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Abstract 

Time-dependent infiltration problems from periodic trapezoidal 
channels with water absorption by plant roots are considered. The 
problems involve four different types of water absorption by plant 
roots or root-water uptakes. The problems are governed by the 
Richards equation. To study the problems more conveniently, the 
equation is transformed into a modified Helmholtz equation. The 
modified Helmholtz equation, subject to a set of boundary conditions, 
is solved numerically using a Laplace Transform Dual Reciprocity 
Method (LTDRM) and a predictor-corrector scheme simultaneously. 
Using the solutions obtained, numerical values of the water absorption 
by plant roots are then computed. 

1. Introduction 

The study of water infiltration in a homogeneous soil has been conducted 
by a number of researchers. For example, steady infiltration problems have 
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been considered by Batu [3], Gardner [6], Philip [7], Pullan and Collins [8], 
and Solekhudin [12, 13]. Time-dependent infiltration studies have been 
considered by Lomen and Warrick [10], Warrick [17] and Clements and 
Lobo [5]. 

In this paper, we consider a problem involving time-dependent 
infiltration from periodic trapezoidal channels with four different types of 
root-water uptake, which is a continuation of the study conducted by 
Solekhudin [12, 13]. In the previous study, Solekhudin considered 
corresponding steady infiltration problems. In order to solve the problem, the 
governing equation, which is a Richards equation, is transformed into a 
modified Helmholtz equation. The modified Helmholtz equation is then 
solved numerically using an LTDRM with a predictor-corrector scheme 
simultaneously. Using the numerical solutions obtained, numerical values of 
root-water uptake function are computed. 

2. Problem Formulation 

Referred to Cartesian frame OXYZ with OZ positively downward 
consider a homogeneous soil, Pima Clay Loam (PCL). On the surface of soil, 
periodic trapezoidal irrigation channels are constructed. The cross-sectional 
perimeter of the channels is 2L. The channels are completely filled with 
water. It is assumed that the channels are sufficiently long, and there are a 
large number of such channels. Between two channels, a row of crops, with 
roots of depth mZ  and width ,2 mX  are planted. The distance between two 

adjacent rows of plants is ( ).2 DL +  It is assumed that the geometry of the 

channels and root zone do not vary in the OY direction and are symmetric 
about the planes ( ),DLkX +±=  for ....,2,1,0=k  These descriptions are 

shown in Figure 1. 
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Figure 1. Periodic trapezoidal channels with crops. 

Due to the symmetry of the problem, it is sufficient to consider a semi-
infinite region defined by DLX +≤≤0  and .0≥Z  The boundary 
conditions are as used by Batu [3]. In this paper, we consider four different 
types of root-water uptake, denoted by Root A, Root B, Root C and Root D. 
These types of roots are as reported by Vrugt et al. [16]. The problem in this 
study is to determine values of root-water uptake in the soil for infiltration 
from periodic irrigation channels with different types of root-water uptake. 

3. Basic Equations 

The geometry of the problems described in the preceding section does 
not vary in the OY direction. Hence, solutions of the problems are 
independent of the coordinate Y. The governing equation of the problems that 
may be used is 
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where K is the hydraulic conductivity, θ is water or moisture content in the               
soil, ( )ZX ,ψ  is the suction potential, and S is the root-water uptake function 

as in [12, 13], that is 
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where tL  is the width of the soil surface associated with transpiration 

process, β is the spatial root-water uptake distribution, potT  is the 

transpiration potential, and γ is the root-water stress response function 
reported by Utset et al. [15]. The spatial root-water uptake, β, is formulated 
as 
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Using the Kirchhoff transformation 
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where Θ is the Matric Flux Potential (MFP), an exponential relationship 
between K and ψ, 

 ,αψ= eKK s  (4) 

where sK  is the saturated hydraulic conductivity, the suction potential can 

be formulated as 
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and equation (1) can be written as 
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Here ( ) ( ) θ∂ψ∂θ=θ KD  is the diffusivity, which may be assumed as a 

constant d in the case of high frequency irrigation [2]. 

