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Abstract

Let Sp,l be a hyperbolic Riemann surface of genus p > 1 with one

puncture X. In this paper, we consider the subgroup £ of the
mapping class group of Sy ; that consists of point-pushing mapping
classes, and show that the minimum Lg(&) of stable translation

lengths for the actions of all pseudo-Anosov elements of Z on the
curve complex C(Sp 1) is one. It is well known that every pseudo-
Anosov element f € & determines an oriented filling closed
geodesic v on Sy U{x}. We further show that L(&) can be
achieved by those pseudo-Anosov elements f so that y intersect some
simple closed geodesics only once. As consequences, we prove that
the set of the stable translation lengths for the actions of all pseudo-

Anosov elements of & is unbounded. We also give a sufficient

condition for a pseudo-Anosov element f € # to have invariant bi-

infinite geodesics in C(S ;).
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1. Introduction and Main Results

Let Sy be a hyperbolic Riemann surface of genus p > 0 with n > 0
punctures. Let X be a puncture if n > 1. Assume that Sp 1 = S,y U {x} is

also hyperbolic. Let & be the subgroup of the mapping class group

Mod (S D, n) consisting of mapping classes projecting to the trivial mapping
classon Sp _j.

It is well-known (Kra [7]) that there are infinitely many pseudo-Anosov

mapping classes in &, each of which contains a homeomorphism f :

Sp,n — Sp,n that keeps invariant a pair (¥, F _) of transverse measured
foliations on Sy, , with the property that there is a real number A > 1 such
that

f(F,)=AF, and f(F_)=(/0)F_.

A is called the dilatation of f. Thurston [10] showed that A is an algebraic
number. It is important to note that f is irreducible, by which we mean that

for every simple closed geodesic U on Sy, , and any positive integer i, f i(u)
is not homotopic to U. Here and throughout the paper, we denote by fi(u)

the geodesic homotopic to the image curve of U under the map f 3

We can thereby consider the f!_iterations of U and obtain an infinite

orbit

& ={u, f(u), £2(u), ..}.
Geodesics in . are distinct and can be viewed as vertices on the curve
complex C(S p,n) (see Harvey [5] for the definition of the curve complex).
Denote by Co(Sp n) the set of vertices of C(Sp ). C(Sp n) is equipped

with the path metric d. defined as follows. For any two vertices U, V €

Co(Sp,n), we declare d¢(u,v) =1 if and only if u and v are disjoint;
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otherwise, dg(u, v) is one more than the minimum number of geodesics

V], ..., Vg that lie in between U and v and satisfy the conditions
de(u, vi) =1, de(vs, V) = 1, and d¢(vj, Vi) =1 for j=1,..,s-1

It is obvious that

de(u, ™)) >m (1.1)

for m = 0, 1. From Proposition 4.6 of Masur-Minsky [8], d.(u, f™(u)) > 3
for all large integers m. In [15, 16], we showed that (1.1) is true for

3 <m <11 for surfaces Sp ;.

For surfaces Sp n with 3p—4+n>0 and n>0, it was shown in

[13, 14] that (1.1) remains true for m = 3, 4.

The stable (or asymptotic) translation length t.(f) for the action of f on
C(Sp,n) is defined as

.. de(u, £M(u))
rc(f)zllmlnfCT

m-—oo

for a vertex U € Co(Sp,p)- It is easy to show that t¢(f) does not depend
on the choice of u. So 1o (f) is well defined. By the same result of [8],
as mentioned earlier, there is a positive constant C, , depending only on

p and n, such that for all pseudo-Anosov eclements f € &, we have

to(f) = ¢p p, which means that
Lo(&Z) = inf{zo(f); for any pseudo-Anosov mapping class f € Z}

has a positive lower bound Cp- In [15, 16], we showed that Cp 2038 for

surfaces S, | with p > 1.

An upper bound for Lz(&) can be easily obtained from the triangle

inequality. Observe that every pseudo-Anosov element f € &# determines
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(via an isotopy) an oriented closed filling closed geodesic y on Sy _j. That
is, v intersects every simple closed geodesic on Sy ,_j. Let y < S 1 be

such a filling geodesic that intersects some simple geodesics U only once.

Let u be the vertex in Cy(S p,n) obtained from U by removing a point
X € v. Let f be a pseudo-Anosov mapping class constructed from pushing
X along v in a full cycle. Then f € & (Theorem 2 of [7]) and u is disjoint
from f(u), and so we have dg(u, f(u)) = 1. By the triangle inequality and
the fact that f acts on C(S D, n) as an isometry with respect to the metric dg,
we get de(u, f™(u)) < m forall m> 1. It follows that to(f) <1 and thus
Le(F) < 1.

The main purpose of this paper is to fill in the gap between the lower and
upper bounds of L-(&#) mentioned above. We will prove the following
result:

Theorem 1.1. For any Riemann surface Sp; with p >1, we have
Le(&) =1, which can be achieved by those t.(f) for which f determines
filling geodesics that intersect some simple closed geodesics only once.

Well-known results. For any subgroup H of Mod(S, ), let Lo(H)

= inf{t(f); for any pseudo-Anosov mapping class f € H}. From

Proposition 4.6 of Masur-Minsky [8], there is a positive lower bound for

Lc(Mod(Sp ). Bowditch [2] proved that to(f) is a rational number with
bounded denominator for every pseudo-Anosov element f e Mod(S p,n)-
For a closed Riemann surface S, ( of genus p > 1, an upper bound for

Lc(Mod(Sp o)) is given by [3], where Farb-Leininger-Margalit proved that

4log(2 + \/g)

1
p log(p - 3)

Lc(MOd(S p’o)) <
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Later, Gadre-Tsai [4] improved their results by showing that

1
162(2p — 2)* +30(2p - 2)

< Le(Mod(S ) < pz; (1.2)

+p-4

For real valued functions F(t) and G(t), we write F(t)=<G(t) if there
is a constant C such that 1/C < F(t)/G(t) < C for all t € R. Using this

notation, we can write (1.2) as Lg(Mod(Sp o)) <1/ p? as p — +o.
Valdivia [9] showed that for all sufficiently large integers n with p > 2
fixed, Le(Mod(Spy,))=<1/n. He also showed that L¢(Mod(Sg p))
=1/n? and Le(Mod(Sy on)) < 1/ n?. Recently, Kin-Shin [6] proved that

Le(Mod (S ) = 1/n?.

Quantitative estimations of Lz(H) for certain subgroups H of a mapping
class group were also obtained in [3] and [6]. Let Iy be the fundamental

group of Sy o. For any k > 1, let T}, be the kth term of the lower central

series for T). Denote by A4 the kernel of the natural homomorphism of
Mod (S, o) onto Out(I'/Ty). Then for the sequence of the subgroups A%,

Theorem 6.1 of [3] asserts that for all k > 1, we have Lq(Af) —> 0 as

p — oo

Let J#,5¢" <Mod(Sp () denote the handlebody and hyperelliptic
subgroups, respectively. It was shown in [6] that L,(5# )xl/ p2 ,
Lo(o#) < 1/p?, and Lo(o# N ") = 1/ p?. Additionally, let D, denote

a closed disk with n points X;, Xy, ..., X, removed. There is a natural

homomorphism t: Mod(Dy, ) = Mod(S ;) defined by collapsing the disk
Dy to the (n+1)st puncture X,,; on Sp g = S2\{X{ses Xs Xpysp ). Kin-

Shin [6] also proved that L. (L(Mod(Dy))) = 1/n?.
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Theorem 1.1 follows from the following result:

Theorem 1.2. Let S, | be a Riemann surface of genus p > 1 with one

puncture. Let f € & be any pseudo-Anosov element. Then there exists
ueCy(S p,1) such that (1.1) holds for any nonnegative integer m.

Outline of proof of Theorem 1.2. Throughout we fix S = Sp | and let

S=sU {x}. We use the same notations and assumptions as in [15, 16]. Let
f € & be a pseudo-Anosov element. From Theorem 2 of [7], we know that
f can be identified with an essential hyperbolic M&bius transformation g on a
hyperbolic plane H which has two distinct fixed points on s'. Denote by
(£, R} = S!\{fixed points of g}. Points on £ or R are naturally ordered.
Thus, it makes sense to write U <U’ or U > U’ for points U, U" € £ or
U,U eR.

Every vertex U e Co(S) is homotopic to a vertex U € Co(S) as the

puncture X is filled in. (2.3) tells us that u can be mapped to a convex and
unbounded region €, as shown in Figure 1:

Figure 1

The complement H\Q, is a disjoint union of half-planes each of which
contains infinitely many geodesics projecting to U under the universal
covering map o : H —» S. In particular, every component of 0, projects

to U under p.



On Unit Stable Lengths of Translations of Point-pushing ... 7
All such regions €, can be classified as type (I) or type (II) regions with

respect to g as drawn in Figures 2(a) and 2(b), where {X,, Y,} = S' N oA,

and A, is the half-plane in H\Q, covering the attracting fixed point of g.

axis(g)

(a) type (II) region (b) type (I) region
Figure 2
Let u, Vv e Cy(S) be mapped to Q, and Q,, respectively. Note that
dc(u, v) =1 implies that either de (U, V) =1 or d (T, V) = 0 (ie., U = V).
By Lemma 2.1, Lemma 2.2 of [15] and Lemma 4 of [12], d¢(u, v) =1 with
de(@,V) =1 if and only if 0Q, NoQ, = and Q, NQ, # J; and
de(u, v) =1 with dp(U, V) =0 if and only if Q, and Q, are adjacent
components of H\{o™ (')} in the sense that Q, NQ, is a geodesic in
o™ @)
Let Uy € Cy(S). Write Uy, = f™(uy) and consider a geodesic
4 = [ug, Vi, V2, s Vs, Up ]
joining from Uy to Up. These vertices are mapped to regions

Qp, Q, ..., Qg, Qp, in H that all look like the region depicted in Figure 1.

