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Abstract
By an E-group, we mean any p-group G in which the upper central
factors have the same exponents.
For a long time, there exist two conjectures:
() “If G is a finite non-cyclic group of order p", p a prime and n an

integer with n > 2, then the order of G divides the order of the group

A(G) of its automorphisms”.
(1) “If G is a finite group, then there exists a function g(h) for which
| AG)|p = p", whenever |G| > pg(h), where p is a prime number
and h an integer with h > 27,
A p-group is an E-group, if it belongs to EUC(p, n, ¢, k;), where

EUC(p, n, c, ky) is the collection of groups of order p", p a prime
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and n, ¢, k; positive integers with ¢ >2, n>2 and exp% =
I

expzZ = pkl forall i=0,12 ..,c-1 where G>Z.>Z,4--

>27y>Zg =1 is the upper central series of G and Z; = Z is the
center of G.

In this paper

(1) We prove that if G is an E-group, then the first conjecture is always
true.

(1) By the proof of the first conjecture, we find a new value for the
function g(h) such that g(h) < h for all integers h with h > 2. We believe

that this value is the best possible for E-groups.
I. Proving the first conjecture
1.1. Historical overview

Since the 50’s there exists the conjecture:

“If G is a finite non-cyclic group of order p", p a prime number and n
an integer greater than 2, then the order | G| of G divides the order | A(G) |
of the group A(G) of its automorphism”.

Groups which satisfy this conjecture are called LA-groups.

Many papers have been appeared upon this topic, but the conjecture
remained open until now. For example:

Schenkman in 1955 proved that a finite non-abelian group of class two
is an LA-group [27]. In this paper, some lemmas were incorrect. In 1968,
Faudree proved by another way those lemmas and he proved that a finite
non-abelian group of class two is an LA-group [15].

Ree in 1956 proved that any finite non-abelian group of order p" and

exponent p is an LA-group [25].
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Otto in 1966 proved that any finite abelian group of order p" is an
LA-group [24].

Davitt and Otto in 1971 proved that a finite p-group with the central
guotient metacyclic is an LA-group [6]. They also proved in 1972 that a
finite modular p-group is an LA-group [7].

Davitt in 1970 proved that a metacyclic p-group of order p" is an LA-

group [5]. He also in 1972 proved that a non-abelian p-abelian finite group of

G

order p" is an LA-group [8]. He also in 1980 proved that if ‘7 < p4, then

G is an LA-group [9].
Otto proved in [24, Theorem 1] that if G is a direct product G = H xK,
where H is abelian of order p" and K is a PN-group, then | AG)| =

p'| AKK).

The result of this type not only extends the number of groups to which
the conjecture is known to be true, but also, and perhaps more importantly,
shows that the truth of the overall conjecture depends only on being able to
prove it for a smaller class of groups. Otto’s result shows that it is sufficient
to consider PN-groups, that is p-groups with no non-trivial abelian direct
factors.

Also, Hummel proved in [21] that if the p-group G is a central product
H - K, where H is abelian and non-trivial and | K | divides | A(K)|, then
| G| divides | A(G)|. Hummel’s result shows that it is sufficient to consider
p-groups which are not central product of no non-trivial groups H - K,
where H is abelian and | K| divides | A(K)|. It may be noted here that if
Z £ ®(G), where Z is the center of G, then there exists a maximal subgroup

M of G such that Z £ M. Then G =Z - M and G is a central product of Z
and M, where Z is abelian. If Z = ®(G), then G is of class two. Therefore, if

G is of class ¢ > 2, then Z is a proper subgroup of ®(G). Therefore, in
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trying to prove the first conjecture, it is sufficient to prove it for p-groups for
which Z < ®(G).

Hence the truth of the overall conjecture depends only on being able to
prove it for a class of groups which satisfy all the following Condition A:

Conditions A. (i) G has class ¢ > 2.

