg  In particular, we have: 

( ) i
i PPg =0  and ( ) .0 i

i QQg =  

It follows that for any ,0≥i  iP  and iQ  are fixed points of =ih  

.0 Gghg ii ∈−  

For ,, L∈′XX  let XX ′  denote the number of labeled points in { }jQ  

that are contained in ( ].XX ′  Likewise, for any ,, R∈′YY  the symbol YY ′  

denotes the number of labeled points in { }jP  that are contained in ( ].YY ′  It is 

readily seen that 0=XX  and 0=YY  for all L∈X  and ,R∈Y  and  

that ( ) iPgP k
i

k =  and ( ) iQgQ k
i

k =  for all .0, ≥ki  

For convenience, we specify the arc in L  between X and ( )Xg  has 

length one; which is written as ( )( ) .1, =δ XgX  Similarly, we declare 

( )( ) 1, =δ YgY  for points .R∈Y  

Some basic properties are summarized in the following lemma (the same 
is also true for points on .)R  

Lemma 2.1. Let .,, L∈′′′ XXX  We have: 

   (i) ( ) ;1=XXg  

  (ii) XXXX ′′≤′  whenever ;XX ′′≤′  

 (iii) XXXXXX ′′′+′=′′  whenever ;XXX ′′≤′≤  

 (iv) ( ) iXXgi =  for all ;0≥i  

  (v) if XX ′<  and ( ) ,1, <′δ XX  then ( );XgX <′  

 (vi) if XX ′<  and ( ) ,1, ≤′δ XX  then ;1≤′XX  and 

(vii) if XX ′<  and ( ) ,2, ≥′δ XX  then .2≥′XX   
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In what follows, we write τ=τΩ=Ω uu ,  and UU =u  to emphasize 

the dependence of Ω, τ and U  on u. For any ( ),0 Su C∈  ( )uu
1−χ=Ω      

may contain ( ).gaxis  If this occurs, from the construction of ,uτ  we have 

( ) ,uug Ω=Ω  which implies .uu gg τ=τ  So uu tfft DD =  or Dftu =  

( ).
1

ufu tft =−D  It follows that ( )ufu =  and thus f is reducible, which 

contradicts that F∈f  is pseudo-Anosov. 

We are left with two possibilities: ( )uu
1−χ=Ω  is either a type (I) or a 

type (II) region with respect to g, as shown in Figure 2(a) or 2(b). Here uΩ  

is of type (I) if uΩ  is disjoint from ( );gaxis  uΩ  is of type (II) if ( )gaxis  

crosses .uΩ  

In the former case, ( )gaxis  is contained entirely in a component uΔ  of 

,\ uΩH  where uu U∈Δ  is a level one half-plane. Since ( )uΔ∂�  is a simple 

closed geodesic, uΩ  and ( )ug Ω  must be disjoint, and if we write 

,\ uu Δ=σ H  uσ  and ( )ug σ  are disjoint and stay on one side of ( ).gaxis  

uσ  is called to be supported on ( )RL onresp.  if ( ∩∩ uu σ⊂σ .resp1 LS  

).1 R⊂S  Write { } ,, 1S∩uuu XY σ∂=  where .uu XY <  

In the latter case, ( )gaxis  crosses ,uΔ  and so ( )ug Δ− \1 H  is contained 

in another component ∗Δu  of ,\ uΩH  where we note that uuu U∈ΔΔ ∗,  are 

level one half-planes. Denote { }.,\ ∗ΔΔ= uuuD H  We have uu D⊂Ω  and 
1S∩uD  consists of two open intervals 1I  and ,2I  where L⊂1I  and 

.2 R⊂I  By Lemma 2.1 of [16], 1I  can cover at most one labeled point in 

{ },jQ  and 2I  can cover at most one labeled point in { },jP  and more is true: 

( )ug Ω  is either adjacent to uΩ  or disjoint from ,uΩ  depending on whether 

u~  intersects ( )( )gaxis�  only once or more than once. Write { }uu XY ,  
1S∩uΔ∂=  and { } ,, 1S∩∗∗∗ Δ∂= uuu XY  where L∈∗

uu XX ,  and ∗
uu YY ,  
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.R∈  It is clear that ( ) ∗− ≤ uu XXg 1  and ( ) ,1 ∗− ≤ uu YYg  and the equalities 

hold if and only if u~  intersects ( )( )gaxis�  only once. { }∗∗
uuuu YYXX ,,,  are 

called corner points of .uD  

Regardless of type (I) and type (II) regions described above, in the 

context, uΔ  is referred to as the distinguished half-plane for u and, if ( )u1−χ  

is of type (II), ∗Δu  is called the accompanied half-plane of .uΔ  

Example. For the choice ( )Su 00 C∈  as made in Figure 3, =Ω′0  

( )0
1 u−χ  is a type (II) region, 00 uU∈Δ  is the distinguished half-plane for 

0u  and 00 uU∈Δ′  is the accompanied half-plane of .0Δ  

Consider now a sequence { }jγ  of distinct geodesics in H satisfying: 

   (i) all jγ ’s intersect ( ).gaxis  

Let jj RL ,  denote the endpoints of jγ  on L  and on ,R  respectively. 

The sequence { }jγ  is called partially ordered if it satisfies (i) and the 

condition: 

  (ii) .210 "≤≤≤ LLL  

It is readily seen that if { }jγ  is partially ordered and also satisfies the 

condition: 

(iii) for any jj γ≥ ,0  and 1+γ j  are disjoint, 

then { }jγ  is mutually disjoint and thus is ordered in a way that is based on 

the ordering of { }jZ  for ( ).gaxisZ jj ∩γ=  That is, 21 γγ ≺  if and only if 

2Z  is closer to A than .1Z  

Lemma 2.2. Let { } ( )Su j
~~

0C∈  be a sequence of vertices such that       

ju~  and 1
~

+ju  are disjoint for all .0≥j  Let ( )1, +nn QQ  be a pair of any 
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successive labeled points on .L  Then for each j, there is { ( )}jj u~1−∈γ �  

such that { }jγ  satisfies conditions (i) and (iii) above and in addition, 

{ } [ ].1+⊂ nnj QQL  

Proof. Since ( )( ) Sgaxis ~
⊂�  is a filling geodesic, ( )( )gaxis�  intersects 

each ju~  at least once. As such, we can find a geodesic jγ′  in { ( ( ))}ju~1 ��−  

that intersects ( ).gaxis  We may thus find a suitable power i such that 

( )j
ig γ′  meets [ ].1+nnQQ  As ( )gaxis  is invariant under the action of g, 

( )j
i

j g γ′=γ  is the required geodesic. ~ 

We remark that the choice of jγ  in Lemma 2.2 may not be unique.        

This occurs when the filling geodesic ( )( )gaxis�  intersects ( ) jj u~=γ�  more 

than once. Let { ( ) ( )}q
jj γγ ...,,1  be the collection of such jγ ’s. Since ju~  is a 

simple closed geodesic, { ( ) ( )}q
jj γγ ...,,1  are mutually disjoint. It turns out that 

{ ( ) ( )}q
jj γγ ...,,1  is ordered. Suppose that ( ) ( ).1 q

jj γγ ≺"≺  We then choose 

( )q
jj γ=γ  unless otherwise stated. 

Lemma 2.3. Let { }jγ  be obtained from Lemma 2.2. For any pair 

( )1, +γγ ii  of geodesics in { },jγ  if ,1+< ii RR  then ( ) .1, 1 ≤δ +ii RR  

Proof. By Lemma 2.2, { }jγ  satisfies (i) and (iii). Suppose that 

( ) .1, 1 >δ +ii RR  Then ( ),1
1

+
−< ii RgR  whereas ( ) .1

1
ii LLg ≤+

−  If ( )1
1

+
−

iLg  

,iL<  then ( )1
1

+
− γig  intersects .iγ  But this contradicts the condition 

( ) .1~,~
1 =+ii uudC  

Suppose that ( ) .1
1

ii LLg =+
−  Then ( )1

1
+

− γig  and iγ  share a common 

fixed point .ni QL =  Notice that all these points iR  and iL  are fixed points 
of G. This contradicts that G is discrete. ~ 
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The following lemma is a direct consequence of Lemma 2.3. 