{Qh, Qy, ..., Qg, Qpy } satisfies the conditions:
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(Al) QN #93, Qs Ny =9, Qi NQj #D for i=1,..,
s—1, and

(A2) 0Q N0y =D, 0Qs Ny =D, 00 N oD, =D for i = 1,
51

Notice that each Q; is either a type (I) or a type (II) region with respect to g.
One may assume that Q is of type (IT) so that Qy < H\{A,, Ay} (refer to

Figure 3). Then all Qf = gi(Q'o ), i > 0, are also type (1) regions.
We must compare the geodesic ¢ with the quasi-geodesic
29 = [Uo, f(Uo), fz(Uo), . Um]
through their vertices. 2% determines a sequence Ay < A} < -+ < A of

nested half-planes in H for Aj = gi(A’O), as well as those labeled points {R}
and {Q;}. See Figure 3 also:

(o No o5 Qa Qm Xm

- A Ay Al Al

? Qi
o oy
B : |

: axis(g)
Praga

: f\/\f‘\ s ___./

Py Yo Py Py Py P Yo
AL | Ao =
Figure 3

We see that Qp — A]\Aj) and for every i>0, Qi c Al \A.

Unfortunately, Q; may not sit in Aj,;\A. In any event, however, the
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conditions Qp, < H\A}, and dg(vg, Uy) =1 imply that Qg N Qp, # O,
which tells us that the sequence {Qj} moves to catch up Q. So necessarily
we have Py <Y, Qp < Xy if Qg is of type (II); Qn < Yg < Xy if Qg is
of type (I) and is supported on £; and B, <Yg < X4 if Qg is of type (I)
and is supported on R.

Our purpose is to determine the least number of regions {Q;} needed to
satisfy (A1) and (A2) above, and to move across over all Aj’s so that {Q;}
can get out of Aj,. There is a strong indication, due to (A1) and (A2), that

the motion cannot be too rapid. Consider the subsequence {Qij } consisting

of type (II) regions. We need to rule out the possibility that one endpoint

Xj. = aAij N £ moves slowly towards the attracting fixed point A of g,

i .
]
while the other endpoint Yij = 8Aij (R moves far down to A.

As a major step of the proof of Theorem 1.2, we show that the inclusion
of type (I) regions in {€;} will not increase the motion efficiency. That is to

say, the least value s can be achieved by a sequence {Q;} whose members

are all type (II) regions.

To carry this out, among other works, we let [Wy, W, ..., Wy 1] = & be

a segment so that all Qy, are type (I) regions. Then they stay on one side of

axis(g), which is the geodesic connecting the two fixed points of g. Denote

Ow, = H\Zwi. Note that oy, is the half-plane containing €, so that
doy, € {0Qy }. Hence oy, is disjoint from axis(g). Suppose that UGWi
is supported on £ and covers an interval [Q iQ j+d—1] for some integer

d > 2. Then a sequence {y;},<;,,; of geodesics can be found so that

(B1) i {0 (o(doy )},

(B2) vj Ay crosses axis(g), and

(B3) v; intersects [QjQj q—1]-
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Note that for 0 <i <r, either y; = yj,1, or yj and y;j,; are disjoint.
From (B1), y; and 80Wi are also disjoint. Figure 4 demonstrates two special

cases where d = 2. It is known that at least four type (I) regions are needed

to cover an interval [Q;Qj]-

Figure 4

In each of the two figures, two finite sequences {Jc(, 0o}, 00y, 003}
and {yg, 71, Y2, Y3} of geodesics are drawn that satisfy (B1)-(B3) as well as
the property that Uci covers [Q iQj +1]- As we can see, in both examples,
the sequence {y¢, 1, Y2, Y3} is not properly ordered.

This phenomenon is true, in general: for any d > 2, and any finite
sequence {cj} passing through Qj, .., Qj,q—j, a sequence {yj} of

geodesics can be found so as to satisfy (B1)-(B3). Lemma 3.2 asserts that
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{yi}o <i<r41 1s not properly ordered. Putting all these sequences together,
we see that {yj} overall moves towards the attracting fixed point of g as
m — +oo, but the motion is not monotonic.
Let {Li, Ri} =7v; N'S' be the two endpoints of y; with Lj € £ and
Ri € R. Lemma 3.6 asserts that

rnax{| RoRr+1 |, | LoLri |} <, (1.3)

where and below |UU’| denotes (for any U, U’ in £ orin R) the number

of the labeled points P, or Q,, contained in the half-open interval (UU'].

We then investigate a segment [u, [, V] = &, where Q, Q, are of
type (Il) and T = {vy, ..., Vi } are all mapped to type (I) regions Q, ..., Q.
Let Q j be the first labeled point so that X, < Q j- We can further divide

I" into three sub-sequences &7, ¥ and %, where & is a sub-sequence that

lies prior to the first vertex in I whose corresponding (type (I)) region covers

Q j» and A, if not empty, is the sub-sequence that lies after the first vertex
in I" whose corresponding (type (I)) region covers Qj,q_j, where d>2
and Qj,q_; is the last labeled point covered by {Qj} ;.. Thus, the
vertices in the sub-sequence % are mapped to those half-planes o; so that
Usi covers [QjQj.d 1]

It follows from Lemma 4.3 and (1.3) that

max{| X, Xy

VoY b <k +1. (1.4)

B

Notice that & is the concatenation of segments of forms [u, ', v]. By using
(1.4) for each segment [u, T, V], we conclude that the least number
s>m-—1if {Qj} contains no type (I) regions; and s > m if {Q;} contains

some type (I) regions. Details can be found in Section 5.
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2. Preliminary Background

Let H be a hyperbolic plane, and let o: H — S be a universal

holomorphic covering map with a covering group G, where S=sU {x}

and G contains only hyperbolic Mdbius transformations. For every element
h € G, there is an h-invariant geodesic in H joining the repelling fixed point
to the attracting fixed point of h. This geodesic is called the axis of h and is
denoted by axis(h).

For any vertex T € Cy(S), let {o (i)} be the collection of all (disjoint)

geodesics in H projecting to U under p. Denote by % the set of

components of H\{o™ (i)} and by .4 the disjoint union of small crescent

neighborhoods of geodesics in {o™!(II)} so that o(4) is a thin cylinder with

center geodesic U. Fix Q € Zy. See Figure 1.

Notice that every geodesic in {o (1)} determines a half-plane which

does not include Q, and the set % of half-planes determined by {0~ (i )}

and Q has an infinite tree structure and thus is of partially ordered defined
by inclusions. Half-planes in % are arranged in different levels. All the

components of H\Q are designated as level one half-planes in %. A half-

plane in 7 is a level two element if it is contained in a level one half-plane
but is not contained in any other half-plane in %, and so on. We can
similarly define a half-plane in % in any level. There are infinitely many

half-planes in % in any level.

Let ty be the Dehn twist about U, which is constructed from cutting S
along U, rotating one end 360° in counterclockwise direction, and then
gluing back with the other end. It is obvious that ty is a quasiconformal map

whose Beltrami coefficient is supported on o(.4#") and can be lifted to an

automorphism t of H that keeps the identity on Q\.A4".
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The lift T can also be constructed as follows: let U e {g_l(ﬁ')} be a
boundary component of Q, and D* the component of H\{U} containing Q.
Set D = H\D". Let hj € G be a primitive hyperbolic element such that
hg(D) = D (thus h;(G) = G and hy(D*) = D).

For any h e G, if h(D) does not include D, i.e., either h(D) and D are
disjoint, or h(D) = D, we defineamap Cp : H > H as

hhgh™! on h(D)\A,
Ch = {aq.c map making (;, continuous  on h(D)( A/,
id on H\n(D);

and if h(D) > D, (}, is defined as
—1-1 *
hhy'h on h(D*)\A,
Ch = 1aq.c map making j, continuous on h(D*) N A/,

id on H\n(D™).

Remark. One of {hg, hy 1Y is chosen as hy so that the quasiconformal

maps mentioned above are compatible with tg.

Let T; be the product of all Cp,’s for which h(D) or h(D*) are level j

half-planes in %. Then the map t can be expressed as the product:

T :HTJ-. 2.1
j=1

From the construction, we can verify that
1Gt! = G and the restriction 1| oy =id.

Also, t© does not depend on the choice of a boundary component of €2,

nor the order of the composition in (2.1); it only depends on the choice of



14 Chaohui Zhang

Q e Z%;. Different choices of Q in Z%; give rise to different lifts t of
ty. Note that t naturally extends to s! homeomorphically, as t is
quasiconformal.

Choose X € H so that o(X) = x. Let
2 ={h(X): h e G}.