(ii) G has more than two generators and so t > 3, where t is the number

of invariants of E_
Lo

(iii) G is a PN-group

(iv) G is not a central product of H - K, where H is abelian and | K |
divides | A(K)]|.

(v) Z is a proper subgroup of ®(G).
1.2. Notations and definitions

Throughout this paper, G will be a PN-group which satisfies Condition
A. Also, we shall use the following notations:

G is a finite non-abelian group of order p", p a prime number,
G' =[G, G] is the commutator subgroup of G, Z = Z(G) is the center of G
and @®(G) is the Frattini subgroup of G.

We denote the lower and the upper central series of G by:
G=L12L22L32"'ZLC_1ZLC>Lc+1=1,

where c is the class of G and L, = G’ =[G, G] is the commutator subgroup

of G. Also, we denote the upper central series of G by
GZZC ZZC—lZZC—Z Z"'ZZ]_>ZO =1,

where Z; = Z is the center of G.
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We also denote by my >mp >--->2m 21 and ky 2 ky > -2 kg =21

the invariants of LE and Z, respectively, where t and s are the numbers of
2

invariants of LE and Z, respectively. If |G/L, | = p™ and | Z | = p¥, then
2

m=m+my+---+m and k = k; + ko +--- + kg. Also, expng p™ and
2
expZ = pl
pLZ=p-.

A(G), I(G) and A.(G) are the groups of automorphisms, inner
automorphisms and central automorphisms of G, respectively. Hom(G, Z) is
the set of all homomorphisms of G into Z.

A p-group G is called p-abelian if (ab)? = aPbP for every two elements
aand b of G.

The p-group G is called metacyclic if it has a normal subgroup H such
that both H and G/H are cyclic.

We say that the p-group G has exponent p if aP =1 for every a < G.

The p-group G is called PN-group if it has no non-trivial abelian direct
factor.

As we have mentioned in the abstract, a p-group is an E-group, if
it belongs to E U C(p, n, c, ky), where E U C(p, n, ¢, kj) is the collection

of groups of order p", p aprime and n, c, k; positive integers with ¢ > 2,

n>2 and

exp% —expZ = p foralli=0,12, .., c -1 (1)
|

where G > Z, > Z._1--- > Z; > Zy =1 is the upper central series of G and
Zy = Z is the center of G.

All groups G which belong to E U C(p, n, c, k;) are called E-groups.
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All p-groups of maximal class are E-groups. If a p-group G has a
maximal subgroup which is abelian, then G is an E-group. Also, all finite
non-abelian p-groups with cyclic upper central factors are E-groups.
Therefore, the class E U C(p, n, ¢, k) is not empty.

We have proved in [14, Lemma 1] that the relation (1) holds for all finite
non-abelian p-groups. That is all p-groups which satisfy Condition A are
E-groups. However, later on we found two examples of p-group G for which
the relation (1) is not valid. These two examples are groups which do
not satisfy Condition A. The first example is a group of class two. The
second is a group which is a central product of groups G = H - K, where H
is abelian and | K| divides | A(K)|. So we tried persistently, however,

unsuccessfully, to find a p-group satisfying Condition A, but in this
particular group, the relation (1) is not valid. However, if in the future one
could find a p-group that satisfies Condition A and in which the relation (1)
is not valid, then it must be proved that this particular group is an LA-group.

If such a group does not exist, then in this paper, we prove that the first
conjecture is always true.

Also, by proving the first conjecture, we find a new value for the
function g(h) such that g(h) < h for all integers h with h > 2.

1.3. Preliminaries-elementary results

The number of automorphisms of a finite group has been an interesting
subject of research for a long time. Here by A(G), 1(G) and A.(G), we

denote the groups of automorphisms, inner automorphisms and central
automorphisms of G, respectively.