Using the dimensionless variables 
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where ∗γ  and ∗s  are as in [12]. 

Applying transformation 

 ( ) ( ) ,,,,, zetzxtzx ∗Φ=Φ  (9) 

into equation (8) yields 
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Following Yun [18], in order to apply an LTDRM, we first recast 
equation (10) to integro-differential form. Using the fundamental solution of 
Laplace equation 
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the resulting integro-differential form is 
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Applying Laplace transform 
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subject to the initial condition 
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on equation (12) yields 
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It can be seen that there is a non-linear term on the right hand side of 
equation (16), and hence the direct use of the Laplace transform challenging. 
To overcome this difficulty, we employ a predictor-corrector scheme. 
Detailed of the scheme can be obtained in [14]. 

Integro-differential equation (16) is the integro differential equation of 
equation 
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Boundary conditions of the problem in terms of φ are: 
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z  on the surface of the channel, (18) 
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n  on the surface of soil outside the channel, (19) 
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0,0 ==
∂
φ∂ xn  and ,0≥z  (20) 
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The term 2n  in Boundary condition (18) is the vertical component of normal 

vector pointing out region R. 

Solving equation (17) subject to boundary conditions (18) to (22) 
employing an LTDRM with a predictor-corrector scheme, we may obtain 
numerical values of φ. These values are then transformed using the Stehfest 
formula, given as 
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and P is a positive integer, to determine the numerical values of their inverse 
Laplace transforms, which are the dimensionless MFP. 

4. Results and Discussion 

In this section, some numerical results of the problem described in 
Section 2 are presented. As discussed in [12, 13], the homogeneous soil 
considered in this study is Pima Clay Loam (PCL). The values of α and sK  

of the soil are 0.014 cm–1 and 9.9 cm/day, respectively [1, 4]. The values of L 
and D are the same, that is, 50 cm. The width and the depth of the channels 



Imam Solekhudin 1024 

are πL4  and ,23 πL  respectively. The potential transpiration rate, ,potT  

used in this study is as that used by Li et al. [9], and Šimunek and Hopmans 
[11], that is, 4 mm/day. 

Four different types of root-water uptake models are considered, namely 
Root A, Root B, Root C and Root D are summarized in Table 1. The root-
water stress response function, γ, in this research is as reported by Utset et al. 
[15], described in Figure 2 

Table 1. Parameter values for four different root-water uptake 
 fitting parameters 

Root type mZ  mX  ∗Z  ∗X  Zp  Xp  

Root A 100 cm 50 cm 0 cm 0 cm 1.0 1.0 
Root B 100 cm 50 cm 20 cm 0 cm 1.0 1.0 
Root C 100 cm 50 cm 0 cm 25 cm 1.0 4.0 
Root D 100 cm 50 cm 20 cm 25 cm 5.0 2.0 

 

Figure 2. Root-water stress response function, γ. 

To obtain numerical results, a DRBEM with a predictor-corrector 
scheme is employed. To employ the method, boundary is descritized into 404 
elements, and 892 interior collocation points are chosen. Some of the results 
are presented in Tables 2 to 7. 
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Table 2. Values of root-water uptake, S, at selected locations at 8.0=t  
 Root-water uptake (S) 

Location Root A Root B Root C Root D 
(60 cm, 20 cm)  0.00102899  0.00112196  0.00117707  0.00284613 
(60 cm, 50 cm)  0.00044589  0.00048624  0.00050960  0.00037076 
(60 cm, 80 cm)  0.00013346  0.00014554  0.00015250  0.00003339 
(75 cm, 20 cm)  0.00386162  0.00420739  0.01085240  0.01441985 
(75 cm, 50 cm)  0.00161010  0.00175569  0.00452383  0.00180662 
(75 cm, 80 cm)  0.00046638  0.00050865  0.00131058  0.00015747 
(90 cm, 20 cm)  0.00882930  0.00961210  0.00551011  0.01336380 
(90 cm, 50 cm)  0.00361634  0.00394336  0.00226362  0.00164824 
(90 cm, 80 cm)  0.00102869  0.00112198  0.00064475  0.00014117 