The orbit 2 does not depend on the choice of X. Thereby we obtain a
punctured plane H\Z of infinite type. Consider a holomorphic universal
covering map o : H - H\Z. Let I denote the covering group of . From
Bers [1], we know that the composition g gy : H — S is a holomorphic

universal covering map, and if we denote by G the covering group of this

composition, there exists an exact sequence:
15T 5>G->G -1
Following Bers’ construction [1], the map 1, being a lift of the Dehn
twist ty, satisfies the property that ©1(2) = 2. Thus, 1 also defines a map

(call it T also) of H\Z onto itself, which can be further lifted to a map

7:H — H, and through the universal covering map ooy :H — S, 1T is
projected to amap t* on S.
Notice that the conformal structure on H\Z defined by 7 is compatible

with the conformal structure on the cylinder o(4") defined by tz. As g ° g

is holomorphic, the conformal structure on H\Z is also compatible with the

conformal structure of S that is given by t". We see that the map t* is

represented by the Dehn twist t, about a vertex U € C(S). For an alternate

approach, see Lemma 2.1 of [11]. Since h(2) =2 for every he G, h is

also mapped to h* € Mod(S). A complete characterization of elements h*

for h € G can be found in [7].
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Let Fy be the set of vertices of C(S) that are all indistinguishable with

U as the puncture X is filled in. Define a map
YRR e (2.2)
by sending each component 2 to U. By Lemma 2.1 and Lemma 2.2 of

[15], for every vertex U € C((S), xi is a bijective map that satisfies the

equivariance condition
1z (h(Q)) = h*(x5(Q)) forany h € G and Q € %;.

Furthermore, if Q; and Q, € % are disjoint, then u; = yz(Q;) and
Uy = xg(Q,) intersect, whereas if Q; and Q, are adjacent, in the sense that

O, NQ, is a geodesic in {o ()}, then {uy, u,} forms an X-punctured
cylinder embedded in S.

The bijection yg : Z; — Fy naturally extends (fiberwise) to a bijection
x : Uiy - all vertices T € Co(S)} — Co(S) (2.3)
satisfying the equivariance condition
1(h(Q)) = h™(x() (2.4)
forany 0 e Co(S), Q € %, and any h € G.

Let u, v e Cy(S) be such that de(u, v) =1, i.e., u and v are disjoint.
Let Q, Q, € U{%;} be such that x(Q,)=u and %(Q,) = V. Then either
U=V or U,V are disjoint. In former case, Q,, Q, € %, so they are
adjacent, which says that {u, v} forms an x-punctured cylinder. In later

case, do(U, V) = 1. By Lemma 2.4 of [15], Q, N Q, # & and 0Q, N 0Q,
= .

Let f € & be any pseudo-Anosov element. There exists an essential

hyperbolic element g € G such that g* = f, which tells us that axis(g) is
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an oriented geodesic pointing from the repelling fixed point B to the

attracting fixed point A of g and, e(axis(g)) is a filling closed geodesic on
S. So each vertex {0y € Co(S) intersects o(axis(g)). This is equivalent to

that axis(g) intersects {0~ '({y)} infinitely many times.

Let {£, R} = S\{A, B}, where £ stays on the left side of axis(g),
while R stays on the right side of axis(g). Points on £ and on R can be
ordered in the following way. Let X, X' € £ be any two points. We declare
X < X' (resp. X < X') if and only if the arc on £ connecting B and X is

contained in (resp. equal to) the arc on £ connecting B and X'. We can
further define open, closed, or semi-open intervals on L. For example,

we use (XX'] to denote the set of points {X" e L£: X < X" < X'}

Analogously, we can introduce similar notations when points lie on k.

Choose Uy € Fy. so that Qf = % '(Uy) crosses axis(g). Observe that

Uo
one component Ay of H\CY) covers A (the attracting fixed point of g). Let
A} be the component of H\Q) that covers B, the repelling fixed point of g.

Refer to Figure 3. Note that A and A{, are level one half-planes in %.

For every i > 0, we write Aj = gi(Ab) and obtain a sequence of nested

half-planes

Ay c Ajc Ay c--c Ay . (2.5)
By (2.3) and (2.4), uy, = f™(ug) € Fy and satisfies X_l(um) =9"(Qp),
which lies outside of Al,. Write Q, = g™(Q}).

Let R, Q; denote the endpoints of OAj, where Qj € £L and R € R.

These points are referred to as labeled points in the sequel which satisfy

Pp<PB <Py<--<Py<-rand Qy<Q; <Qy <+ <Qp <.
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The geodesic OAp connecting P, and Q, projects to Uy. Thus,
0Ap = axis(hy) for an hy € G. It is clear that g(RR,;) = (R1R,,) and
9(QiQi41) = (Qi41Qj+2)- In particular, we have:

o'(Ry) = R and ¢'(Q) = Q.
It follows that for any i >0, B and Q; are fixed points of hj =
gihog_i e G.
For X, X" € L, let | XX"| denote the number of labeled points in {Q;}

that are contained in (XX']. Likewise, for any Y, Y' € R, the symbol | YY'|
denotes the number of labeled points in {P;} that are contained in (YY']. It is

readily seen that | XX | =0 and |YY|=0 forall X e £ and Y € R, and
that | Bg'(P) | = i and | Qcg'(Qy)| =i forall i, k > 0.

For convenience, we specify the arc in £ between X and g(X) has
length one; which is written as &(X, g(X)) =1. Similarly, we declare
8(Y, g(Y)) =1 for points Y € R.

Some basic properties are summarized in the following lemma (the same
is also true for points on R).

Lemma 2.1. Let X, X', X" e L. We have:

(@ | Xg(X)| =1

(i) | XX'| <| XX"| whenever X' < X"

(iii) | XX" | =| XX"|+] XX" | whenever X < X' < X";
G(v) | Xg'(X) | =i forall i > 0;

(v)if X < X" and (X, X') <1, then X' < g(X);
(vi)if X < X" and §(X, X") <1, then | XX'| < I; and

(vii) if X < X' and §(X, X') > 2, then | XX'| > 2.
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In what follows, we write Q, = Q, 1, =1 and %, = % to emphasize

the dependence of Q, t and % on u. For any U e Cy(S), Q, =y '(u)
may contain axis(g). If this occurs, from the construction of 1, we have
9(Qy) = Q, which implies 1,9 = gt,. So tyof = fot, or t, = fo
t, o f! = tf(u)- It follows that u = f(u) and thus f is reducible, which

contradicts that f € Z is pseudo-Anosov.

We are left with two possibilities: Q = x_l(u) is either a type (I) or a
type (II) region with respect to g, as shown in Figure 2(a) or 2(b). Here €},
is of type (I) if Q, is disjoint from axis(g); Q is of type (I) if axis(g)
crosses €.

In the former case, axis(g) is contained entirely in a component A, of
H\Q,, where A, € %, is a level one half-plane. Since 0(6A) is a simple
closed geodesic, Q, and g(Q,) must be disjoint, and if we write
o, = H\A,, o, and g(o,) are disjoint and stay on one side of axis(g).
oy is called to be supported on £ (resp. on R) if oy N s! < £ (resp. oy N
st R). Write {Y, Xy} = do, NS, where Y, < X,.

In the latter case, axis(g) crosses A,, and so g~ '(H\A,) is contained
in another component Ay of H\Q,, where we note that A, A}, € %, are
level one half-planes. Denote D, = H\{A,, A;;}. We have Q, c D, and
Dy N s! consists of two open intervals |; and |,, where |I; c £ and

I, ©R. By Lemma 2.1 of [16], I; can cover at most one labeled point in
{Qj}, and 1, can cover at most one labeled point in {P;}, and more is true:
g(Qy) is either adjacent to Q or disjoint from Q;, depending on whether

U intersects p(axis(g)) only once or more than once. Write {Y,, X}

= oA, NS' and {Y, X3} = A, NS, where Xy, X; € £ and Y, Y}



On Unit Stable Lengths of Translations of Point-pushing ... 19

e R. It is clear that g~!(X,) < X and g~!(Y,) <Y}, and the equalities

hold if and only if T intersects o(axis(g)) only once. {X,, X, Yy, Yy} are

called corner points of D,,.

Regardless of type (I) and type (II) regions described above, in the

context, A is referred to as the distinguished half-plane for u and, if X_l(u)

is of type (II), Ay, is called the accompanied half-plane of A.

Example. For the choice Uy € Cy(S) as made in Figure 3, Qf =
x_l(uo) is a type (II) region, Ag € %, is the distinguished half-plane for

Up and A € %0 is the accompanied half-plane of Ay.
Consider now a sequence {y j} of distinct geodesics in H satisfying:
(i) all y;’s intersect axis(g).

Let Lj, Rj denote the endpoints of yj on £ and on R, respectively.
The sequence {y;} is called partially ordered if it satisfies (i) and the
condition:

L=l <

It is readily seen that if {y j} is partially ordered and also satisfies the
condition:

(iii) forany j >0, v; and vy, are disjoint,
then {y j} is mutually disjoint and thus is ordered in a way that is based on
the ordering of {Z} for Z; = yj N axis(g). Thatis, y; < v, if and only if
Z, is closer to A than Z;.