Lemma 2.4. Under the same condition as in Lemma 2.2, suppose,              
in addition, that { }jγ  is partially ordered. Then for any ,0, ≥kj  

11 ≤+jjRR  and so .kRR kjj ≤+  

Proof. The assumption implies that { }jγ  satisfies (i), (ii) and (iii) above. 

Hence { }jγ  is ordered. Thus, .210 "≤≤≤ RRR  If 100 += jj RR  for some 

,0j  then 0jγ  and ,10 +γ j  which are the axes of some hyperbolic elements 

0jh  and 10 +jh  of G, must be the same, which contradicts the hypothesis of 

Lemma 2.2. We conclude that .210 "<<< RRR  

Suppose that .11 >+jjRR  By Lemma 2.1(vi), ( ) .1, 1 >δ +jj RR  But 

this contradicts Lemma 2.3. 

From Lemma 2.1(iii) and the inequality ,11 ≤+jjRR  we deduce that 

∑
−

=
++++ ≤=

1

0
1 .

k

i
ijijkjj kRRRR  ~ 

Remark. The above inequality remains valid when { }iγ  contains 

duplicate elements, that is, it could happen that 1+γ=γ jj  for some j. This 

occurs when jΩ  and 1+Ω j  are adjacent, which is equivalent to that ju  and 

1+ju  are the boundary components of an x-punctured cylinder.  

3. Geodesics Mapped to Type (I) Regions 

In this section, we investigate those consecutive vertices in a geodesic 
segment in ( )SC  that are all mapped to type (I) regions { }jΩ  in H. These 

regions further determine a sequence of geodesics { }jγ  that intersects 

( )gaxis  as well as some fixed (but arbitrarily chosen) intervals in .L  Our 

aim is to estimate how far the other endpoints of jγ  can reach. 



Chaohui Zhang 22 

To be more precise, consider a small geodesic segment 
[ ],,....,,, 110 +rr wwww  ,1≥r  which joins 0w  to 1+rw  and satisfies the 

condition that ,10, +≤≤Ω rjjw  are all type (I) regions in H, where jwΩ  

are obtained from the bijective map (2.3). For convenience, we write 

jwj Ω=Ω  and ,\ jj Δ=σ H  where jΔ  are the distinguished half-planes for 

.jw  Obviously, jj σ∂=Δ∂  is a geodesic in H projecting to jw~  under the 

universal covering map .~: S→H�  Assume that jσ  is supported on .L� 

Denote 

{ } L∩jjj XY σ∂=,  with .jj XY <  

Lemma 3.1. (i) All jσ ’s are disjoint from ( );gaxis  

 (ii) all jσ ’s are supported on ;L� 

(iii) for ( )1,,0 +σσ≤≤ jjrj  are pairs of nested half-planes; and 

(iv) L∩∪ ⎟
⎠
⎞

⎜
⎝
⎛ σ+

=
1
0

r
j j  is a connected closed interval. 

Proof. (i) follows from the definition of a region to be of type (I).                
(ii) is derived from Lemma 3.1 of [16]. For (iii), we note that 
[ ]110 ,....,,, +rr wwww  is a geodesic segment, which means that 

( )1, +jj wwdC 1=  for .0 rj ≤≤  This leads to that 

., 11 ∅=Ω∂Ω∂∅≠ΩΩ ++ jjjj ∩∩  (3.1) 

If ,1 ∅=σσ +jj ∩  then since jj σ⊂Ω  and ,11 ++ σ⊂Ω jj  we see that 

.1 ∅=ΩΩ +jj ∩  This contradicts (3.1). Also, notice that { }jΩ∂  and 

{ }1+Ω∂ j  are collections of geodesic components in H. If ,1 ∅≠σ∂σ∂ +jj ∩  

then from the fact that { }jj Ω∂∈σ∂  and { }11 ++ Ω∂∈σ∂ jj  we deduce that 

.1 ∅≠Ω∂Ω∂ +jj ∩  This again contradicts (3.1). We conclude that ∩jσ  
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∅≠σ +1j  but ,1 ∅=σ∂σ∂ +jj ∩  which says ( )1, +σσ jj  forms a pair of 

nested sets. That is, 1+σ⊂σ jj  or .1 jj σ⊂σ +  Hence (iii) holds. 

To prove (iv), we assume that ,21
1
0 IIr

j j ∪∩∪ =⎟
⎠
⎞

⎜
⎝
⎛ σ+

= L  where 1I  and 

2I  are disjoint closed intervals (if both are not empty). Write [ ]., 111 baI =  

Then clearly, qXb =1  for some .10 +≤≤ rq  If ,1+= rq  then .2 ∅=I  

Thus, [ ],, 11
1
0 bar

j j =⎟
⎠
⎞

⎜
⎝
⎛ σ+

= L∩∪  and we are done. If 1+< rq  and for all 

,1...,,1 ++= rqi  we have ,qi XX <  then again .2 ∅=I  Otherwise, there 

exists 0q  with ,10 +≤< rqq  such that .0qq XX <  Hence we may find a 

point y such that 21 ayb <<  while 0qXy <  is arbitrarily close to .1bXq =  

So 2I  must be empty, as claimed. ~ 

Remark. Similarly, L∩∪ ⎟
⎠
⎞

⎜
⎝
⎛ σ+

=
1
0

r
j j  is an open connected interval on 

.1S⊂L  

A more special case occurs when 0σ  covers nQ  and 1+σr  covers ,1+nQ  

where ( )1, +nn QQ  is a pair of successive labeled points in { }.iQ  This says 

that [ ] .1
01 L∩∪ ⎟

⎠
⎞

⎜
⎝
⎛ σ⊂ +

=+
r
j jnnQQ  By Lemma 3.2 of [16], we have .2≥r  

Recall that Gg ∈  is an essential hyperbolic element. From Lemma 2.2, 

among geodesics in { ( ( ))},1
jσ∂− ��  where ,10 +≤≤ rj  there is a geodesic 

jj Δ⊂γ  that intersects ( )gaxis  and meets [ ].1+nnQQ   

Observe that for all integers j with { ( ( ))} =σ∂≤≤ −
jrj �� 1either,0  

{ ( ( ))},1
1

+
− σ∂ j��  or { ( ( ))} { ( ( ))} .1

11 ∅=σ∂σ∂ +
−−

jj ���� ∩  As members in 

{ ( ( ))}jσ∂− �� 1  and { ( ( ))},1
1

+
− σ∂ j��  jjj γor,γγeither 1+=  and 1+γ j  are 

disjoint. 
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By assumption, 0σ  covers nQ  and 1+σr  covers .1+nQ  Since ∈γ0  

{ ( ( ))}0
1 σ∂− ��  and { ( ( ))},1

1
1 +

−
+ σ∂∈γ rr ��  0γ  is disjoint from 0σ∂  and 

1+γ∂ r  is disjoint from .1+σr  As a consequence, 0γ  and 1+γr  intersect 

[ ]1+nnQQ  but not at nQ  and .1+nQ  In other words, ( )., 110 ++ ∈ nnr QQLL  

Note that no two hyperbolic elements of G can share a common fixed point. 
We see that 0R  and 1+nR  cannot be any labeled points in { }.kP  

As mentioned earlier, the choice of j may not be unique. By our 

convention, jγ  is the one in { ( ( ))}jσ∂− �� 1  that intersects ( ),gaxis  meets 

[ ]1+nnQQ  and is closest to A. 