Table 3. Values of root-water uptake, S, at selected locations at 1=t  
 Root-water uptake (S) 

Location Root A Root B Root C Root D 
(60 cm, 20 cm)  0.00099747  0.00108744  0.00114085  0.00275817  
(60 cm, 50 cm)  0.00042746  0.00046611  0.00048864  0.00035549  
(60 cm, 80 cm)  0.00012626  0.00013770  0.00014434  0.00003160  
(75 cm, 20 cm)  0.00373873  0.00407475  0.01051695  0.01397193  
(75 cm, 50 cm)  0.00154208  0.00168162  0.00433507  0.00173120 
(75 cm, 80 cm)  0.00044097  0.00048093  0.00123975  0.00014897  
(90 cm, 20 cm)  0.00854134  0.00930642  0.00534326  0.01295665 
(90 cm, 50 cm)  0.00346104  0.00377455  0.00216831  0.00157875 
(90 cm, 80 cm)  0.00097218  0.00106035  0.00060970  0.00013350 

Table 4. Values of root-water uptake, S, at selected locations at 2=t  
 Root-water uptake (S) 

Location Root A Root B Root C Root D 
(60 cm, 20 cm)  0.00094300  0.00102799  0.00107855  0.00260722  
(60 cm, 50 cm)  0.00039555  0.00043129  0.00045225  0.00032903  
(60 cm, 80 cm)  0.00011381  0.00012410  0.00013014  0.00002850  
(75 cm, 20 cm)  0.00352649  0.00384369  0.00992271  0.01317908 
(75 cm, 50 cm)  0.00142503  0.00155389  0.00400714  0.00160028  
(75 cm, 80 cm)  0.00039715  0.00043310  0.00111696  0.00013424  
(90 cm, 20 cm)  0.00804276  0.00876504  0.00503589  0.01220607  
(90 cm, 50 cm)  0.00319493  0.00348417  0.00200256  0.00145802  
(90 cm, 80 cm)  0.00087509  0.00095435  0.00054903  0.00012024 
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Table 5. Values of root-water uptake, S, at selected locations at 3=t  
 Root-water uptake (S) 

Location Root A Root B Root C Root D 
(60 cm, 20 cm)  0.00093197  0.00101596  0.00106596  0.00257670  
(60 cm, 50 cm)  0.00038907  0.00042421  0.00044486  0.00032366  
(60 cm, 80 cm)  0.00011126  0.00012132  0.00012723  0.00002786  
(75 cm, 20 cm)  0.00348378  0.00379713  0.00980275  0.01301903  
(75 cm, 50 cm)  0.00140136  0.00152805  0.00394078  0.00157379 
(75 cm, 80 cm)  0.00038821  0.00042334  0.00109189  0.00013123  
(90 cm, 20 cm)  0.00794278  0.00865611  0.00497369  0.01205427  
(90 cm, 50 cm)  0.00314132  0.00342564  0.00196910  0.00143365  
(90 cm, 80 cm) 0.00085531  0.00093276  0.00053667  0.00011754 

Table 6. Values of root-water uptake, S, at selected locations at 4=t  
 Root-water uptake (S) 

Location Root A Root B Root C Root D 
(60 cm, 20 cm)  0.00092897  0.00101269  0.00106253  0.00256840  
(60 cm, 50 cm)  0.00038729  0.00042227  0.00044284  0.00032218  
(60 cm, 80 cm)  0.00011055  0.00012055  0.00012643  0.00002769  
(75 cm, 20 cm)  0.00347219  0.00378448  0.00977020  0.01297559  
(75 cm, 50 cm)  0.00139489  0.00152099  0.00392265  0.00156654 
(75 cm, 80 cm)  0.00038574  0.00042064  0.00108496  0.00013040  
(90 cm, 20 cm)  0.00791566  0.00862655  0.00495682  0.01201309  
(90 cm, 50 cm)  0.00312667  0.00340965  0.00195997  0.00142699  
(90 cm, 80 cm) 0.00084985  0.00092680  0.00053326  0.00011679 