Lemma 2.2. Let {U;} e Co(S) be a sequence of vertices such that

Uj and Uj, are disjoint for all j > 0. Let (Q,, Qn4;) be a pair of any
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successive labeled points on L. Then for each j, there is vj e {g_l(ﬁj )}

such that {yj} satisfies conditions (i) and (iii) above and in addition,

{Lj} < [QnQn1]:

Proof. Since o(axis(g)) = S is a filling geodesic, o(axis(g)) intersects
each U; at least once. As such, we can find a geodesic v|j in {g_l(g(ﬁj )}
that intersects axis(g). We may thus find a suitable power i such that

gi(y'j) meets [Q,Qn41]- As axis(g) is invariant under the action of g,
Yj = gi(y'j) is the required geodesic. O

We remark that the choice of yj in Lemma 2.2 may not be unique.
This occurs when the filling geodesic o(axis(g)) intersects o(y) = Uj more
than once. Let {y&l), ves ySQ)} be the collection of such y;’s. Since Uj isa
simple closed geodesic, {y&l), s y(Jq)} are mutually disjoint. It turns out that
{y(Jl), s y(Jq)} is ordered. Suppose that y(Jl) << y(JQ). We then choose
Vj = y(Jq) unless otherwise stated.

Lemma 2.3. Let {y;} be obtained from Lemma 2.2. For any pair
(vi> Yi+1) of geodesics in {y;}, if R <Rj,y, then 8(R;, Rijj) < 1.

Proof. By Lemma 22, {yj} satisfies (i) and (iii). Suppose that
8(Ri, Riy1)>1. Then Rj < g '(Ri,;), whereas g~ (Li;;)<Li. If g7 (Lijy)
<L, then g '(yj,,) intersects y;. But this contradicts the condition

de (@, Tipp) = 1.

Suppose that g~'(Li,;) = Lj. Then g~ (vj,;) and y; share a common
fixed point Lj = Qp. Notice that all these points Rj and L; are fixed points
of G. This contradicts that G is discrete. O
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The following lemma is a direct consequence of Lemma 2.3.

Lemma 2.4. Under the same condition as in Lemma 2.2, suppose,
in addition, that {y;} is partially ordered. Then for any j, k>0,

|RJ'RJ'+1|SI andso|RjRj+k|£k.

Proof. The assumption implies that {y j} satisfies (1), (ii) and (iii) above.
Hence {yj} is ordered. Thus, Ry < Rj < Ry <---. If Rj, = Rj 1 for some
jo, then yj, and vj .y, which are the axes of some hyperbolic elements

hj, and h; o+1 of G, must be the same, which contradicts the hypothesis of

o
Lemma 2.2. We conclude that Ry < R; < Ry < ---.
Suppose that | RjRj,; [ > 1. By Lemma 2.1(vi), 3(Rj, Rj) > 1. But

this contradicts Lemma 2.3.

From Lemma 2.1(iii) and the inequality | RjRj,; | <1, we deduce that

k-1
| RjRjak | = DI RixiRjsist [ <k O
i—0

Remark. The above inequality remains valid when {yj} contains
duplicate elements, that is, it could happen that y; =y, for some j. This
occurs when Qj and Qj,; are adjacent, which is equivalent to that u; and

Ujy are the boundary components of an Xx-punctured cylinder.

3. Geodesics Mapped to Type (1) Regions

In this section, we investigate those consecutive vertices in a geodesic
segment in C(S) that are all mapped to type (I) regions {Qj} in H. These

regions further determine a sequence of geodesics {yj} that intersects

axis(g) as well as some fixed (but arbitrarily chosen) intervals in £. Our

aim is to estimate how far the other endpoints of vy can reach.
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To be more precise, consider a small geodesic segment

[Wo, Wy, «ooey Wp, Wig], © =1, which joins Wy to W,,; and satisfies the

condition that QWj ,0< j<r+1, are all type (I) regions in H, where QWj

are obtained from the bijective map (2.3). For convenience, we write

Qj = ij and 6 = H\A j» where Aj are the distinguished half-planes for
Wj. Obviously, 0Aj = 0o is a geodesic in H projecting to Wj under the
universal covering map o: H — S. Assume that o j is supported on L.

Denote
{Yj» Xj} =00; N L with Yj < X.
Lemma 3.1. (i) All o s are disjoint from axis(g);
(i) all oj’sare supported on £;

(iii) for 0 < j <, (o}, o) are pairs of nested half-planes; and

(iv) ( ;Zloajjﬂﬁ is a connected closed interval.

Proof. (i) follows from the definition of a region to be of type (I).
(i1)) is derived from Lemma 3.1 of [16]. For (iii)), we note that

[Wo, Wi, ooy Wy, Wp ] is @ geodesic segment, which means that

de(wj, wj,p) =1 for 0 < j < r. This leads to that
Q;NQj, *P,00,N0Q, =D 3.1)

If oj ﬂ6j+1 = (J, then since Qj < oj and Qj, < cj,q, we see that
QjNQj, =D. This contradicts (3.1). Also, notice that {0Q;} and
{0Q .} are collections of geodesic components in H. If d5j N dcj,; # O,
then from the fact that dcj € {0Q;} and doj,; € {0Qj,} we deduce that

o0 i N oQ j+1 # @. This again contradicts (3.1). We conclude that o i N
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Cj =D but 96N 0o, =9, which says (o, cj,;) forms a pair of

nested sets. Thatis, 6j < 6,1 or 6,1 < . Hence (iii) holds.

To prove (iv), we assume that ( tloﬁjjﬂﬁ =1Ul,, where |; and

I, are disjoint closed intervals (if both are not empty). Write 1} = [a;, b ].
Then clearly, b, = Xq forsome 0 <gq<r+1. If g=r+1, then I, =&

r+1 —

Thus, [ jzocjjﬂ£=[al,b1], and we are done. If g <r +1 and for all
i=q+1 .., r+1 wehave X< Xq, then again |, = . Otherwise, there
exists gy with q < gy <r +1, such that X4 < Xq,- Hence we may find a
point y such that by <y <a, while y < Xgo is arbitrarily close to Xg = by.

So 1, must be empty, as claimed. OJ

Remark. Similarly, (U:j)ﬁ jj (1 L is an open connected interval on

L£csh
A more special case occurs when o covers Q,, and o, covers Qn.q,

where (Qp, Qn41) is a pair of successive labeled points in {Q;}. This says
that [QnQnH]C( rj:locjjﬂﬁ. By Lemma 3.2 of [16], we have r > 2.

Recall that g € G is an essential hyperbolic element. From Lemma 2.2,
among geodesics in {0~ (0o(dc i)}, where 0 < j <r +1, there is a geodesic

vj € Aj that intersects axis(g) and meets [QnQp ).

Observe that for all integers j with 0 < j < r, either {o~!(0(dc i) =

{g_l(g(acj+1))}, or {Q_I(Q(acj))}ﬂ{Q_l(g(ﬁcj+1))} = . As members in

{07! (0(05}))} and {o™'(0(d 1))}, either vj =y, or vj and v, are

disjoint.
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By assumption, o, covers Qn and o,,; covers Q.. Since 7y, €

{0 (0(60¢))} and vy € {0 (0(8oy41))}, Yo is disjoint from 6o, and

Oyr41 1s disjoint from o,,;. As a consequence, Yy, and Yy . intersect

[QnQn+1] but not at Q, and Qpy. In other words, Ly, Lyij € (QnQny1)-

Note that no two hyperbolic elements of G can share a common fixed point.

We see that Ry and R, cannot be any labeled points in {R}.
As mentioned earlier, the choice of j may not be unique. By our
convention, y; is the one in {0 Y (0(6c j))} that intersects axis(g), meets

[QnQn41] and is closest to A.

Lemma 3.2. The finite sequence {yj}, 0< j<r+1, is not partially
ordered, in the sense that there is an index jj, 0< j, <r, such that
Ljg+1 < Ljo-

Proof. Suppose that {y;} is partially ordered. That is,
Qn<L()SLISng"'SLrSLr+1<Qn+1. (32)

By Lemma 3.1, for 0 < j<rr, (Gj, ch) are pairs of nested sets, which
says that cj coj, or 6j,  coj. Let {csjl,..., qu} be the sub-sequence

of {oy, ..., o} that satisfies the property:

X0<Xj1<XJ—2<---<XJ— 3.3)

.
If no such sub-sequence exists, then for all 1< j<r, we have
Gj < (. Observe that 6, cannot cover Q. and oy covers Q. We

assert that 6, < o () op,;. It turns out that
YI’+1 < Xo. (34)

On the other hand, since o covers Q, and since y is disjoint from 0O

and yy meets (Q,Qn41), we have X, < L. Similarly, we notice that y,
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is disjoint from do,,; and y,,; meets [Q,Qn 1] We see that L, | < Y,

Along with (3.4), we get Ly,; < Ly. So {L;} is not partially ordered.

As such, we may choose a sub-sequence {cj,, ..., qu} of {o{, ..., o}
Since o(vj,) = 0(0cj ) and since yj is disjoint from doj, either

X i < L j or L i < Y i If the latter occurs, then i intersects ©(, which

leads to Lj <Yj < X <Ly, and this would contradict (3.2). It follows
that
X

1 < le. (35)

Likewise, as o(vj,) = 0(dcj,), vj, is disjoint from Joj,, so either
ij < sz or sz < sz' If the latter occurs, then sz < sz < le < le,
this would also contradict (3.2). So we must have X; < L;,. An induction

argument shows that

le < L;

i Xip <L

12 9 eeesy X

<L (3.6)

Iq q-
There remain two cases to consider:
Case 1. jq =r. In this case, we note that o, = Sj, and (o, 6r41)

forms a pair of nested sets. If 6, < o, then from (3.6), Y, < X, < L,.
Since o(yr41) = 0(06r41), Vr4p is not only disjoint from do,,; but also
meets (Q,Qn41)- It follows that L,y < Y,,; <Y, < L,. But this contradicts

(3.2). If o, < oy, then since o,,; covers Qn,,y, we have Qp; < X, .