Lemma 3.2. The finite sequence { },jγ  ,10 +≤≤ rj  is not partially 

ordered, in the sense that there is an index ,0j  ,0 0 rj ≤≤  such that 

.00 1 jj LL <+  

Proof. Suppose that { }jγ  is partially ordered. That is, 

.11210 ++ <≤≤≤≤≤< nrrn QLLLLLQ "  (3.2) 

By Lemma 3.1, for ,0 rj ≤≤  ( )1, +σσ jj  are pairs of nested sets, which 

says that 1+σ⊂σ jj  or .1 jj σ⊂σ +  Let { }qjj σσ ...,,1  be the sub-sequence 

of { }rσσ ...,,1  that satisfies the property: 

.210 qjjj XXXX <<<< "  (3.3) 

If no such sub-sequence exists, then for all ,1 rj ≤≤  we have 

.0σ⊂σ j  Observe that 0σ  cannot cover 1+nQ  and 1+σr  covers .1+nQ  We 

assert that .10 +σσ⊂σ rr ∩  It turns out that 

.01 XYr <+  (3.4) 

On the other hand, since 0σ  covers nQ  and since 0γ  is disjoint from 0σ∂  

and 0γ  meets ( ),1+nnQQ  we have .00 LX <  Similarly, we notice that 1+γr  
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is disjoint from 1+σ∂ r  and 1+γr  meets [ ].1+nnQQ  We see that .11 ++ < rr YL  

Along with (3.4), we get .01 LLr <+  So { }jL  is not partially ordered. 

As such, we may choose a sub-sequence { }qjj σσ ...,,1  of { }....,,1 rσσ  

Since ( ) ( )11 jj σ∂=γ ��  and since 1jγ  is disjoint from ,1jσ∂  either 

11 jj LX <  or .11 jj YL <  If the latter occurs, then 1jσ  intersects ,0σ  which 

leads to ,0011 LXYL jj <<<  and this would contradict (3.2). It follows 

that 

.11 jj LX <  (3.5) 

Likewise, as ( ) ( ),22 jj σ∂=γ ��  2jγ  is disjoint from ,2jσ∂  so either 

22 jj LX <  or .22 jj YL <  If the latter occurs, then ,1122 jjjj LXYL <<<  

this would also contradict (3.2). So we must have .22 jj LX <  An induction 

argument shows that 

....,,, 2211 qq jjjjjj LXLXLX <<<  (3.6) 

There remain two cases to consider: 

Case 1. .rjq =  In this case, we note that qjr σ=σ  and ( )1, +σσ rr  

forms a pair of nested sets. If ,1+σ⊂σ rr  then from (3.6), .rrr LXY <<  

Since ( ) ( ),11 ++ σ∂=γ rr ��  1+γr  is not only disjoint from 1+σ∂ r  but also 

meets ( ).1+nnQQ  It follows that .11 rrrr LYYL <<< ++  But this contradicts 

(3.2). If ,1 rr σ⊂σ +  then since 1+σr  covers ,1+nQ  we have .1 rn XQ <+  

But this situation does not occur. 

Case 2. .rjq <  In this case, all rjq σσ + ...,,1  are contained in .qjσ  In 

particular, .qjr σ⊂σ  But we know that ( )1, +σσ rr  forms a pair of nested 

sets. If ,1 rr σ⊂σ +  then ,1 qjr σ⊂σ +  which contradicts that .rjq <  
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Whence 1+σ⊂σ rr  and thus .1 ∅≠σσ +rjq ∩  It follows that qjr σ⊂σ  

.1+σr∩  Now, from (3.6), we have .qq jj LX <  On the other hand, since 

( ) ( ) 111 , +++ γσ∂=γ rrr ��  is disjoint from ,1+σ∂ r  we thus obtain 

.11 qq jjrrrr LXXYYL <<<<< ++  

Once again, this would contradict (3.2). ~ 

Another situation is that 0σ  covers nQ  but none of 10, +≤≤σ rjj  

covers .1+nQ  In this case, we prove: 

Lemma 3.3. Suppose that { }jγ  is partially ordered: 10 LLQn ≤<  

.11 ++ ≤≤≤ nr QL"  Then for ,10 +≤≤ rj  we have .jj LX <  

Proof. Since 0σ  covers nQ  and 0γ  is disjoint from ,0σ∂  we have 

.00 LX <  By Lemma 3.1, we know that ( )10, σσ  is a pair of nested sets. If 

,10 σ⊂σ  then clearly .11 LX <  If ,01 σ⊂σ  then either 11 YLQn <≤  or 

.11 LX <  In the former case, .001 LXL <<  This contradicts that .10 LL ≤  

So we must have .11 LX <  

Suppose that for some j, ,0 rj ≤≤  we have .jj LX <  Again, by 

Lemma 3.1, ( )1, +σσ jj  is a pair of nested sets, either 1+σ⊂σ jj  or 

.1 jj σ⊂σ +  In the former case, since 1+γ j  is disjoint from ,1+σ∂ j  either 

11 ++ < jj YL  or .11 ++ < jj LX  If ,11 ++ < jj YL  then <<< ++ jjj YYL 11  

.jj LX <  This contradicts that .1+≤ jj LL  Therefore, .11 ++ < jj LX  

It remains to consider the case where .1 jj σ⊂σ +  Notice that 1+γ j  is 

disjoint from .1+σ∂ j  We see that either 11 ++ < jj YL  or .11 ++ < jj LX  In the 

former case, from the induction hypothesis, we get <<< +++ 111 jjj XYL  

.jj LX <  So this case does not occur, and hence we conclude that <+1jX  

.1+jL  The lemma is proved. ~ 
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It should be noted that { }jγ  may contain duplicate elements. By 

removing any duplicates from the sequence, we may assume, throughout the 
rest of the section, that { }jγ  contains only distinct geodesics. 

Lemma 3.4. Let the sequence { } ,2,...,,, 110 ≥+ rLLL r  be as in Lemma 

3.2. We have rRR r ≤+10  and hence ( ) .110 +≤+ rRgR r  

Proof. From Lemma 3.2, there is a smallest integer ,0, 00 rjj ≤≤  such 

that .00 1 jj LL <+  Since 10 +γ j  and 0jγ  are disjoint, it must be the case that 

.00 1 jj RR <+  

Let k be the smallest positive integer such that .0 kPR ≤  If ,00 =j  then 

01 LL <  and .01 kPRR ≤<  By Lemma 2.3, .12 +< kPR  Inductively, one 

shows that .1 rkr PR ++ <  Hence .10 rRR r ≤+  

Assume now that .00 >j  By applying Lemma 2.3 repeatedly, we 

conclude that ,11 +≤ kPR  ,22 +≤ kPR  and so on, .00 jkj PR +≤  By 

assumption, .00 1 jj LL <+  Since 10 +γ j  is disjoint from ,0jγ  we must have 

.000 1 jkjj PRR ++ <<  By Lemma 2.3 again, we obtain .12 00 +++ < jkj PR  

Similarly, ,23 00 +++ < jkj PR  and so on, inductively, one shows that 

( ) ( ).0000 1 jrjkjrj PR −+++−+ <  This implies that rRR r ≤+10  and hence 

( ) ( ) .1111010 +≤+= ++++ rRgRRRRgR rrrr  ~ 

We now discuss the case where [ ]110 ,...,,, +=′ rr wwwwG  is a 

geodesic segment so that jΩ  are all type (I) regions that go through two 

adjacent intervals [ ] [ ] [ ],2211 ++++ = nnnnnn QQQQQQ ∪  i.e., 0σ  covers    

nQ  and 1+σr  covers .2+nQ  In this case, by Lemma 3.3 of [16], .5≥r      

Let { ( )( )}0
1

0 σ∂∈γ − ��  be obtained from Lemma 2.2, which tells that 

00 Δ⊂γ  and 0γ  intersects ( )gaxis  and ( ).1+nnQQ  Likewise, let ∈γ +1r  

{ ( )( )},1
0�� σ∂−  ,11 ++ Δ⊂γ rr  be obtained from Lemma 2.2; that is, 1+γr  
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intersects ( )gaxis  and ( ).21 ++ nn QQ  Let { } 1
000, S∩γ=RL  and { ,1+rL  

} ,1
11 S∩++ γ= rrR  where L∈+10, rLL  and ., 10 R∈+rRR  

Lemma 3.5. We have rRR r ≤+10  and hence ( ) .110 +≤+ rRgR r  

Proof. We can write the geodesic segment ,21 GGG ∪=′  where 

[ ]1101 11 ,...,,, += rr wwwwG  and [ ]1212 ,...,,, 11 +++= rrrr wwwwG  are 

geodesic segments with 21 ≥r  so that 0σ  covers 11, +σrnQ  covers 1+nQ  

and 1+σr  covers .2+nQ  

From the above description, we know that 121 1+σ= rGG ∩  and 1G  

contains 421 ≥+r  vertices and 2G  contains 411 ≥+− rr  vertices. 

