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Abstract 

In this note, necessary and sufficient conditions are given for real        
self-reciprocal polynomials to have only real zeros. This result was 
inspired by a paper by Lakatos where necessary and sufficient 
conditions for real self-reciprocal polynomials to have all zeros on the 
unit circle are provided. 
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1. Introduction 

The properties of self-reciprocal polynomials have many applications in 
some areas of mathematics, for instance in cryptography and coding theory 
[2, 4, 5, 12], in Knot theory [8, 13, 15], and in Salem number theory [3]. 

A polynomial ( ) ∑
=

=
n

i

i
i zazP

0
 of degree n with complex coefficients is 

said to be self-reciprocal polynomial if ( ) ( ).1 zPzzP n=  If ,R∈ia  then 

( )zP  is called a real self-reciprocal polynomial (following the definition         

in [6]). It is clear that if ( )zP  is a real self-reciprocal polynomial, then 

,ini aa −=  for ....,,1,0 ni =  

There are many results in the literature that determine conditions to 
guarantee that a real self-reciprocal polynomial ( )zP  has all its zeros on the 

unit circle [1, 6, 7, 9-11]. Nevertheless, it is difficult to find references in the 
literature that furnish conditions to guarantee when ( )zP  has only real zeros. 

On the other hand, the theory of real zeros of polynomials is very well 
established [14, 17]. Hence, the purpose of this paper is to furnish necessary 
and sufficient conditions for a real self-reciprocal polynomial ( )zP  has all 

zeros on the real line. 

The note is organized as follows: In Section 2, the definition                       
of Chebyshev transform is recalled and some preliminary results are stated. 
In Section 3, necessary and sufficient conditions for real zeros of self-
reciprocal polynomials are given together with some remarks. Finally, some 
conclusions are drawn on the coefficients of real self-reciprocal polynomials. 

2. Preliminary Results 

The aim of this section is to provide some definitions and results 
concerning Chebyshev polynomials and the Chebyshev transform, the crucial 
ingredients to prove our main result (please see [7, 16] for further details). 
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The Chebyshev polynomial ( )xTj  of the first kind is a polynomial of 

degree j in x defined by 

( ) jxxTj coscos =  when .cos θ=x  

Taking ,1 xzz =+  we deduce that ( )xCzz j
jj =+1  (see [16, p. 224]), 

where 

( ) ,22 ⎟
⎠
⎞⎜

⎝
⎛= xTxC jj  

with C∈x  and ....,2,1=j  For our convenience, we define ( ) ( ),00 xTxC =  

.C∈x  

Now let us denote by n2R  the set of all real self-reciprocal polynomials 

of degree at most 2n. If nP 2R∈  is a non-zero polynomial, then there is an 

integer k, ,...,,0 nk =  such that 
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The next result is in [7]. 

Proposition 1. Every non-zero polynomial nP 2R∈  has the 

decomposition 

( ) ( )∏
=

−
+ +α−=

k

j
j

kn
kn zzzazP

1

2 ,1  

where C∈ααα k...,,, 21  and 0≠+kna  for some k with .0 nk ≤≤  

In this way, we make sense the following definition: 

Definition 1. The Chebyshev transform of a non-zero polynomial 

nP 2R∈  is 
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( ) ( )∏
=

+ α−=
k

j
jkn xaxP

1
.T  

The Chebyshev transform of the zero polynomial 0≡P  is defined by 

( ) .00 =xT  

More details and results about the Chebyshev transform may be found in 
[7]. 

3. Main Results 

Necessary and sufficient conditions for a real self-reciprocal polynomial 
to possess all zeros on the unit circle were given by Lakatos [7]. Our result is 
stated as follows: 

Theorem 1. Let ( )zP  be a real self-reciprocal polynomial of degree 2n. 

Then all zeros of ( )zP  are real if and only if all zeros of its Chebyshev 

transform ( )xPT  are located in ( ] [ ).,22, ∞−∞− ∪  

Proof. We first assume that all zeros of ( )zP  are real. Since ( )zP  is a 

self-reciprocal polynomial, it follows that if jz  is a zero of ( ),zP  then so 

does .1 jz  Hence, 
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Since jz  and jz1  are real for each j, ,21 ≥+ jj zz  ....,,1 nj =  

Consequently, all zeros of ( )xPT  are located in ( ] [ ).,22, ∞−∞− ∪  
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Conversely, suppose that the Chebyshev transform has the form 

( ) ( )∏
=

α−=
n

j
jn xaxP

1
2 ,T  

where 02 ≠na  and ( ] [ ) ....,,1,,22, njj =∞−∞−∈α ∪  It follows immediately 

that 

( ) ( )∏
=

+α−=
n

j
jn zzazP

1

2
2 .1  

Therefore, the zeros of ( )zP  are given by 

.2
42 −α±α

= jjz  

Since ( ] [ )∞−∞−∈α ,22, ∪j  for every j, ,042 ≥−α j  ....,,1 nj =  

More precisely, this means that all zeros of ( )zP  are real. 