But this situation does not occur.
Case 2. j, < r. In this case, all 6§ ., ..., o, are contained in o; . In
q Jgt r Ig
particular, o, c © i But we know that (o, o,,1) forms a pair of nested

sets. If 6, < o, then o, iy which contradicts that jg <.
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Whence ¢, — 6, and thus i Nory #D. It follows that 6, < Sjq
Nor41. Now, from (3.6), we have X iq < L iq- On the other hand, since
0(Yr41) = 060y 41), Yr41 is disjoint from do, .y, we thus obtain

Lrip <Y <Yy < X, <qu <qu.

Once again, this would contradict (3.2). O

Another situation is that 6y covers Qn but none of 6§, 0< j<r+1

covers Qp. In this case, we prove:

Lemma 3.3. Suppose that {y;} is partially ordered: Q, <Ly <Ly

<o <Ly £Qnyq- Thenfor 0 < j <r +1, we have Xj <Lj.

Proof. Since o covers Q, and y, is disjoint from Jc(, we have
Xo < Ly. By Lemma 3.1, we know that (o, o1) is a pair of nested sets. If
oy < o}, then clearly X; < L. If o7 < 5, then either Q, < L; <Y; or
X; < L. In the former case, L; < Xy < L. This contradicts that Ly < L.

So we must have X; < L.

Suppose that for some j, 0 < j<r, we have X; <Lj. Again, by
Lemma 3.1, (o, 0j+1) is a pair of nested sets, either 6j < oj;y or
Gj+1 < 0j. In the former case, since yj,; is disjoint from 0cj,q, either
Liv1 <Yjur or Xju <Ljyp. If Ljgg <Yjuq, then Ljyq <Yjy <Yj<

Xj < Lj. This contradicts that Lj < Lj,. Therefore, X < Lj,.

It remains to consider the case where ¢, < oj. Notice that v, is
disjoint from 0o j, . We see that either Lj,; <Yj,q or Xj,; <Lj;. Inthe
former case, from the induction hypothesis, we get Lj,; <Yj, < X4 <
Xj < Lj. So this case does not occur, and hence we conclude that X, <

Lj+1- The lemma is proved. O]
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It should be noted that {yj} may contain duplicate elements. By

removing any duplicates from the sequence, we may assume, throughout the
rest of the section, that {yj } contains only distinct geodesics.

Lemma 3.4. Let the sequence {Ly, Ly, ..., Ly41}, r = 2, be as in Lemma
3.2.We have | RyR,, | < r and hence | Ryg(Ry4q)| <1 +1.

Proof. From Lemma 3.2, there is a smallest integer jj, 0 < j, < r, such
that Lj ;1 < Lj,. Since yj ,; and v, are disjoint, it must be the case that
Rjg+1 < Rijy-

Let k be the smallest positive integer such that Ry < B.. If j; = 0, then

L <Ly and Ry < Ry < K. By Lemma 2.3, R, < K. Inductively, one

shows that Ry, < B,r. Hence | RyRy 1| < 1.

Assume now that j, > 0. By applying Lemma 2.3 repeatedly, we
conclude that Ry <PF;, Ry <R, and so on, Rj <H.j. By
assumption, L; ,; < Lj,. Since yj 4 is disjoint from yj,, we must have
Rjo+1 < Rj, < R4 j,- By Lemma 2.3 again, we obtain Rj ,» < Ry j,+1-
Similarly, Rj ;3 < Fj,+2, and so on, inductively, one shows that
Rijo+(r—io+1) < Pt jo+(r—jo)- This implies that |RyRy, | <r and hence
| Ro9(Rr41)[ = | RoRrs1 [+ [ Rrp19(Res) [ ST+ 1 0

We now discuss the case where ¥’ = [Wy, Wy, ..., Wy, W, ;] is a
geodesic segment so that Q;j are all type (I) regions that go through two

adjacent intervals [QnQny1]U[Qns1Qns2] = [QnQny2], i, op covers
Qn and o,y covers Qn,,. In this case, by Lemma 3.3 of [16], r > 5.

Let vo € {0 '(0(@5g))} be obtained from Lemma 2.2, which tells that

Yo < Ag and yq intersects axis(g) and (Q,Qn.1). Likewise, let v, €

{07 1(0(66,))}, Yrs1 < Aps, be obtained from Lemma 2.2; that is, vy,
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intersects axis(g) and (QnyQnsz). Let {Ly, Ryt =70 NS' and {Ly,,
Rri1) = Y1 NS, where Ly, Ly,y € £ and Ry, Rry; € R.

Lemma 3.5. We have | RyR,,; | < r and hence | Ryg(Rr41)| < r +1.

Proof. We can write the geodesic segment ¥’ =% U%, where
G = [wo, Wi, oo Wy, Wy 1] and % = [Wy g, Wyos e We, Wpyy]  are
geodesic segments with 1 > 2 so that oy covers Qp, op 4 covers Qpy

and o, covers Qno.

From the above description, we know that ¢ 1% = oy, and 4

contains Ij + 2 > 4 vertices and % contains I — 1 +1 > 4 vertices.

Let {yo, V1> Vn+1) be the (distinct) geodesics obtained from & and
from Lemma 2.2, that is, ¢, v{, -, Y41 all intersect [QqQn 4] Similarly,
let {¥} +1» Vi 42, - Yr41) be the (distinct) geodesics obtained from &

and from Lemma 2.2. This means that vy 1, Yy 12, ., Yry1 all intersect

[Qn+1Qn+2]-

. ' 1
We claim that g(yy41) = Y41 Indeed, let {V(r1)+1’ - y(r?J)rl} €

{Q_l(g(yr1 +1))} be the ordered finite collection of geodesics intersecting

axis(g) and (Q,Qn41)- It is easy to see that {g(y(r:)ﬂ s g(y(rﬁll)} €

{g_l(g(yrl +1))} is the collection of ordered geodesics intersecting axis(g)

: ' -1 .
and (Qn;1Qn42)- Notice that g(Yr1+1)s Tn+l € {o (Q(Yr1+1))}- It is clear

that vy, € {g(y(rllzrl )y ves g(y(rf'+1 )} and that y&qu:f is closest to the attracting

(QO)).

fixed point A of g (for some q) if and only if so is g(yrl !
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By applying Lemma 3.4 on &, we obtain [RyRy,|<r, and
| Ro9(Ry+1) | < 1 +1. Also, by applying Lemma 3.4 on &%, we get

| 9(Ry, +1)Rr41 | < 1 =1 — 1. Hence, from Lemma 2.1(iii),

|RoRr+1 =1 Ro9(Ry+1) [+ (R4 )Ry [S(p+ D+ (r—n -1 =r.
It follows that | Ryg(Ry,1)| < r + 1, as asserted. O

Next, we consider a general case where ¥’ = [Wy, W, ..., Wy, W] is

a geodesic segment whose vertices are mapped to all type (I) regions

Qq, ..., Qr4, respectively. Assume also that o, covers a labeled point Qp,

and o, covers a labeled point Q.4 for a positive integer d > 1.

As usual, let 7o € {0 " (0(600))}, Yrs1 € {0 '(0(d5y41))! be obtained
from Lemma 2.2, which says vy, intersects axis(g) and (Q,Qp.1), and
Yr41 intersects axis(g) and (Qp.q_i{Qn.q)- Denote by {Ly, Ry} and
{Ly+1, Rr41}, respectively, the endpoints of yy and y,,;, where L, Ly
e £ and Ry, Ry, € R.

Lemma 3.6. Under the circumstances, we have: (i) 3d —1<r, (ii)
| L()Lr+1 | <d -1, (ii1) | RORI’+1 | <r and (iv) | Rog(Rr+1)| <r+1.

Proof. Lemma 3.2 of [16] tells us that at least four elements are needed
to cover any two successive labeled points. Since &' covers the labeled
points {Qp, Qnis--» Qnid > we assert that d +1 < (r +2 —1)/3 + 1, which
implies that 3d — 1 < r. This proves (i).

For (ii), as ¢’ can be written as a union of ¥, %, ..., %, where the
first element 6 of ¢ covers Q,, the last element of %, which is also the
first element of %, covers Qp,;, and so on, the last element of ¢ _;, which

is also the first element of ¥, covers Qy_;, and the last element of ¥

covers Q4. Recall that y,,; € {0 '(0(8oy41))}, where v,,; < Aryq, is
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obtained from Lemma 2.2, which says that y, | intersects axis(g) as well

as (Qp+d—1Qn+q)- It follows that (LoL,,;] contains at most these labeled
points Qn,1, Qni2s s Qnid_1. Thatis, | LyLy,y | < d — 1. This proves (ii).

(iii)) and (iv) can be proved by using induction arguments. We use

Lemma 3.4 to settle the case when d = 1.