The group 1(G) of inner automorphisms of G is a normal subgroup of

A(G) and I(G) is isomorphism to % Hence | 1(G)| = ‘%‘ and so 1(G)

is a p-group.
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The group A.(G) of central automorphisms of G is a normal subgroup
of A(G) and it is the centralizer of I(G) in A(G). Also, A;(G) contains
I(G) if and only if 1(G) is abelian. That is A.(G) contains I(G) if and only
if G has class ¢ < 2. Also, it always holds that A.(G)N 1(G) = Z(1(G)).

z
Then | A,(6)N10)| = 2160 = |2 § || =| 2 |
For PN-groups G, it has been proved in [11, Lemma 1] that

t,s
Ac(G)=p?, with a= ) min(mj,k;j), where m >m, >-.->m >1 and
mikg

ki >ko >--->kgs =1 are the invariants of the abelian groups L% and Z,
respectively. Therefore, if G is a PN-group, then A.(C) is also a p-group.
Let | A(G)lp = p” be the greatest power of p which divides | A(G)|. In
order to prove that the p-group G is an LA-group, it is enough to prove that
A >n, where |G| = p".
Since for PN-groups both 1(G) and A.(G) are p-groups, we get

G
_ _laeie)_1AO1F]
pA_|A(G)|p2|Ac(G)"(G)|—|AC(G)m(G)| -7

'z

=|Ac(G)|-‘Z%‘=pa-pb,

where

E‘ = pb. Then we get
Z;

A=a+b, where | AG)|, = p?, | A(G)| = p? and ‘Zg‘z pP.
2

Let G be a PN-group of order p". In order to prove that G is an
LA-group, it is enough to prove that a + b > n.
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Blackburn proved in [1, Theorem 1.5] that if my >2my >---2>2m 21

are the invariants of E, then

Ly
L L. L L
my - =2 > 2> > c-1 > C
P zexpZ zexp 2 zexp it zexp
Let exp Ll‘i‘l = p". Then
C
my > . @

Take ae G, b e L,_5. Then [a, b]e L, <Z and so [a, b] commutes
with both a and b. Hence [a", b] = [a, b"] = [a, b]" for any positive integer
r r r
n. Then [a, b? ]=[a, b]? =1. This gives [a, b]® =1 for [a, b] € Z.
Thus bP e Z forevery b e L._1 and so
r> k. @)
By (1) and (2), we get
my, 2 k]_.

Since m, > k; by [11, Lemma 1], we get a > 2k +1(t — 2)s as t > 3.
Hence we have

a2k +s.
Let G=2.2>27Z,42--221>Zy=1 be the upper central series

of G. Since it is an E-group, we have exp% =expZ = p|<1 for all
|

G .
Zc—1

Zog
Z;

i=0,1 2, .. ¢c—1. Therefore, we have pb Z‘ZE =‘ . Since
2

kl +1

cannot be cyclic, we have

c-1

>p

Ze
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Hence

b G G Zey i+l ki(c—3) kqCc—2ky +1
p :‘_ :‘_“_Zpl .pl :pl 1 .
Z, Zea| | £

Therefore, it is always valid
b > k]_C— 2k1+1.
By these results, we get A>a+b > 2k +s+b with b > kjc — 2k; +1.

We could summarize all the results above in the following Lemma 1 and
we shall use this lemma without any further references:

Lemma 1. Let G be a group of order p" which satisfies Condition A.
Then all the following conditions hold:

(i) A=a+b, where | AG)|, = p%, | A(G)| = p? and ‘ZE‘ = p°.
2
(if) a > 2k + s, where s is the number of invariants of Z.
@iy b>kc—2k; +1>c—-12> 2.

Now we are going to state some known results without proofs. There
proofs could be found in [12], [14] and [19].

First we will state with a minor modification some results which have
been proved in [14, Lemma 2].

For example, in case (v), it is stated that “if k > my > k; > m, then
a>k+m+s—m —1”. That case (v) we change to “if k > my > k3 > m,

then a > k + m+ s —my —1". The proof is exactly the same.