Let { }110 1...,,, +γγγ r  be the (distinct) geodesics obtained from 1G  and 

from Lemma 2.2, that is, 110 1...,,, +γγγ r  all intersect [ ].1+nnQQ  Similarly, 

let { }121 ...,,, 11 +++ γ′γ′γ′ rrr  be the (distinct) geodesics obtained from 2G      

and from Lemma 2.2. This means that 121 ...,,, 11 +++ γ′γ′γ′ rrr  all intersect 

[ ].21 ++ nn QQ  

We claim that ( ) .11 11 ++ γ′=γ rrg  Indeed, let { ( ) ( ) } ∈γγ ++
q

rr 1
1

1 11
...,,  

{ ( ( ))}1
1

1+
− γr��  be the ordered finite collection of geodesics intersecting 

( )gaxis  and ( ).1+nnQQ  It is easy to see that { ( ( ) ) ( ( ) )} ∈γγ ++
q

rr gg 1
1

1 11
...,,  

{ ( ( ))}1
1

1+
− γr��  is the collection of ordered geodesics intersecting ( )gaxis  

and ( ).21 ++ nn QQ  Notice that ( ) { ( ( ))}., 1
1

11 111 +
−

++ γ∈γ′γ rrrg ��  It is clear 

that { ( ( ) ) ( ( ) )}q
rrr gg 1

1
11 111 ...,, +++ γγ∈γ′  and that ( )0

1 1
q

r +γ  is closest to the attracting 

fixed point A of ( )0somefor qg  if and only if so is ( ( ) ).0
1 1
q

rg +γ  
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By applying Lemma 3.4 on ,1G  we obtain ,110 1 rRR r ≤+  and 

( ) .1110 1 +≤+ rRgR r  Also, by applying Lemma 3.4 on ,2G  we get 

( ) .11111 −−≤++ rrRRg rr  Hence, from Lemma 2.1(iii), 

( ) ( ) ( ) ( ) .11 11111010 11 rrrrRRgRgRRR rrrr =−−++≤+= ++++  

It follows that ( ) ,110 +≤+ rRgR r  as asserted. ~ 

Next, we consider a general case where [ ]110 ,...,,, +=′ rr wwwwG  is        

a geodesic segment whose vertices are mapped to all type (I) regions 
,...,, 10 +ΩΩ r  respectively. Assume also that 0σ  covers a labeled point nQ  

and 1+σr  covers a labeled point dnQ +  for a positive integer .1≥d  

As usual, let { ( )( )} { ( )( )}1
1

10
1

0 , +
−

+
− σ∂∈γσ∂∈γ rr ����  be obtained 

from Lemma 2.2, which says 0γ  intersects ( )gaxis  and ( ),1+nnQQ  and 

1+γr  intersects ( )gaxis  and ( ).1 dndn QQ +−+  Denote by { }00, RL  and 

{ },, 11 ++ rr RL  respectively, the endpoints of 0γ  and ,1+γr  where 10, +rLL  

L∈  and ., 10 R∈+rRR  

Lemma 3.6. Under the circumstances, we have: (i) ,13 rd ≤−  (ii) 

,110 −≤+ dLL r  (iii) rRR r ≤+10  and (iv) ( ) .110 +≤+ rRgR r  

Proof. Lemma 3.2 of [16] tells us that at least four elements are needed 
to cover any two successive labeled points. Since G ′  covers the labeled 
points { },...,,, 1 dnnn QQQ ++  we assert that ( ) ,13121 +−+≤+ rd  which 

implies that .13 rd ≤−  This proves (i). 

For (ii), as G ′  can be written as a union of ,...,,, 21 dGGG  where the 

first element 0σ  of 1G  covers ,nQ  the last element of ,1G  which is also the 

first element of ,2G  covers ,1+nQ  and so on, the last element of ,1−dG  which 

is also the first element of ,dG  covers ,1−dQ  and the last element of dG  

covers .dnQ +  Recall that { ( )( )},1
1

1 +
−

+ σ∂∈γ rr ��  where ,11 ++ Δ⊂γ rr  is 
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obtained from Lemma 2.2, which says that 1+γr  intersects ( )gaxis  as well 

as ( ).1 dndn QQ +−+  It follows that ( ]10 +rLL  contains at most these labeled 

points ....,,, 121 −+++ dnnn QQQ  That is, .110 −≤+ dLL r  This proves (ii). 

(iii) and (iv) can be proved by using induction arguments. We use 
Lemma 3.4 to settle the case when .1=d  

Write [ ]dnnQQ +  as [ ] [ ].11 dndndnn QQQQ +−+−+ ∪  Accordingly, G ′  is 

decomposed into two pieces. Let [ ] [ ]1110 ...,,,...,, 11 +++ −− rrr wwww dd     

G ′⊂  be geodesic segments whose corresponding type (I) regions cover 
[ ]1−+dnnQQ  and [ ],1 dndn QQ +−+  respectively. We must have ≥−1dr  

( ) 23113 −=+− dd  and .41 ≥− −drr  By Lemma 3.4, 110 1 −+ ≤
− dr rRR d  

and ( ) .11111 −−≤ −++− drr rrRRg d  Hence, by Lemma 2.1(iii), 

( ) ( ) 11111010 1111 ++++++ −−−−
++= rrrrrr RRgRgRRRRR dddd  

( ) .11 11 rrrr dd =−−++≤ −−  

Thus, ( ) ,110 +≤+ rRgR r  as asserted. ~ 

Remark. From Lemma 3.6(ii), .110 −≤+ dLL r  Thus, ( ) =+10 rLgL  

.110 dLL r ≤++  On the other hand, Lemma 3.6(i) yields that .1+≤ rd  It 

turns out that ( ) ( ) .1010 ++ ≤ rr RgRLgL  

4. Geodesics Mapped to Regions with Mixed Types 

Consider a geodesic segment 

[ ]vu ,,0 Γ=G�  (4.1) 

in ( ),SC  where ∅=Γ  if ;0=s  and { }svv ...,,1=Γ  if .1≥s  From the 

discussion of Section 2, vertices u and v can be mapped to regions uΩ  and 

.vΩ  If ,1≥s  all ,1, sjv j ≤≤  are mapped to regions jΩ  in H with 

geodesic boundaries. Assume throughout this section that vu ΩΩ ,  are of 
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type (II) and all other regions jΩ  are of type (I) that are supported on .L  Let 

vsu ΔΔΔΔ ,...,,, 1  denote the distinguished half-planes for ,,...,,, 1 vvvu s  

respectively. As usual, we write { } 1, S∩uuu YX Δ∂=  and { } vvv YX Δ∂=,  

,1S∩  where L∈vu XX ,  and ,, R∈vu YY  and for { } =≤≤ jj XYsj ,,1  

L∩jΔ∂  with .jj XY <  Denote .\ ji Δ=σ H  Our aim in this section is to 

estimate vu XX  and .vuYY  

Lemma 4.1. In the case where ,0=s  if ,vu XX ≤  then 1≤vu XX  

and ( ).11 +=≤ sYY vu  

Proof. The condition 0=s  means that vu ΩΩ ,  are consecutive type 

(II) regions. 