Write [QnQn+d] as [QnQn+d—1]U[Qn+d-1Qn+d] Accordingly, ¢" is
decomposed into two pieces. Let [Wo, ..., Wey 1] [Wry 11 s Weg ]

c ¢’ be geodesic segments whose corresponding type (I) regions cover
[QnQn+d—1] and [Qniq_1Qniq], respectively. We must have ry_;>
3(d-1)+1=3d -2 and r—ry_; 2 4. By Lemma 3.4, [RoRy,  11[<ry_

and | g(Ry, ,+1)Rrs1 | <1 —rq_; — 1. Hence, by Lemma 2.1(iii),
| RoRrs1 | =1 RoRey 41 [+ Ry ;+19(Rey_ 1) [+ 1 9(Rey_,+1)Rr1 |
d-1 d-1 d-1 d-1
Srgq+l+(r-rg-D=r.
Thus, | Ryg(Ry41)| < 1 + 1, as asserted. O

Remark. From Lemma 3.6(ii), | LoLy,1 | < d —1. Thus, | Lyg(Ly41)| =
| LoLr41 |+ 1 < d. On the other hand, Lemma 3.6(i) yields that d < r +1. It

turns out that | Log(Lr1)| < | RoG(Re1) -
4. Geodesics Mapped to Regions with Mixed Types

Consider a geodesic segment
Gy =[u, T, V] 4.1)
in C(S), where ' =& if s =0; and ' ={v, ..., Vg} if s > 1. From the
discussion of Section 2, vertices U and vV can be mapped to regions €, and
Q. If s>1, all vj,1<j<s, are mapped to regions Q; in H with

geodesic boundaries. Assume throughout this section that Q, Q, are of
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type (II) and all other regions Q; are of type (I) that are supported on L. Let
Ay, Ay, ..., Ag, Ay denote the distinguished half-planes for u, vj, ..., Vg, V,
respectively. As usual, we write {X, Y,} = 0A, NS and {X,, Y,} = 8A,
NS!, where Xu> Xy € L and Y, Y, € R, and for 1 < j <, {YJ-, Xj} =
0Aj N L with Yj < Xj. Denote cj = H\Zj. Our aim in this section is to
estimate | X, Xy | and | Y,Yy |.

Lemma 4.1. In the case where s = 0, if X, < X,, then | X, X, |<1
and | Y Yy | <1 (=s+1).

Proof. The condition S = 0 means that Q,, ), are consecutive type
(IT) regions.

Case 1. U,V, U are distinct. Then Q, NQ, # & and thus D, D, #<J
and no corner points of D, U D, are labeled points. Here we recall that
Dy = H\{A,, Ay}, Dy = H\{A,, Ay}, oD, = 0A, UaDy and aD, = 8A,
UoDy. Hence Xy < X, and Y, <Y,. By Lemma 2.5 of [16], D, N £
contains at most one labeled point. It follows that | X X, | <| XyXy | <1
and thus that | Y,Y, | <] /Y, | < 1.

Case 2. U =V =Up. In this case, Q, Qy € Rg,. Then Dy, D, are
adjacent so that D, N D, is a geodesic and o(D, N D) = 0.

If T intersects o(axis(g)) more than once, then {Q;, R} = (D, N Dy)
Ns! are labeled points but the four corner points of Dy U D, are not
labeled points. If D, is on the left side of Dy, then X, = X;| = Q; and
Y, =Y, = R. This tells us that X,, < X,,. If D, is on the right side of Dy,
then Xy =Xy =Qp Yy =Y =R, Xy<Q Yy <Ry, Q<X
and P_; <Y, So | X Xy|=1and |Y,Y,|=1.
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If U, intersects p(axis(g)) only once, then again Dy, D, are adjacent
and there exists i > 0 such that D, = A} ;\A and D, = A} ,\A/,;. Again
we have o(D, NDy) =0y, Xy =Xy =Qiy, X7 =0Q and X, = Qj,».
We see that | Xy Xy | =| Xy Xy | = 1. Similarly, |Y,Y, | =|Y/Y, |=1.

Case 3. U =V # Uy. That is, {u,v} forms the boundary of an x-
punctured cylinder, which means that €, Q, are adjacent and so are D,
and D,. Assume that D, is on the right side of D,. Then X, = X, and

Y, =Y,. Note that these points cannot be labeled points. By Lemma 2.5 of
[16], no corner points of D, U D, are labeled points. Also, we know that

the interiors of (D, UDy)N £ and (D, UDy)N R contain at most two
labeled points. It is immediate that | X Xy | =| Xy X, | <1 and |Y,Y, | =
Y'Yy [ <1

Case 4. U =0y # V. If U intersects o(axis(g)) only once, then there

exists an integer i such that D, = A)\A_;, X, = Q; and Y, = R. It follows
from dg(u, v) =1 that Dy N D, # & and oD, D, = . In particular,

Xy < X, and Y, <Y,. Note that the corner points of D, are not labeled
points. We see that | X Xy | <| XyXy [ <1 and |Y,Y, | <|YYy [ <1
If U, intersects p(axis(g)) more than once, then {X, Y,} are labeled

points, but we still have Xy < X, and Y, <Y,. Since D, N £ and

Dy, N R contain at most one labeled point, we conclude that | X, X, | <
| XgXy | <1and |YYy | <| Y'Yy [ <1
Case 5. V = Uy # U. The discussion of this case is the same as Case 4. []

Let j, k be the positive integers such that

Qj_1 < Xy <Qjand B <Y, <R
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The following two lemmas improve the results in [15, 16].

Lemma4.2.If s =1, then | X X, | <1 and |YY,|<2(=s+1).

Proof. Let 6; = H\A;. Then A, < A;, which tells us that Y; < X; <
Xy < Qj. But we know that 8(X;, Xy) <1. Hence 3(X;, Xy) < 1. This

leads to | Xy X, | <1. In particular, X, < Qj,;. Here we assume that o} is

supported on L.

Let v, € {o '(0(do]))} be obtained from Lemma 2.2; which says
y1 € Ay and vy, intersects axis(g) and [Q;_;Q;]. Let {Lj, R;} be the

endpoints of y; lying on £ and R, respectively.

Case 1. Qj_; <Ly < Xy. Since y; does not intersect 0Ay, Ry <
Yy < PB. Now X, <Qj; implies that 3(L;, Xy) <2. We claim that
8(Ry, Yy) < 2. Indeed, if 8(R;, Yy) =2, then we may find two distinct
hyperbolic elements of G sharing a common fixed point R;, which
contradicting that G is discrete. If 8(Ry, Y,) > 2, then g~2(@A,) intersects
vy, which would contradict that dg(vq, v) = 1. We conclude that 8(Ry, Yy )
< 2. S0 8(Yy, Yy) < 2. This leads to that | Y,Y, | < 2.

Case 2. Xy <L; <Qj. Weclaim that R; < F,;. Suppose R > F,;.
Then g~ '(y;) intersects A, and this contradicts that de(u, vp) =1. We
conclude that R; < R ;.

The condition dg(vy, v) =1 implies 8(Y;, Xy) <1. But Y} < X; <
Xy < L. We see that 8(L;, X, )<1. Hence 8(R;,Yy)<1 (otherwise,

97!(8A,) would intersect y;, which would contradict that de(v, v) = 1).

But R; < B¢, We see that Y, < B,,, which implies that | Y,Y, | < 2, as
required. OJ
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More generally, in the case of S > 2, we have:

Lemma 4.3. If s>2, then | X Xy |<[(s=2)/3]+2 and |Y.Y,|<
s + 1, where and below, [z] denotes the largest integer less than or equal
to z.

Proof. First we consider the case where the geodesic segment (4.1) can
be rewritten as follows:

Yo =[u, &, Wy, ..., Wpiy, B, V], 122,

where & = {a, ..., 8, } is a sub-sequence of vertices {Vj, Vs, ..., Vg} that
lying prior to the first vertex w;, whose corresponding (type (I)) region
oy = H\ZO covers Q i and £, if not empty, is the sub-sequence
{by, ..., bg} of {vi, Vs, ..., v} that lies after the first vertex W,; whose
corresponding (type (I)) region o,,; = H\A,,; covers Qj+d—1, Where
d>2, and Qj and Qj,q_; are the first and last labeled points covered
by {Qj},<j<s» respectively. Note that &/ # & and % may be empty. This
gives rise to

a>2l,B=20and a+P+r+2=s. (4.2)

Note that at least four consecutive type (I) regions are needed to cover an
interval [Q,Qp.1] for j <n < j+d — 2. It follows that

J < [(H_g)—l}l _ [%1}1. 43)

From (4.2), we obtain S = o + 3+ r + 2 > r + 3. Thus, (4.3) yields that

d < [552}1. (4.4)

If # =, then we claim X, <Qj,q. Suppose that X, 2Qj,q. Then

Xy 2Qjid-1- But Q, < H\{A,, Ay}. This implies that Q, is disjoint from
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Q or 0Qy intersects 0€Qy, . Both the cases would contradict

Wri1°

de(v, Wyp) = 1. We conclude that X, < Qj.q and thus | XX, |<d

s—-2
<
_[ 3 :|+1.