Note that by this result, since k >m, we get a>m+s—-1 and

therefore case (iv) can be written as follows: “If k > my, then a>m+s-1".

Lemma 2. Let G be a group of order p" and class c. Also, let
G:L]_ZLzZLgZ"'ZLC_lZLC>Lc+1:1 and G:ZCZZC—].ZZC—Z

>...> 27y > Zy =1 be the lower and the upper central series of G, where



1086 T. G. Exarchakos, G. E. Baralis and G. M. Exarchakos

L, = G' =[G, G] is the commutator subgroup of G and Z; = Z is the

center of G. Let

Lg‘zpm,|z|=pk and mg >my >-->m >1 and
2

ki >k, >2--- > kg 21 be the invariants of LE and Z, where t and s are
2

the numbers of invariants of LE and Z, respectively, expng p™,
2 2

expzZ = pkl. In such a group, all the following conditions hold:
t,s
(i) | A.(G)| = p?, where a = Zmin(mi, kj).
Ny
(i) If m; > kq for some i with 1 <i <t, then a > ik + (t —i)s.

@i)ylfk>m >k >m,thena>k+m+s—m —1.

m

(iv) If my <Kk, then a > m+ s —1, where L%‘zp .

Lemma 3. Let G be a group of order p" and class c. If G has more than

one maximal subgroup which is abelian, then:

(i) G has class two and ‘%‘ = p2.

(ii) G’ is cyclic of order p.

(iii) G has two generators if and only if all maximal subgroups of G are
abelian.

Proof. Asin [12, Theorem 1.24, p. 14].
Lemma 4. Let G be a group of order p" and class c. Let H be a normal
proper subgroup of G. Then there exists a normal subgroup K of G

containing H such that ‘%‘ = p.
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Proof. Assume that H 1. Then H(\Z #1. Let K be a normal

subgroup of G containing H. Then %ﬂ Z(gj # 1. Hence there exists

K K . K K
X € 0 N Z(Wj with x # 1. Choose X € 0 N Z(Wj such that x = 1 and

xP e H. Then K = (x, H) and K is a normal subgroup of G.

Lemma 5. Let G be a finite p-group with ‘%‘ =p". If % has class less

than p, then it has defined type which is the partition of r. Moreover, the two

largest type invariants of % are the same.

Proof. This has been proved by Hall in [19, p. 137].

Theorem 1". Let G be a group of order p" and class ¢ > 2, where p is
a prime and n is an integer greater than 2. Let

vV

G=L>Ly>lg>>L >l >Lley=1
and
G=Zg2Ze12Z¢p222t>2Zy=1
be the lower and the upper central series of G, where L, = G' =[G, G] is
the commutator subgroup of G and Z; = Z is the center of G.

We denote by mp >my >--->m >1 and ky > ky >--- > kg > 1 the

invariants of LE and Z, respectively, where t and s are the numbers of
2

invariants of LE and Z, respectively. Since G has more than two generators,
2
t>3.

“This theorem has been proved in [14, Theorem 2]. But in that proof, there exist some
points which maybe need more explanations. To overcome these ambiguous points, we give
here a new proof of that theorem.
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G| .m
5l

Let and |Z|= pk. Then we have m=my +my +---+m, and

K=Kk +ky+---+Kks. Also, expLE =p™ and expZ = pkll
2

In such a group, if the center Z of G is elementary abelian, then G is an
LA-group.
Proof. By Lemma 1,
bZk]_C—Zkl-f-lZC—lZZ. (1)

If |Z|=pX and k=1, then | AG)|= p|1(G)| = p‘%‘=|G|. Therefore,

we may assume that

k> 2. )
Since Z is elementary abelian, kj =1 forall i =1, 2, ..., s.
Then
a >kt > 3k. (3)