Case 1. 0
~,~,~ uvu  are distinct. Then ∅≠ΩΩ vu ∩  and thus ∅≠vu DD ∩  

and no corner points of vu DD ∪  are labeled points. Here we recall that 

{ },,\ ∗ΔΔ= uuuD H  { },,\ ∗ΔΔ= vvvD H  ∗∂Δ∂=∂ uuu DD ∪  and vvD Δ∂=∂  

.∗∂ vD∪  Hence uv XX <∗  and .uv YY <∗  By Lemma 2.5 of [16], L∩vD  

contains at most one labeled point. It follows that 1≤≤ ∗
vvvu XXXX  

and thus that .1≤≤ ∗
vvvu YYYY  

Case 2. .~~~
0uvu ==  In this case, ., 0

~uvu R�∈ΩΩ  Then vu DD ,  are 

adjacent so that vu DD ∩  is a geodesic and ( ) .~
0uDD vu =∩�  

If 0
~u  intersects ( )( )gaxis�  more than once, then { } =ii PQ , ( )vu DD ∩  

1S∩  are labeled points but the four corner points of vu DD ∪  are not 

labeled points. If vD  is on the left side of ,uD  then iuv QXX == ∗  and 

.iuv PYY == ∗  This tells us that .uv XX <  If vD  is on the right side of ,uD  

then ,ivu QXX == ∗  ,ivu PYY == ∗  ,1+< iv QX  ,1+< iv PY  ∗
− < ui XQ 1  

and .1
∗

− < ui YP  So 1=vu XX  and .1=vuYY  
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If 0
~u  intersects ( )( )gaxis�  only once, then again vu DD ,  are adjacent 

and there exists 0≥i  such that iiuD Δ′Δ′= + \1  and .\ 12 ++ Δ′Δ′= iivD  Again 

we have ( ) ,~
0uDD vu =∩�  ,1+

∗ == iuv QXX  iu QX =∗  and .2+= iv QX  

We see that .1== ∗
vvvu XXXX  Similarly, .1== ∗

vvvu YYYY  

Case 3. .~~~
0uvu ≠=  That is, { }vu,  forms the boundary of an x-

punctured cylinder, which means that vu ΩΩ ,  are adjacent and so are uD  

and .vD  Assume that vD  is on the right side of .uD  Then ∗= vu XX  and 

.∗= vu YY  Note that these points cannot be labeled points. By Lemma 2.5 of 

[16], no corner points of vu DD ∪  are labeled points. Also, we know that        

the interiors of ( ) L∩∪ vu DD  and ( ) R∩∪ vu DD  contain at most two 

labeled points. It is immediate that 1≤= ∗
vvvu XXXX  and =vuYY  

.1≤∗
vv YY  

Case 4. .~~~
0 vuu ≠=  If 0

~u  intersects ( )( )gaxis�  only once, then there 

exists an integer i such that iuiiu QXD =Δ′Δ′= − ,\ 1  and .iu PY =  It follows 

from ( ) 1, =vudC  that ∅≠vu DD ∩  and .∅=∂∂ vu DD ∩  In particular, 

uv XX <∗  and .uv YY <∗  Note that the corner points of vD  are not labeled 

points. We see that 1≤≤ ∗
vvvu XXXX  and .1≤≤ ∗

vvvu YYYY  

If 0
~u  intersects ( )( )gaxis�  more than once, then { }uu YX ,  are labeled 

points, but we still have uv XX <∗  and .uv YY <∗  Since L∩vD  and 

R∩vD  contain at most one labeled point, we conclude that ≤vu XX  

1≤∗
vv XX  and .1≤≤ ∗

vvvu YYYY  

Case 5. .~~~
0 uuv ≠=  The discussion of this case is the same as Case 4. ~ 

Let kj,  be the positive integers such that 

juj QXQ ≤<−1  and .1 kuk PYP ≤<−  
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The following two lemmas improve the results in [15, 16]. 

Lemma 4.2. If ,1=s  then 1≤vu XX  and ( ).12 +=≤ sYY vu  

Proof. Let .\ 11 Δ=σ H  Then ,1Δ⊂Δu  which tells us that << 11 XY  

.ju QX ≤  But we know that ( ) .1,1 <δ vXX  Hence ( ) .1, <δ vu XX  This 

leads to .1≤vu XX  In particular, .1+< jv QX  Here we assume that 1σ  is 

supported on .L  

Let { ( )( )}1
1

1 σ∂∈γ − ��  be obtained from Lemma 2.2; which says 

11 Δ⊂γ  and 1γ  intersects ( )gaxis  and [ ].1 jj QQ −  Let { }11, RL  be the 

endpoints of 1γ  lying on L  and ,R  respectively. 

Case 1. .11 uj XLQ ≤≤−  Since 1γ  does not intersect ,uΔ∂  ≤1R  

.ku PY ≤  Now 1+≤ jv QX  implies that ( ) .2,1 <δ vXL  We claim that 

( ) .2,1 <δ vYR  Indeed, if ( ) ,2,1 =δ vYR  then we may find two distinct 

hyperbolic elements of G sharing a common fixed point ,1R  which 

contradicting that G is discrete. If ( ) ,2,1 >δ vYR  then ( )vg Δ∂−2  intersects 

,1γ  which would contradict that ( ) .1,1 =vvdC  We conclude that ( )vYR ,1δ  

.2<  So ( ) .2, <δ vu YY  This leads to that .2≤vuYY  

Case 2. .1 ju QLX ≤<  We claim that .11 +< kPR  Suppose .11 +≥ kPR  

Then ( )1
1 γ−g  intersects ,uΔ∂  and this contradicts that ( ) .1, 1 =vudC  We 

conclude that .11 +< kPR  

The condition ( ) 1,1 =vvdC  implies ( ) .1,1 <δ vXY  But << 11 XY  

.1LXu <  We see that ( ) .1,1 <δ vXL  Hence ( ) 1,1 <δ vYR  (otherwise, 

( )1
1 Δ∂−g  would intersect ,1γ  which would contradict that ( ) .)1,1 =vvdC  

But .11 +< kPR  We see that ,2+< kv PY  which implies that ,2≤vuYY  as 

required. ~ 
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More generally, in the case of ,2≥s  we have: 

Lemma 4.3. If ,2≥s  then ( )[ ] 232 +−≤ sXX vu  and ≤vuYY  

,1+s  where and below, [ ]z  denotes the largest integer less than or equal     

to z. 

Proof. First we consider the case where the geodesic segment (4.1) can 
be rewritten as follows: 

[ ] ,2,,,...,,,, 100 ≥= + rvwwu r BAG�  

where { }α= aa ...,,1A  is a sub-sequence of vertices { }svvv ...,,, 21  that 

lying prior to the first vertex 0w  whose corresponding (type (I)) region 

00 \Δ=σ H  covers ,jQ  and ,B  if not empty, is the sub-sequence 

{ }βbb ...,,1  of { }svvv ...,,, 21  that lies after the first vertex 1+rw  whose 

corresponding (type (I)) region 11 \ ++ Δ=σ rr H  covers ,1−+djQ  where 

,2≥d  and jQ  and 1−+djQ  are the first and last labeled points covered         

by { } ,1 sii ≤≤Ω  respectively. Note that ∅≠A  and B  may be empty. This 

gives rise to 

0,1 ≥β≥α  and .2 sr =++β+α  (4.2) 

Note that at least four consecutive type (I) regions are needed to cover an 
interval [ ]1+nnQQ  for .2−+≤≤ djnj  It follows that 

( ) .13
113

12 +⎥⎦
⎤

⎢⎣
⎡ +=+⎥⎦

⎤
⎢⎣
⎡ −+≤ rrd  (4.3) 

From (4.2), we obtain .32 +≥++β+α= rrs  Thus, (4.3) yields that 

.13
2 +⎥⎦
⎤

⎢⎣
⎡ −≤ sd  (4.4) 

If ,∅=B  then we claim .djv QX +<  Suppose that .djv QX +≥  Then 

.1−+
∗ ≥ djv QX  But { }.,\ ∗ΔΔ⊂Ω vvv H  This implies that vΩ  is disjoint from 
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,1+Ω rw  or vΩ∂  intersects .1+Ω∂ rw  Both the cases would contradict 

( ) .1, 1 =+rwvdC  We conclude that djv QX +<  and thus dXX vu ≤  

.13
2 +⎥⎦
⎤

⎢⎣
⎡ −≤ s  

Consider next the case where .∅≠B  Then .1≥β  Since B  does not 

cover ,djQ +  if ,1++≥ djv QX  then vΩ  is disjoint from any ibΩ  for 

,1 β≤≤ i  and this would contradict ( ) .1, =βbvdC  So we conclude that 

.1++< djv QX  It follows from (4.4) that 

.23
21 +⎥⎦
⎤

⎢⎣
⎡ −≤+≤ sdXX vu  

This proves the first statement. 