Consider next the case where & # . Then B > 1. Since # does not

cover Qj,q, if Xy 2Qjig4y, then € is disjoint from any Qp for
1<i <P, and this would contradict d¢(v, bg) =1. So we conclude that

Xy < Qjid1- It follows from (4.4) that

XXyl <d+1< s—2 +2.
u”v 3

This proves the first statement.
To establish the second statement, we recall that Aai, I1<i<a, are

the distinguished half-planes for aj. Write oy = H\Zai. Let vy e

{g_l(g(acai )}, where vj c Ay, be obtained from Lemma 2.2, which says
y; intersects axis(g) and [Q;_;Q;j]. Let {Lj, R} be the endpoints of y;,
where Lj € [Qj_1Qj] = £ and Rj € R.

Case 1. The sequence {0A,Yi}<j<, is partially ordered. Then
{0Ay, Vili<icq is ordered OAy <y < -+ < Y. In particular, X, <L
<L, £---<L,. Notice that Y, < B.. By Lemma 2.3, R; < R, and so
on, we obtain

Ry < Plia- (4.5)

Since €}, is of type (II) and Q; is of type (I), A, < Ay, which says that
o7 < Dy and thus that Y; < Xy < X|;. As it turns out, X; < L;. Now, by

the same argument of Lemma 3.3, one shows that

X, < Ly (4.6)
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Denote by yq € {g_l(g(écw() ))} the geodesic obtained from Lemma 2.2;
which says that yo < Ay, and Ly =7y N L e[Qj_Qj] Notice that

(04> 0g) is a pair of nested half-planes. By the definition, o, does not

cover Q; while oy covers Qj. We have o, < oy, which implies that

Ly <Yy < Xq. Together with (4.6), we have L, < L. But y is disjoint
from y,. So Ry < R,. By combining (4.5), we conclude that Ry < R,
< Ry, This also yields that g(Ry) < P, 415 thatis,

[Yoo(Rp)| < o +1. “4.7)

Case 2. {0Ay, Vi};<j<, is not partially ordered. In this case, by a similar

argument of Lemma 3.4, (4.7) remains valid.

Now g(y¢) € {g_l(g(é’cWO ))} is the geodesic that corresponds to W

and is obtained from Lemma 2.2, and moreover, one endpoint g(Ly) of

9(vo) liesin [QjQj. ] From Lemma 3.6, we assert that

| 9(Ro)Rrs1 [ <. (4.8)
But from Lemma 2.1(i),
| Rr19(Rryy) [ = 1. (4.9)
Suppose & # . Recall that Ap,, 1< i <P, are the distinguished half-
planes for bj. Write op, = H\Kbi. Let yj e {Q_l(g(aobi )}, 1<i<p and
each yj c Ap,, be obtained from Lemma 2.2; that is, each y; intersects
axis(g) and [Qj;q-1Qj+d]- Let {Lj, Ri} be the endpoints of y{, where
L € [Qj+a-1Qj+a]l = £ and R e R.
Case 1. Xg < Lg <Qjiq (here we recall that {Xg, Yp} = 0ot NL

with Yg < Xg). We may first assume that ng < Xy. Notice that
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8(Xpg, Xy) <1 (otherwise, Q, and QbB would be disjoint, contradicting
that d¢(bg, v) =1). So 8(Lg, X ) <1, and hence 8(Rg, Yy) <1 (otherwise,

g~ !(eAy) crosses vp, contradicting d¢(bg, v) = 1). Therefore, | RgY, | < 1.

But from Lemma 2.4, we obtain
| 9(Re41)Rs | < B. (4.10)
It follows that
| 9(Rrs1)Rp [+ | ReYy [ < B +1. (4.11)
If Lg > Xy, then we must have R >Y,. It is clear that | g(Rr.)Yy |
<] 9(Rr41)Rp | < B < B + 1. Hence (4.11) remains valid.
Case 2. Qj,q-1 < Lg < Xg < Qjq. Inthis case, Lg < Yg (elements in

{Q_l(g(yb))} are mutually disjoint). From Lemma 3.3, {g(Yr+1), 1> - Yp}

is not partially ordered. By the same argument of Lemma 3.4,
| 9(Rr41)Rg | <B—1. We claim that |RgYy [ <2. Indeed, inequalities

Lg < Yg < Xg <Qjs+q and 3(Yg, Xy) <1 lead to that &(Lg, Xy) <2,
which yields that 8(Rg, Yy) < 2 (otherwise, g~'(dA,) or g™2(2A,) would
intersect v, contradicting dc(bg, v) =1). So we conclude that | RgYy |

< 2, and thus (4.11) remains true.

In both the cases, we have established (4.11). Now (4.7), (4.8), (4.9),
(4.10) and (4.11) combine to yield

|YuYo | = [Yu9(Ro) [ +] 9(Ro)Rr 41 |
+| Rr19(Rr11) [+ (] 9(Rr+1)Rg |+ RYy )
<a+l+r+1+@B+1). (4.12)

It follows from (4.12) and (4.2) that | Y,Y, | < s +1.
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Similarly, one shows that |Y,Y,|<s+1 when £ =. Next, we
consider some special cases.

If %y =[u, &, V] for & ={a, ..., a,} =1{v, ..., Vs}, then s = a and
Ucai does not cover Qj. This implies that (XyXy] cover at most one
labeled point which is Qj, which says | X, Xy | < 1. By a similar argument
of (4.7),

IYJYy|<a+l=s+1.

If % =[u, &, Wy, B, V] for & and % sub-sequences of {vi, ..., Vg},

then

Ss=a+l+Bandd =1. (4.13)

In this case, it is easy to see that | X X, | < 2 (= d +1). By the argument of
(4.7), we can deduce that |Y,g(Ry)| < a +1. But the same argument of
(4.11) yields that | g(Ry)Yy | < B + 1. It follows from (4.13) that

YoV [ = [Yu9(Ro) [+ 9(Ro)Yy [ < (@ + 1)+ (B+1) =s+ 1. O
Finally, we can easily handle a special case where all regions involved
are type (II) regions.
Lemma 4.4. Let [ug, Uy, ..., Ur, Ur41], ¥ > 0, be a geodesic connecting
Up and u,,q. Suppose that these vertices uj, 0 <i <r+1, are mapped
to type (II) regions ; with respect to g. We have | XX ,;|<r+1 and
|YoYrs1| <1 +1, where {Xj,Y;} are endpoints of dA; and X; € £ and
Yi € R.

Proof. From Lemma 2.1(iii), we have

r r
| XoXpat | = D1 XX jor [ and [YoYear | = D [ Yi¥jur | (414)
j=0 j=0
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By Lemma 4.1, for 0 < j < r, we know that
|Xij+1|S1 and|Yij+1|S1.

It then follows from (4.14) that | XoX,,|<r+1 and | YoY,, | <1 +1, as
asserted. O

5. Proof of Theorem 1.1 and Theorem 1.2

Let f € &# be any pseudo-Anosov element. We know that f can be
written as f = g%, where g € G is an essential hyperbolic element. Let
Uy € Co(S) and let uy e Fg, be such that Qf = Qy is a type (II) region
with respect to g. Then all regions Qf, Q) = g(Qp), ..., Uy = 9" () are
of type (II).

We now prove that (1.1) holds for all integers m > 12 (in [15, 16] (1.1)

was established when 0 < m < 11). Suppose that

[Ug» V1> Vo, ..., Vg, Uy ], where m > 12 and uy, = ™ (up), (5.1)
is a geodesic in C(S) joining Uy to up,. Let
Q, Q, Qs oy Qs QU (5.2)

be the regions corresponding to Ug, Vq, ..., Vg, Uy, respectively. These

regions can be classified as type (I) and type (II) regions. First consider two
special cases:

Case 1. Besides Qp and Qp,, all Q;, Q,, ..., Qg are also type (II)

regions. By Lemma 4.4, we obtain
| XoXm | <s+1and [YoVp | <s+1. (5.3)
If U, intersects p(axis(g)) more than once, then Qy < Xy < Q; and

Py <Yy <PB. Thus, Qn <Xy <Qmyp and Py <Yy <Py (see

Figure 3). If U, intersects o(axis(g)) once, then X, =Q; and Yy = R,
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Hence X = Qm4q and Yy, = Ppq. In both the cases, we have | XXy, | =

| YoYm | = m. From (5.3), we obtain s + 1 > m. That is,
de(ug,Uupm) =s+1=>m. (5.4)

Case 2. Except Qp and Qy,, all Qy, ..., Qg are type (I) regions. Then

they must stay on one side of axis(g). Suppose that all oj = H\A;,

s—2

1 <i <s, are supported on £. By Lemma 4.3, | Xo X, | < [ } +2 and

|YoYm | < s +1. Since Qg N Qp # & and Qg is of type (I), o5 < Dy, for
D = H\{A}, A J. This implies that
Qm <Ys < Xg < Xiy £ Qmyr-

By assumption, we know that Qp < Xy £ Q; and Qn < Xy < Qnyi-
Notice that Xy = Q if and only if Xy, = Quiy. Hence | XoXp | =m. It

turns out that

s—2 s—-2
< <
m_[ 3 }+2_ 3 + 2.