Let | A(G)|ID = pA. Then A > a+b (Lemma 1), where | A,(G)| = p®.
By (1), (2) and (3), we have A>a+b>3k+c-1>8. Since k > 2,

a>3k>2k+2andso A>2k+c+1>n fork > =4
Hence,

. n-4 .

if n<8ork> 5 then G is an LA-group. 4
Therefore, we may assume that

n=9 (5)
and
n-4

k< o (6)
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Since k <n—;4, there exists some integer ¢ > 0, such that k =

n-4-o n-4-o
2 2
(5), n—8=>1, forall n>9 andso ¢ <1. But ¢ > 0. Hence ¢ =1 and so

. Since k > 2, we get > 2, which gives ¢ < n-8. By

n-5
k = 5 (7
Then
a>3k> 3n£15 (8)
and so A2a+b2M+b.
If b >3, then we get A2a+b23n_15+3=3n_92n as n>09.
Hence we may assume that b = 2.
Since A>a+b and b = 2, by (8), we get A23n£15+2:3n;11

>n for n > 11.

By (4), A>n for n<8. Therefore, to complete the proof of the
theorem, we have to prove that A>n for n =10 and n = 9.

For n =10, k=n£5>2andsok23.Then A> 2k + 4 >10.
n-5 G G z
Let n=9. Then k_T_Z' Let H == Then Z(H)_Z(YJ_T'
H |_|G H |_ 2 H _
Hence ‘m‘— 7, and so ‘m‘_ p- and epo(H)_ p. Then

there exist elements a,b e H such that a=b and a, b ¢ Z(H) and

aP e Z(H), b? € Z(H). Take A=(a, Z(H)) and B = (b, Z(H)). Then
A and B are maximal abelian subgroups of H. By Lemma 3, H is of class two
and Lp(H) is cyclic of order p. Then we have: G is of class 3 and so
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L2 < Zz, L3 <Z. AlSO, L2(H) = L2(%) = LZ(ZL)Z Then L%—Z‘ =Pp.
This gives Lo ‘ =p. Since Ly<L,NZ, |[L,NZ]|=p and since
L,NZ
L,b,NZ<Zand|Z|=p? weget|L, NZ|< p? Therefore, | L, | < p°.
If | Ly | < p?, then % =|Lg|= p and G has homocyclic lower central
3

factors. Then by [14, Theorem 1], G is an LA-group. Therefore, we may
assume that | L, | = p3. Then L, NZ =Z andso Z < L,. Hence Z <L,

< Z,. Since expﬁ = p, we get expé = p. Since expE = p, we have
z L, Z,
exp%g pz. Then my <2<k and Lemma 2 gives a>m+s—-1>m+1,
2
as s=2. For |Ly|= p3, we have m=n-3=6 as n =9. Therefore,
a>m+1>7.Thus A>a+b>09.

This proves Theorem 1.

Corollary 1. Let G be a group as in Theorem 1. Then G is an LA-group
under any one of the following conditions:

1.1. 1fb<3.
G
1.2.1If exp— = p.

1.3. If Gisregular and expG' = p.

. G
2 and since =~ cannot be

G
Proof. 1.1. If b =2, then Z—Z‘_ p Z)

cyclic, we have expzE =p and so expZ = p and by Theorem 1, G is an
2

LA-group.

If b =3, then

G 3 G 2
> | = =<
22‘ p~ and so exp Z, < pe.
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If expgz p2, then expZ = p2 and so k; > 2. This gives b >

Zy
kic —2ky +1>2c—3. For b =3, we get c =3. Then H =% has class 2
i _7(S\_ 4 H -G g
and since Z(H) = Z(Z) == we get ZH) 2, Since H has class 2,
we have H is abelian and by Lemma 5 _H has type (p, p, p)
Z(H) CZ(H) I
Then expE =eXp=--~ = P, a contradiction. Therefore expE =p
Z; ZH) ™ ' ’ Zy

and so expZ = p and by Theorem 1, G is an LA-group.