To establish the second statement, we recall that ,iaΔ  ,1 α≤≤ i  are      

the distinguished half-planes for .ia  Write .\ ii aa Δ=σ H  Let ∈γi  

{ ( ( ))},1
iaσ∂

− ��  where ,iai Δ⊂γ  be obtained from Lemma 2.2, which says 

iγ  intersects ( )gaxis  and [ ].1 jj QQ −  Let { }ii RL ,  be the endpoints of ,iγ  

where [ ] L⊂∈ − jji QQL 1  and .R∈iR  

Case 1. The sequence { } α≤≤γΔ∂ iiu 1,  is partially ordered. Then 

{ } α≤≤γΔ∂ iiu 1,  is ordered .1 αγγΔ∂ ≺"≺≺u  In particular, 1LXu <  

.2 α≤≤≤ LL "  Notice that .ku PY ≤  By Lemma 2.3, ,11 +≤ kPR  and so 

on, we obtain 

.α+α ≤ kPR  (4.5) 

Since uΩ  is of type (II) and 1Ω  is of type (I), ,1Δ⊂Δu  which says that 

uD⊂σ1  and thus that .11 uXXY <<  As it turns out, .11 LX <  Now, by 

the same argument of Lemma 3.3, one shows that 

.αα < LX  (4.6) 
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Denote by { ( ( ))}0
1

0 wσ∂∈γ − ��  the geodesic obtained from Lemma 2.2; 

which says that 00 wΔ⊂γ  and [ ].100 jj QQL −∈γ= L∩  Notice that 

( )0, σσα  is a pair of nested half-planes. By the definition, ασ  does not 

cover jQ  while 0σ  covers .jQ  We have ,0wσ⊂σα  which implies that 

.0 αα << XYL  Together with (4.6), we have .0 α< LL  But 0γ  is disjoint 

from .αγ  So .0 α< RR  By combining (4.5), we conclude that α< RR0  

.α+≤ kR  This also yields that ( ) ;10 +α+< kPRg  that is, 

( ) .10 +α≤RgYu  (4.7) 

Case 2. { } α≤≤γΔ∂ iiu 1,  is not partially ordered. In this case, by a similar 

argument of Lemma 3.4, (4.7) remains valid. 

Now ( ) { ( ( ))}0
1

0 wg σ∂∈γ − ��  is the geodesic that corresponds to 0w  

and is obtained from Lemma 2.2, and moreover, one endpoint ( )0Lg  of 

( )0γg  lies in [ ].1+jjQQ  From Lemma 3.6, we assert that 

( ) .10 rRRg r ≤+  (4.8) 

But from Lemma 2.1(i), 

( ) .111 =++ rr RgR  (4.9) 

Suppose .∅≠B  Recall that ,1, β≤≤Δ iib  are the distinguished half-

planes for .ib  Write .\ ii bb Δ=σ H  Let { ( ( ))},1
ibi σ∂∈γ′ − ��  β≤≤ i1  and 

each ,ibi Δ⊂γ′  be obtained from Lemma 2.2; that is, each iγ′  intersects 

( )gaxis  and [ ].1 djdj QQ +−+  Let { }ii RL ′′,  be the endpoints of ,iγ′  where 

[ ] L⊂∈′ +−+ djdji QQL 1  and .R∈′iR  

Case 1. djQLX +ββ ≤′<  (here we recall that { } L∩
β

σ∂=ββ bYX ,  

with .)ββ < XY  We may first assume that .vXL <′β  Notice that 
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( ) 1, <δ β vXX  (otherwise, 
β

ΩΩ bv and  would be disjoint, contradicting 

that ( ) ).1, =β vbdC  So ( ) ,1, <′δ β vXL  and hence ( ) 1, <′δ β vYR  (otherwise, 

( )vg Δ∂−1  crosses ,βγ′  contradicting ( ) .)1, =β vbdC  Therefore, .1≤′β vYR  

But from Lemma 2.4, we obtain 

( ) .1 β≤′β+ RRg r  (4.10) 

It follows that 

( ) .11 +β≤′+′ ββ+ vr YRRRg  (4.11) 

If ,vXL ≥′β  then we must have .vYR ≥′β  It is clear that ( ) vr YRg 1+  

( ) .11 +β<β≤′≤ β+ RRg r  Hence (4.11) remains valid. 

Case 2. .1 djdj QXLQ +ββ−+ <≤′≤  In this case, ββ <′ YL  (elements in 

{ ( ( ))}β
− γ′�� 1  are mutually disjoint). From Lemma 3.3, { ( ) }β+ γ′γ′γ ...,,, 11rg  

is not partially ordered. By the same argument of Lemma 3.4, 
( ) .11 −β≤′β+ RRg r  We claim that .2≤′β vYR  Indeed, inequalities 

djQXYL +βββ <<<′  and ( ) 1, <δ β vXY  lead to that ( ) ,2, <′δ β vXL  

which yields that ( ) 2, <′δ β vYR  (otherwise, ( )vg Δ∂−1  or ( )vg Δ∂−2  would 

intersect ,βγ′  contradicting ( ) .)1, =β vbdC  So we conclude that vYRβ′  

,2≤  and thus (4.11) remains true. 

In both the cases, we have established (4.11). Now (4.7), (4.8), (4.9), 
(4.10) and (4.11) combine to yield 

( ) ( ) 100 ++= ruvu RRgRgYYY  

( ) ( ( ) )vrrr YRRRgRgR ββ+++ ′+′++ 111  

( ).111 +β++++α≤ r  (4.12) 

It follows from (4.12) and (4.2) that .1+≤ sYY vu  
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Similarly, one shows that 1+≤ sYY vu  when .∅=B  Next, we 

consider some special cases. 

If [ ]vu ,,0 AG� =  for { } { },...,,...,, 11 svvaa == αA  then α=s  and 

∪ iaσ  does not cover .jQ  This implies that ( ]vu XX  cover at most one 

labeled point which is ,jQ  which says .1≤vu XX  By a similar argument 

of (4.7),  

.11 +=+α≤ sYY vu  

If [ ]vwu ,,,, 00 BAG� =  for A  and B  sub-sequences of { },...,,1 svv  

then 

β++α= 1s  and .1=d  (4.13) 

In this case, it is easy to see that ( ).12 +=≤ dXX vu  By the argument of 

(4.7), we can deduce that ( ) .10 +α≤RgYu  But the same argument of 

(4.11) yields that ( ) .10 +β≤vYRg  It follows from (4.13) that 

( ) ( ) ( ) ( ) .11100 +=+β++α≤+= sYRgRgYYY vuvu  ~ 

Finally, we can easily handle a special case where all regions involved 
are type (II) regions. 