So s > 3m — 4, which together with m > 3 leads to that
de(Up,Uy) =s+123m-3>m. (5.5)

In general, {Q, ..., Qg} contain both type (I) and type (I) regions.
Rewrite (5.2) as

2p(0) = Q0> Tp(0)> p)> Tp(t)s > Xp(m)> Tp(r)> Om> M 21 (5.6)
where Qp(i)’ 0<i<M, are all type (II) regions and I consists of
consecutive type (I) regions if not empty. Suppose that Fogiy # . Write
Cpi) = {®p(i)+1> -+ Op(i)+r(i)}> Where every op),j is a type (I) region
and is contained in Gpgj)yj = H\Zp(i)ﬂ-. Here we recall that Apgy, j

is the distinguished half-plane for vpgj),j. By Lemma 3.1, any pair
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(O p(i)+j» Op(i)+j+1) for successive regions ®p (i)« j» ®p(i)+j+1 in Tpgi) isa
pair of nested sets, which means that they are supported on £ or on R.

Whence all elements in Lpiy are supported on £ or on R. Throughout we

assume that the first type (I) region in (5.6) is supported on L.

The integer function p(i) in (5.6) satisfies the recursive condition:
p(0)=0, andfori > 1, p(i)— p(i—1)=r(i—1)+1. (5.7

It is obvious that s= Z,}A:o r(j)+M = Z'}A:;)lr(j)ﬁL r(M)+M. We thereby
obtain
M-1
D r(j)=s-r(M)-M. (5.8)
i=0
Recall that {X (i), Yp(i)} are endpoints of OA (), where X i) € £ and

Yp(i) € R and Ap) is the distinguished half-plane for vy ). By Lemma
2.1(ii1),

M -1
| X o)X pm) | = D | XpiyXpis1y |
i=0
and
M -1
| Y)Yy [ = D 1 Yo(i)Ypisn) | (5.9)
i=0

Let K denote the number of zeros in {r(0), r(1), ..., r(M —1)}. From the

construction, U intersects o(axis(g)) at least once. We deduce that
Qo < Xp(o) = Xo < Q and Py < Yp() = Yo < . (5.10)
See Figure 3. For each 0 <i < M -1 with r(i) > 2, we define
r(i)+1 if I'p(jy is supported on L,

bi =1q[r(i)-2 . .
[T} +2 if Ipiy 18 supported on R
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and if r(i) = 1, we define

A r(i)+1 if Ty is supported on L,
o if I'y(j is supported on R.

Since the condition r(i) > 2 guarantees that [(r(i)—2)/3]+2 <r(i)+1.
In the case of r(i)=1, it is automatic that 1< r(i)+1. We see that

by <r(i)+1 forall r(i) > 0. There are two cases to consider:

Case 1. Py < Yp(m) < Pyy1- From (5.9), (5.10) and Lemmas 4.1-4.3,

we know that

M-1

M =|Yp0)Ypm) | = K+ D YpiYpiien b 1) =1}
i=0

M —1
<K+ Y {bri) =1} (5.11)
i=0
From the definition of bj and (5.11), we obtain

M -1
m<K+ Y {ri)+1r()> 1}

i=0

M —
—K+M-K+ Zl{r(i); r(i)>1}
i=0

M -1
=M+ > {r(i)ri) = 1} (5.12)
i=0
But
M M -1
s= Y r())+M =M+ ri)+r(M).
j=0 i=0
So
M -1
D ori)=s-M-r(M). (5.13)

i=0
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Since r(M) > 0, (5.13) and (5.12) combine to yield
mM<M+(s—-M-r(M))=s-r(M)<s.
Hence

de(ug, Up) =s+1>m+1. (5.14)
For Qq < Xp < Q1. the argument is the same.

Case 2. Xpm) < Qm and Ypv) < Py Since de(Vs, Uy) =1, Tpawm)
# . That is, if we denote Tpm) = {®@pM)+1> - Op(M)+r(M)}> then
r(M)>1. It is obvious that s = p(M)+r(M) and suppose that wg is
supported on £, then {Xg, Y} := dos NS' = £ with Yg < Xs.

From construction (here we refer to Figure 3), Qf, = g™ (Q() and
Qp < H\{A}, Ay}. This tells us that dA lies between dA; and A]. Thus,

OAp lies between OAp, and OAy,,; (here we recall that A, is the

distinguished half-plane for u,). That is to say,
Qm < Xm £ Q41 and Py < Yy £ Ppat (5.15)

By hypothesis, dg(vs, Uy) =1. This yields that wg N Qp, # J. From

(5.15), we conclude that
Qm <Ys < Xg < Xm £ Q1
Let L be the smallest integer such that X py) < QL < Q. Then L <m.

Since Qy < Xp(g) < Q, we have

L—2£|Xp(0)xp(M)|SL—lSm—l. (5.16)
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On the other hand, Lemmas 4.1-4.3 and (5.9) yield that

M-1 M-1

| Xp(o)x p(M) | = Z| Xp(i)x p(i+1) | <K+ Z{bi; r(i)>1}
i=0 i=0

M -1
<K+ D {r(i)+ 1 (i) > 1}

i=0

M -1
=K+ Y {r(i) r(i) = 1} + (M - K)

i=0
M

=M+ > {r(i); (i) = 1 - r(M), (5.17)
i=0

From (5.2) and (5.6), we know that M + Z:\io {r(i); r(i) > 1} <'s, which

simplifies to

M
D e r@) =1 <s-M. (5.18)
i=0

Putting (5.18) and (5.17) together, we conclude that
| Xp)XpM) [ S M +(s=M)=r(M). (5.19)
From (5.16), | X pi0)X p(m) | is either L —1 or L — 2. By (5.19), we obtain
s>L-2+r(M). (5.20)

Since T'p(m) covers at least m — L +1 labeled points {Q, ..., Qn} and by
Lemma 3.2 of [16], at least four successive regions in I’ p(M) are needed to

cover a pair of any successive labeled points in {Q|, ..., Qy}. Note also that

the first region in I'pyy) does not cover Q. We conclude that

m—L+ls[W}+lsr(M—g_2+l. (5.21)
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(5.21) simplifies to 3(m—L) < r(M)-2 or
r(M)-1>=3m-3L+1. (5.22)

From (5.20) and (5.22), we obtain s > L +3m —3L =3m—-2L. But L < m.
Hence s > 3m —2m = m, thatis, S+ 1> m + 1, which says that

de(ug, Uy) = m+1. (5.23)

By combining (5.4), (5.5), (5.14) and (5.23), we conclude that d¢(ug, Up,)

> m, which proves Theorem 1.2. Theorem 1.1 follows immediately from
Theorem 1.2. O

6. Unboundedness of Sequence of Stable Translation Lengths

According to Theorem 1.2, for any pseudo-Anosov element f € £, we

can find a vertex U € C(S) such that for all positive integers m and n, we

have dg(u, f™(u)) > mn. This particularly implies that

myn
dc(u, (fn ) (U)) > m for any integers n.

Thus, to(f™) > m. Notice that m is also arbitrary. We conclude that
te(f™) = +o0 as m — +oo. This proves the following result:

Theorem 6.1. There exists a sequence {f, f,,..} = & of pseudo-

Anosov elements such that tp( f,) = +0 as m — +o.

Remark. By a slight modification, we can show that elements f; in the

sequence can be chosen as primitive elements.

7. Bi-infinite Geodesics Invariant under Pseudo-Anosov’s f € &

Let £ denote the set of primitive oriented filling closed geodesics on S

and & the subset of & consisting of those filling geodesics intersecting
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every simple closed geodesic more than once. It is not difficult to see that

both & and £\&*, are not empty. For every y € L\.&*, let %, be the

collection of simple closed geodesics on S intersecting y only once.

An infinite path [..., U_p, ..., Ug, ..., Upy, ..., where all uj € Cy(S), is
called a bi-infinite geodesic if u_y, and uy, both tend to points in 6C(S) and
for any m, the subpath [U_p, ..., Up, ..., Uy ] is a geodesic segment connecting

U_m and Up,.
Theorem 7.1. Let S be of type (p,1) with p>1. Let feZ be a
pseudo-Anosov element, and let yc % be determined by f. Assume that

VS £\&. Then f preserves at least one bi-infinite geodesic in C(S).
Furthermore, there is an injective map:

| : & — {f-invariant bi-infinite geodesics in C(S)}

so that I(,?y) consists of disjoint bi-infinite geodesics.

Proof. Fix y € £\.&" and for every 0y € £, let Uy € Fg, be such

that Q,  is a type (II) region with respect to g, where g*=f. We then

define

1(T) = [, F7™Up), ..., £7NUg), Ug, F(U)s o M), .1 (7.1)
For any other up e Fy, with Qu axis(g) # &, we have Uy = Uj.
Hence Q€ %0. It follows that there is an integer j such that
Qy, = gj(QuO ), that is uy = fI(ug) which tells us that the map I is well-
defined. From (5.4), (5.5), (5.14) and (5.23), one shows that 1({) for every

Up € % is an f-invariant bi-infinite geodesic in C(S).

To show that | is injective, we suppose 1(Uy)=1(Vy) for some 0y,

vy € .Z{ Let vy e F\70 be such that Qy, is a type (II) region with respect
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to g. From the definition (7.1), we have v = f i(uo) for some integer i. Since

f € Z, we see that Uy and v, € Fy, which says Vo = Up. Similar arguments

also yield that 1(.%)) consists of disjoint bi-infinite geodesics in C(S). O

Question. Ts the map | also surjective?

Remark. Bowditch [2] proved that for a surface Sp,n with 3p+n-—4
> 0, there exists a positive integer m such that for any pseudo-Anosov

mapping class f e Mod(Sp,n ), f™ preserves some bi-infinite geodesic in

C(Sp,n ).
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