1.2, If exp% = p, then we get exp Z(%) = p and so exp% = p and
the result follows by Theorem 1.

1.3. For any regular p-group, we have exp% =expG' and so
exp% = p, and the result follows by Corollary 1.2.

Theorem 2. Let G be a group as in Theorem 1. If G has class ¢ = 3,
then G is an LA-group.

Proof. By Theorem 1, we may assume that Z is not elementary abelian.
Then k; > 2. So

k > 2. (1)
By Lemma 1,
a>2k+(t-2)s>2k+s )
ast=>3.
Hence

a> 2k +1. 3)
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Let | A(G)|, = p”. Then

A>a+bh. 4)
By Corollary 1.1, we may assume that
b > 4. (5)
By (3), (4) and (5), we get
A>a+b>2k+5. (6)

Since k > 2, forc =3, wehave A> 2k +5>9. Also, A>2k+5>n
n-5

for k > 5 Therefore,
ifn<9ork> n; , G is an LA-group. (7
Hence we may assume that
n>10 (8)
n-5
and k < 5
Since k < n£5’ there exists some integer x >0 such that k =
&Z_X' But k>2 and so "=2=X > 2, which gives x < n-9. By

(8), n—9>1.So x <1 andsince x > 0, we have x =1. Then

n-5-x _n-=6
k = 5 =5 9)
By (3), we have
a>2k+1=n-5. (20)

Since b > 4, we first prove Claim 1.

Claim 1. We claim that if b = 4, then G is an LA-group.



G
_ I < H _z .6
Let b = 4. Then Zz‘_p LetH_Z.Then Z(H)_é Z,
Z
4_|G|_| H - _ _G
andso p” = ‘ Z, |~ ‘—Z H)" In that case, since G hasclass c =3, H = Z
has class 2. Hence _H is abelian. Then by Lemma 5 _H has either
' Z(H) ' " Z(H)
type (p2, p2) or (p, p, p, p). We shall assume then ZFH) has type

(p2, p2) and get a contradiction.
Let % has type (pz, p2). Then there exist elements a, b of H such

2

that a=b,ae Z(H), aP ¢ Z(H) and a? €Z(H). Also, bgZ(H),bP ¢
2

Z(H) and bP? eZ(H). Take the groups A=(&Z(H)) and B=(Z(H)).

Then A and B are normal abelian subgroups of H and ‘%‘z

‘%‘z pz. Applying Lemma 4 to subgroups A and B, we can find
M N
subgroups M and N of H such that ‘T‘ = ‘E‘ =p.
M M P
Take XETHZ vy suchthat x =1 and x* € A Then M = (x, A).

Take WE%HZ(%) with w1 and wP e B. Then N = (w, B).

Then ‘%‘:‘%‘: p and so M and N are maximal subgroups of H and

they are both abelian. Then by Lemma 3, it should be

H 02 3

contradiction.
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H —
Z(m P

which gives expZ = p and by Theorem 1, G is an LA-group. This proves

H G
Therefore, Z(H) has type (p, p, p, p)- Then expz—z_exp

our claim. Therefore we may assume that
b >5. (11)
By (10) and (11), we get A > a + b > n. This proves Theorem 2.
Corollary 2. If b < 4, then G is an LA-group.

Proof. If b = 4, then by the claim, we have proved in Theorem 2, G is
an LA-group.

If b < 3, then the result follows from Corollary 1.1.

Theorem 3. Let G be a group as in Theorem 1. If k; < 2, then G is an

LA-group.
Proof. By Theorem 1, we may assume that k; > 2. Then k; =2 and so
k> 2. 1)
By Corollary 2, we may assume that
b > 5. (2)
By Lemma 1, we get a> 2k +(t—2)s>2k +s, as t >3. Thus

a>2k +1, 3)

Let |A(G)|ID = p” Then A>a+b and so A> 2k +6>10. Also,

n-6

A>2k+6<n fork> . Hence

n-=6

for n <10 or for k > 5

, G is an LA-group. 4

Therefore, we may assume that

n>11 (5)
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and k < n ; 6. Since k < nT—G there exists some integer x > 0 such that
k =&2_X. But k > 2 and so n—6—x22, which gives x < n-10.