Lemma 4.4. Let [ ] ,0,,...,,, 110 ≥+ ruuuu rr  be a geodesic connecting 

0u  and .1+ru  Suppose that these vertices ,10, +≤≤ riui  are mapped      

to type (II) regions iΩ  with respect to g. We have 110 +≤+ rXX r  and 

,110 +≤+ rYY r  where { }ii YX ,  are endpoints of iΔ∂  and L∈iX  and 

.R∈iY  

Proof. From Lemma 2.1(iii), we have 

∑
=

++ =
r

j
jjr XXXX

0
110  and ∑

=
++ =

r

j
jjr YYYY

0
110 .  (4.14) 
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By Lemma 4.1, for ,0 rj ≤≤  we know that 

11 ≤+jj XX  and .11 ≤+jjYY  

It then follows from (4.14) that 110 +≤+ rXX r  and ,110 +≤+ rYY r  as 

asserted. ~ 

5. Proof of Theorem 1.1 and Theorem 1.2 

Let F∈f  be any pseudo-Anosov element. We know that f can be 

written as ,∗= gf  where Gg ∈  is an essential hyperbolic element. Let 

( )Su ~~
00 C∈  and let 0

~0 uFu ∈  be such that 00 uΩ=Ω′  is a type (II) region 

with respect to g. Then all regions ( ) ( )0010 ...,,, Ω′=Ω′Ω′=Ω′Ω′ m
m gg  are 

of type (II). 

We now prove that (1.1) holds for all integers 12≥m  (in [15, 16] (1.1) 
was established when .)110 ≤≤ m  Suppose that 

[ ],,...,,,, 210 ms uvvvu  where 12≥m  and ( ),0ufu m
m =  (5.1) 

is a geodesic in ( )SC  joining 0u  to .mu  Let 

ms Ω′ΩΩΩΩ′ ,...,,,, 210  (5.2) 

be the regions corresponding to ,,...,,, 10 ms uvvu  respectively. These 

regions can be classified as type (I) and type (II) regions. First consider two 
special cases: 

Case 1. Besides 0Ω′  and ,mΩ′  all sΩΩΩ ...,,, 21  are also type (II) 

regions. By Lemma 4.4, we obtain 

10 +≤ sXX m  and .10 +≤ sYY m  (5.3) 

If 0
~u  intersects ( )( )gaxis�  more than once, then 100 QXQ <<  and 

.100 PYP <<  Thus, 1+<< mmm QXQ  and 1+<< mmm PYP  (see      

Figure 3). If 0
~u  intersects ( )( )gaxis�  once, then 10 QX =  and .10 PY =  
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Hence 1+= mm QX  and .1+= mm PY  In both the cases, we have =mXX0  

.0 mYY m =  From (5.3), we obtain .1 ms ≥+  That is, 

( ) .1,0 msuud m ≥+=C  (5.4) 

Case 2. Except 0Ω′  and ,mΩ′  all sΩΩ ...,,1  are type (I) regions. Then 

they must stay on one side of ( ).gaxis  Suppose that all ,\ ii Δ=σ H  

,1 si ≤≤  are supported on .L  By Lemma 4.3, 23
2

0 +⎥⎦
⎤

⎢⎣
⎡ −≤ sXX m  and 

.10 +≤ sYY m  Since ∅≠Ω′Ω ms ∩  and sΩ  is of type (I), ms D⊂σ  for 

{ }.,\ mmmD ΔΔ′= H  This implies that 

.1+≤<<< mmssm QXXYQ  

By assumption, we know that 100 QXQ ≤<  and .1+≤< mmm QXQ  

Notice that 10 QX =  if and only if .1+= mm QX  Hence .0 mXX m =  It 

turns out that 

.23
223

2 +−≤+⎥⎦
⎤

⎢⎣
⎡ −≤ ssm  

So ,43 −≥ ms  which together with 3>m  leads to that 

( ) .331,0 mmsuud m >−≥+=C  (5.5) 

In general, { }sΩΩ ...,,1  contain both type (I) and type (II) regions. 

Rewrite (5.2) as 

( ) ( ) ( ) ( ) ( ) ( ) ,1,,,...,,,,, 11000 ≥Ω′ΓΩΓΩΓΩ′=Ω MmMpMppppp  (5.6) 

where ( ),ipΩ  ,0 Mi ≤≤  are all type (II) regions and ( )ipΓ  consists of 

consecutive type (I) regions if not empty. Suppose that ( ) .∅≠Γ ip  Write 

( ) { ( ) ( ) ( )},...,,1 iripipip ++ ωω=Γ  where every ( ) jip +ω  is a type (I) region 

and is contained in ( ) ( ) .\ jipjip ++ Δ=σ H  Here we recall that ( ) jip +Δ               

is the distinguished half-plane for ( ) .jipv +  By Lemma 3.1, any pair 
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( ( ) ( ) )1, +++ σσ jipjip  for successive regions ( ) ( ) 1, +++ ωω jipjip  in ( )ipΓ  is a 

pair of nested sets, which means that they are supported on L  or on .R  
Whence all elements in ( )ipΓ  are supported on L  or on .R  Throughout we 

assume that the first type (I) region in (5.6) is supported on .L  

The integer function ( )ip  in (5.6) satisfies the recursive condition: 

( ) ,00 =p  and for ( ) ( ) ( ) .111,1 +−=−−≥ iripipi  (5.7) 

It is obvious that ( ) ( ) ( )∑ ∑=
−
= ++=+= M

j
M
j MMrjrMjrs 0

1
0 .  We thereby 

obtain 

( ) ( )∑
−

=

−−=
1

0
.

M

j
MMrsjr  (5.8) 

Recall that { ( ) ( )}ipip YX ,  are endpoints of ( ),ipΔ∂  where ( ) L∈ipX  and 

( ) R∈ipY  and ( )ipΔ  is the distinguished half-plane for ( ).ipv  By Lemma 

2.1(iii), 

( ) ( ) ( ) ( )∑
−

=
+=

1

0
10

M

i
ipipMpp XXXX  

and 

( ) ( ) ( ) ( )∑
−

=
+=

1

0
10 .

M

i
ipipMpp YYYY  (5.9) 

Let K denote the number of zeros in ( ) ( ) ( ){ }.1...,,1,0 −Mrrr  From the 

construction, 0
~u  intersects ( )( )gaxis�  at least once. We deduce that 

( ) 1000 QXXQ p ≤=<  and ( ) .1000 PYYP p ≤=<  (5.10) 

See Figure 3. For each 10 −≤≤ Mi  with ( ) ,2≥ir  we define 

( ) ( )
( )

( )⎪⎩

⎪
⎨
⎧

Γ+⎥⎦
⎤

⎢⎣
⎡ −

Γ+
=

R

L

on  supportedis if23
2

,on  supportedis if1

ip

ip
i ir

ir
b  
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and if ( ) ,1=ir  we define 

( ) ( )

( )⎩
⎨
⎧

Γ
Γ+

=
.on  supported is  if1
,on  supported is  if1
R
L

ip

ip
i

ir
b  

Since the condition ( ) 2≥ir  guarantees that ( )( )[ ] ( ) .1232 +≤+− irir         

In the case of ( ) ,1=ir  it is automatic that ( ) .11 +< ir  We see that 

( ) 1+≤ irbi  for all ( ) .0>ir  There are two cases to consider: 

Case 1. ( ) .1+<≤ mMpm PYP  From (5.9), (5.10) and Lemmas 4.1-4.3, 

we know that 

( ) ( ) { ( ) ( ) ( ) }∑
−

=
+ ≥+==

1

0
10 1;

M

i
ipipMpp irYYKYYm  

( ){ }∑
−

=

≥+≤
1

0
.1;

M

i
i irbK  (5.11) 

From the definition of ib  and (5.11), we obtain 

( ) ( ){ }∑
−

=

≥++≤
1

0
1;1

M

i
irirKm  

( ) ( ){ }∑
−

=

≥+−+=
1

0
1;

M

i
irirKMK  

( ) ( ){ }∑
−

=

≥+=
1

0
.1;

M

i
irirM  (5.12) 

But 

( ) ( ) ( )∑ ∑
=

−

=

++=+=
M

j

M

i
MrirMMjrs

0

1

0
.  

So 

( ) ( )∑
−

=

−−=
1

0
.