Table 7. Values of root-water uptake, S, at selected locations at 5=t  
 Root-water uptake (S) 

Location Root A Root B Root C Root D 
(60 cm, 20 cm)  0.00092808  0.00101171  0.00106151  0.00256593  
(60 cm, 50 cm)  0.00038676  0.00042169  0.00044223  0.00032174  
(60 cm, 80 cm)  0.00011034  0.00012031  0.00012618  0.00002247  
(75 cm, 20 cm)  0.00346873  0.00378072  0.00976051  0.00825040 
(75 cm, 50 cm)  0.00139294  0.00151887  0.00391720  0.00156437  
(75 cm, 80 cm)  0.00038498  0.00041981  0.00108285  0.00013015  
(90 cm, 20 cm)  0.00790759  0.00861776  0.00495181  0.01200084  
(90 cm, 50 cm)  0.00312227  0.00340484  0.00195723  0.00142499  
(90 cm, 80 cm) 0.00084818  0.00092498  0.00053222  0.00011656 
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Tables 2 to 7 show numerical values of the root-water uptake function, S, 
at selected locations in the root zone. Table 2 shows values of S at .8.0=t  

Values of S at ,1=t  ,2=t  ,3=t  4=t  and 5=t  are shown in Table 3, 

Table 4, Table 5, Table 6 and Table 7, respectively. It can be seen that at X = 
20 cm, at 20 cm below the soil surface, Root D gives highest value of S. 
However, the value of S drops rapidly for higher values of X, and the value 
of S at X = 80 cm is the smallest. It can also be seen that the highest values of 
S for Root A and Root B are at (90 cm, 20 cm). These results are expected,  

as the values of the pair ( )∗∗ ZX ,  of Root A and Root B are (0, 0) and            

(0, 20 cm), respectively. Hence, maximum uptakes of Root A and Root B are 
at positions (100 cm, 0) and (100 cm, 20 cm), respectively. For Root C       
and Root D, maximum uptakes are at (75 cm, 0) and (75 cm, 20 cm), 
respectively. 

Although not presented in this paper, values of suction potential, ψ, are 

between ,0120 ≤ψ≤−  and the values of ψ increase as t increases. Hence, 

values of S decrease as t increases. From Tables 2 to 7, it can be calculated 
that percentages of decrease from different types of root uptakes are about 
the same. From 8.0=t  to ,1=t  the decrease in S at Z = 20 cm is about 3%. 

At Z = 50 cm, S decreases about 4%, and at Z = 80 cm the decrease in S is 
about 5%. 

From 1=t  to ,2=t  the decreases in S at Z = 20 cm, Z = 50 cm, and Z = 

80 cm, are about 5%, 7%, and 10%, respectively. Values of S decrease about 
1%, 2%, and 2% at Z = 20 cm, Z = 50 cm, and Z = 80 cm, respectively, from 

2=t  to 3.=t  From 3=t  to ,4=t  at the same three values of Z, the 

decreases in S are about 0.3%, 0.5%, and 0.6%, respectively. From 4=t  to 
,5=t  the decreases in S are about 0.1%, 0.1% and 0.2%, respectively. These 

results imply that percentage of the decrease in S declines as t increases. The 
shallower level of soil reaches steady values of S earlier than those deeper. 
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5. Concluding Remark 

A problem involving time-dependent infiltration from periodic 
trapezoidal channels with four different types of root uptake has been solved 
by applying a set of transformations and an LTDRM with a predictor-
corrector scheme. The method is applied to obtain numerical values of water 
absorption by plant roots. 

The results indicate that at a fixed level of soil depth, the amount of 
water absorbed by plant roots is higher than those deeper. The results also 
indicate that the percentages of decrease in the amount of water absorbed for 
all the types of root uptake are about the same. The optimum uptake of every 

type of root uptake depends on parameters ∗X  and .∗Z  
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