By (5), n—10 >1 for all n with n >11. This gives x <1 and so x =1.
Then

k = 5 (6)
By (3) and (6), we get
a>2k+1=n-6. @)

Claim. By Corollary 2, we may assume that b > 5. We claim that if
b =5, then G is an LA-group.

By Theorem 4 in [14], we may assume that b > 2¢c — 2. If b =5, then
we get 2c—2 <5, which gives ¢ < % < 4. Therefore ¢ <3, as by
Theorem 2, G is an LA-group. This proves our claim.

By this claim and Corollary 2, we may assume that

b>6. (8)

By (7) and (8), we get A>a+b>n-6+6=n. This proves
Theorem 3.

Corollary 3. If b < 5, then G is an LA-group.

Proof. With b = 5, we have proved in Claim 2 that G is an LA-group. If
b < 4, then the result follows by Corollary 2.

Theorem 4. Let G be a group as in Theorem 1. If the center Z of G is
cyclic, then G is an LA-group.

Proof. By Theorem 3, we may assume that k; > 3. Then
k > 3. 1)

Also, by Corollary 3, we may assume that
b > 6. 2
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By Lemma 1, we get a > 2k + (t — 2)s > 2k + s. Hence
a>2k +1. 3)

Let [A(G)[, = pA. Then A>a+bh>2k+7>13. Also, A>2k +7>n

n-7
2

n-7

for k > . Thus, for n <13 or for k > , G is an LA-group.

Therefore we may assume that

n>14 4)

n-— . n-7 . .
and k < > Since k < 5 there exists some integer x > 0 such that
k =¥. But k > 3 and so LZ_X > 3, which gives x < n-13.

By (4), n—13 >1 forall n >14. Then x <1 andso x =1. Then

k=25, )

Since Z is cyclic, we have k =k;. Also, b>kic—2k +1 gives
b>kc—2k+1=k(c-2)+1>2k +1, as

c >4 (6)

By (3) and (6), we get A>a+b>4k+2 and so by (5), we get
n-=8

2
2n —14 > n. This proves Theorem 4.

A>a+b>4k+2=4 +2=2n-14. But n>14 and so A>

Theorem 5. Let G be a group as in Theorem 1. If G has class ¢ < 4,
then G is an LA-group.

Proof. If G has class ¢ < 3, then G is an LA-group (Theorem 2). Hence
we may assume that ¢ = 4.

Also, by Theorems 1 and 4, we may assume that Z is not elementary
abelian and not cyclic. Then ky > 2, k > ky and s > 2. Thus

k > 3. @)
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By Lemmal, a>2k +(t—-2)s>2k+s, ast >3. So
a>2k+2. @)
Let | A(G)|p = p”. By Lemma 1, we have

A>a+h. 3)

By Corollary 3, we may assume that

b>6. (4)
Also, A>a+b>2k+8>14 Also, A>2k+82n for k> "8
Thus, for either n <14 or k > n ;8, G is an LA-group.
Hence we may assume that
n>15 (5)
and k < 1=8

2

Since k <nT—8, there exists some integer x >0 such that k =

&Z_X. But k >3 and so k = n—g—xz?’, which gives x < n —14. By

(5), n—14 >1 forall n >15 andso x <1. But x > 0 andso x =1 and

5 (6)
By (2) and (6), we get
az2k+2=n-7. @)

By Theorem 3, we may assume that k; > 3. Then b > kic —2k; +1

> 3c — 5. Since ¢ = 4, we get

b>3c-5>7. )



1098 T. G. Exarchakos, G. E. Baralis and G. M. Exarchakos

By (7) and (8), weget A>a+b >n.