M

i
MrMsir  (5.13) 
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Since ( ) ,0≥Mr  (5.13) and (5.12) combine to yield 

( )( ) ( ) .sMrsMrMsMm ≤−=−−+≤  

Hence 

( ) .11,0 +≥+= msuud mC  (5.14) 

For ,1+<≤ mpm QXQ M  the argument is the same. 

Case 2. ( ) mMp QX <  and ( ) .mMp PY <  Since ( ) ,1, =ms uvdC  ( )MpΓ  

.∅≠  That is, if we denote ( ) { ( ) ( ) ( )},...,,1 MrMpMpMp ++ ωω=Γ  then 

( ) .1≥Mr  It is obvious that ( ) ( )MrMps +=  and suppose that sω  is 

supported on ,L  then { } L⊂σ∂= 1:, S∩sss YX  with .ss XY <  

From construction (here we refer to Figure 3), ( )0Ω′=Ω′ m
m g  and 

{ }.,\ 000 ΔΔ′⊂Ω′ H  This tells us that 0Δ∂  lies between 0Δ′∂  and .1Δ′∂  Thus, 

mΔ∂  lies between mΔ′∂  and 1+Δ′∂ m  (here we recall that mΔ  is the 

distinguished half-plane for .)mu  That is to say, 

1+≤< mmm QXQ  and .1+≤< mmm PYP  (5.15) 

By hypothesis, ( ) .1, =ms uvdC  This yields that .∅≠Ω′ω ms ∩  From 

(5.15), we conclude that 

.1+≤<<< mmssm QXXYQ  

Let L be the smallest integer such that ( ) .mLMp QQX ≤<  Then .mL ≤  

Since ( ) ,100 QXQ p ≤<  we have 

( ) ( ) .112 0 −≤−≤≤− mLXXL Mpp  (5.16) 
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On the other hand, Lemmas 4.1-4.3 and (5.9) yield that 

( ) ( ) ( ) ( ) ( ){ }∑ ∑
−

=

−

=
+ ≥+≤=

1

0

1

0
10 1;

M

i

M

i
iipipMpp irbKXXXX  

( ) ( ){ }∑
−

=

≥++≤
1

0
1;1

M

i
irirK  

( ) ( ){ } ( )∑
−

=

−+≥+=
1

0
1;

M

i
KMirirK  

( ) ( ){ } ( )∑
=

−≥+=
M

i
MririrM

0
.1;  (5.17) 

From (5.2) and (5.6), we know that ( ) ( ){ }∑ = ≤≥+ M
i sirirM 0 ,1;  which 

simplifies to 

( ) ( ){ }∑
=

−≤≥
M

i
Msirir

0
.1;  (5.18) 

Putting (5.18) and (5.17) together, we conclude that 

( ) ( ) ( ) ( ).0 MrMsMXX Mpp −−+≤  (5.19) 

From (5.16), ( ) ( )Mpp XX 0  is either 1−L  or .2−L  By (5.19), we obtain 

( ).2 MrLs +−≥  (5.20) 

Since ( )MpΓ  covers at least 1+− Lm  labeled points { }mL QQ ...,,  and by 

Lemma 3.2 of [16], at least four successive regions in ( )MpΓ  are needed to 

cover a pair of any successive labeled points in { }....,, mL QQ  Note also that 

the first region in ( )MpΓ  does not cover .LQ  We conclude that 

( ) ( ) .13
213

21 +−≤+⎥⎦
⎤

⎢⎣
⎡ −≤+− MrMrLm  (5.21) 
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(5.21) simplifies to ( ) ( ) 23 −≤− MrLm  or 

( ) .1331 +−≥− LmMr  (5.22) 

From (5.20) and (5.22), we obtain .2333 LmLmLs −=−+≥  But .mL ≤  
Hence ,23 mmms =−≥  that is, ,11 +≥+ ms  which says that 

( ) .1,0 +≥ muud mC  (5.23) 

By combining (5.4), (5.5), (5.14) and (5.23), we conclude that ( )muud ,0C  

,m≥  which proves Theorem 1.2. Theorem 1.1 follows immediately from 
Theorem 1.2. ~ 

6. Unboundedness of Sequence of Stable Translation Lengths 

According to Theorem 1.2, for any pseudo-Anosov element ,F�∈f  we 

can find a vertex ( )Su 0C∈  such that for all positive integers m and n, we 

have ( ( )) ., mnufud mn ≥C  This particularly implies that 

( ( ) ( ))
mn

ufud nm
≥

,C  for any integers n. 

Thus, ( ) .mf m ≥τC  Notice that m is also arbitrary. We conclude that 

( ) ∞+→τ mfC  as .∞+→m  This proves the following result: 

Theorem 6.1. There exists a sequence }{ F�⊂...,, 21 ff  of pseudo-

Anosov elements such that ( ) ∞+→τ mfC  as .∞+→m  

Remark. By a slight modification, we can show that elements if  in the 

sequence can be chosen as primitive elements. 

7. Bi-infinite Geodesics Invariant under Pseudo-Anosov’s F∈f  

Let L  denote the set of primitive oriented filling closed geodesics on S~  

and *L  the subset of L  consisting of those filling geodesics intersecting 
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every simple closed geodesic more than once. It is not difficult to see that 

both *L  and ,\ ∗LL  are not empty. For every ,\ ∗∈γ LL  let γL  be the 

collection of simple closed geodesics on S~  intersecting γ  only once. 

An infinite path [ ],...,,...,,...,,... 0 mm uuu−  where all ( ),0 Sui C∈  is 

called a bi-infinite geodesic if mu−  and mu  both tend to points in ( )SC∂  and 

for any m, the subpath [ ]mm uuu ...,,...,, 0−  is a geodesic segment connecting 

mu−  and .mu  

Theorem 7.1. Let S be of type ( )1,p  with .1>p  Let F∈f  be a 
pseudo-Anosov element, and let L⊂γ  be determined by f. Assume that 

.\ *L��L∈γ  Then f preserves at least one bi-infinite geodesic in ( ).SC  
Furthermore, there is an injective map: 

( ){ }Singeodesicsinfinite-biinvariantfI C-: →γL  

so that ( )γLI  consists of disjoint bi-infinite geodesics. 

Proof. Fix ∗∈γ LL \  and for every ,~
0 γ∈Lu  let 0

~0 uFu ∈  be such 

that 0uΩ  is a type (II) region with respect to g, where .fg =∗  We then 

define 

( ) [ ( ) ( ) ( ) ( ) ]....,...,,,,...,,,...~
0000

1
00 ufufuufufuI mm −−=  (7.1) 

For any other 0
~0 uFu ∈′  with ( ) ,0 ∅≠Ω ′ gaxisu ∩  we have .~~

00 uu =′  

Hence .00
~uu R∈Ω ′  It follows that there is an integer j such that 

( ),00 u
j

u g Ω=Ω ′  that is ( )00 ufu j=′  which tells us that the map I is well-

defined. From (5.4), (5.5), (5.14) and (5.23), one shows that ( )0
~uI  for every 

γ∈L0
~u  is an f-invariant bi-infinite geodesic in ( ).SC  

To show that I is injective, we suppose ( ) ( )00
~~ vIuI =  for some ,~

0u  

.~
0 γ∈Lv  Let 0

~0 vFv ∈  be such that 0vΩ  is a type (II) region with respect     
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to g. From the definition (7.1), we have ( )00 ufv i=  for some integer i. Since 

,F�� ∈f  we see that 0u  and 0
~0 uFv ∈  which says .~~

00 uv =  Similar arguments 

also yield that ( )γLI  consists of disjoint bi-infinite geodesics in ( ).SC  ~ 

Question. Is the map I also surjective? 

Remark. Bowditch [2] proved that for a surface npS ,  with 43 −+ np  

,0>  there exists a positive integer m such that for any pseudo-Anosov 

mapping class ( ),,npSModf ∈  mf  preserves some bi-infinite geodesic in 

( ).,npSC  
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