This proves Theorem 5.

Corollary 5. If b < 7, then G is an LA-group.

Proof. By Theorem 4 in [14], we may assume that b > 2c — 2. So we
have 2c—-2<b <7 which gives c sg< 5. Hence ¢ < 4 and by Theorem 5,
G is an LA-group.

Theorem 6 (The first conjecture). Let G be a non-cyclic group of order
p" and class ¢, where p is a prime number and n is an integer greater
than two. Then the order of G divides the order of the group A(G) of its

automorphisms.

Proof. By Theorem 5, we may assume that G has class ¢ > 5. Also, by
Theorems 1 and 4, we may assume that the center Z of G is not elementary
abelian and not cyclic. By Theorem 3, we may assume that k; > 3.

Hence
k > 4. 1)
By Lemmal, a>2k+(t—2)s>2k+s, as t>3. This gives
a>2k+s2>2k+2. (2)

Let | AG)], = p”. By Lemma 1, we have

A>a+bh. (3)

By Corollary 5, we may assume that
b>8 (4)
By (2), (3) and (4), we have A>a+b > 2k +10. Since k > 4, we

have A > 2k +10 >18. Also, A > 2k +10 > n for k > n—210.
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Thus, for either n <18 or k > n _210, G is an LA-group.
Therefore, we may assume that
n>19 (5)
n-10
and k < 5
. n-10 . .
Since k< 5 there exists some integer x >0 such that k =
%. But k>4 and so kzLZO_X24, which gives x < n —18.

By (5), n—18 >1andso x <1. Then x =1, as x > 0. Thus

k=25=. (6)

By (2) and (6), we get
a=z2k+2=n-09. @)
Since ¢>5,k; >3 and b >kc—2k; +1, we get
b>3c-52>10as k; > 3. (8)

By (7) and (8), we get A>a-+b >n. This proves Theorem 6 and the first
conjecture.

I1. Proving the second conjecture

As we mentioned in the beginning of this paper, the second conjecture
has as following:

“If G is a finite group, then there exists a function g(h) for which
|AG)], = p", whenever |G| > p9™), where p is a prime number and h
an integer with h > 2”.

The existence of the function g(h) was first conjectured in 1954 by

Scott [28], who proved that g(2) = 3. In 1956, Ledermann and Neumann
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[23] proved that in the general case of finite groups g(h)s(h—l)3

. ph‘l + h. Also, Green [17] and Howarth [20] reduced this bound. In 1970,
Hyde [22] proved that if G is a p-group, then g(h)=h+1 for h <4 and

g(h) = %h(h —3) for h > 5. In 1980, we reduced this bound to g(h) = h

for h <5 and g(h) = %hz for h >12 [12]. Also, for 7 < h <11, we gave
some other expression for g(h). In 1988, Burmester and Exarchakos [3]
proved that g(h)=h for h<6 and g(h)=%h2 for h>42 and for

7 <h <41, they gave the following expressions for g(h). They proved
that for 7 < h <12, g(h) =3h-13, for 13<h <22, g(h)=3h- 31, for
23<h <31 g(h)=7h-81 and for 32 <h <41 g(h)=9h-142. In

2012, Exarchakos et al. in [13] reduced all the above bounds considerably.
For the first time up to the present day, the function g(h) takes a linear

expression for all integers h with h > 2. They proved that g(h)=h for
h <13 and g(h) = 2h —11 for h > 14.

By Theorem 6, as we have proved it in this paper, we get that g(h) = h
for all integers h with h > 2. Note that if |G| > p9(M=" " then | AG)|> p".

We believe that the function g(h) < h is the best possible for p-groups.

Therefore, Theorem 6, which has contributed to the proof of the first
conjecture gives the best (least) function g(h) and also proves the second

conjecture for p-groups G.
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