Next we state the analogue of Theorem 1 for polynomials of odd degree. 

Corollary 1. Let ( )zP  be a real self-reciprocal polynomial of degree 

,12 +n  which can be represented by 

( ) ( ) ( ),1 zQzzP +=  

where ( )zQ  is a real self-reciprocal polynomial of even degree. Then all 

zeros of ( )zP  are real if and only if all zeros of the Chebyshev transform of 

( )zQ  are located in ( ] [ ).,22, ∞−∞− ∪  

Remark 1. Considering kx  a zero of ( ),xPT  from ,1 kkk zzx +=  we 

see that 

2
42

1,
−−

= kk
k

xxz    and   ,2
42

2,
−+

= kk
k

xxz  

where 1,kz  and 2,kz  are the corresponding zeros of ( ).zP  If ,2>kx  then 
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the multiplicities of 1,kz  and 2,kz  are the same as the multiplicities of .kx  

In the case that ,2±=kx  the multiplicities of 1,kz  and 2,kz  are doubled. 

Observe that ( ) ( ) ( ).sgnsgnsgn 2,1, kkk zzx ==  

Remark 2. Note that 1,kz  is an increasing function of kx  for ∈kx  

( ]2, −∞−  and a decreasing function of kx  for [ ).,2 ∞∈kx  On the other 

hand, 2,kz  is a decreasing function of kx  for ( ]2, −∞−∈kx  and an 

increasing function of kx  for [ ).,2 ∞∈kx  

3.1. Necessary and sufficient conditions on the coefficients 

The aim of this subsection is to provide necessary and sufficient 
conditions on the coefficients of the real self-reciprocal polynomials in order 
to obtain only real zeros. Our analysis is for polynomials of small degree. 

Let 

( ) ∑
=

≠=
n

i
n

i
in azazP

0
0,  

be a real self-reciprocal polynomial of degree n. There is no loss of 
generality in assuming that .1=na  

We summarize the study in the following three cases: 

(1) If ,2=n  then from Theorem 1, it follows that ( ) 11
2

2 ++= zazzP  

has only real zeros iff ,21 ≥a  i.e., ( ] [ ).,22,1 ∞−∞−∈ ∪a  

Observe that the zeros of multiplicity only occur in the cases 21 =a  

1( −=z  is zero of multiplicity two) and 21 −=a  1( =z  is zero of 

multiplicity two). 

(2) If ,3=n  then we have that ( ) =+++= 11
2

1
3

3 zazazzP  

( ) ( ),1 2 zQz +  where ( ) ( ) .111
2

2 +−+= zazzQ  From Corollary 1, ( )zP3  

possesses only real zeros iff ,211 ≥−a  i.e., ( ] [ ).,31,1 ∞−∞−∈ ∪a  
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The zeros of multiplicity only occur in the following cases: 1=z  is zero 
of multiplicity two when 11 −=a  and 1−=z  is zero of multiplicity three if 

.31 =a  

(3) If ,4=n  then ( ) 11
2

2
3

1
4

4 ++++= zazazazzP  has only real 

zeros iff ( ) ,, 2121 RRaa ∪∈  where 
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( ) { { }} ,210,84max,4max, 2
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aaaaaR R  

as we can see in Figure 1. 

 

Figure 1. Region .21 RR ∪  

Remark 3. Considering ,41 >a  the zeros of multiplicity occur           

in the case that ,24
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2
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z  have multiplicity two. Moreover, if 41 −<a  and 

,22 12 aa −−=  then 1=z  is a zero of multiplicity two. If 41 >a  and 

,22 12 −= aa  then 1−=z  is a zero of multiplicity two. If 41 =a  and 

62 =a  or 41 −=a  and ,62 =a  1−=z  or ,1=z  respectively, zeros are of 

multiplicity four. 

Remark 4. If ,01 =a  then ( )zP4  is an even function. So, ( ) 12,0 Ra ∈  

and then ( )zP4  has four real zeros ,1z  ,2z  ,3z  4z  with 21 zz =  and 

.43 zz =  Furthermore, if ,22 −=a  then 1=z  and 1−=z  are both zeros 

of multiplicity two. 

Remark 5. The intersection point of the lines 22 1 −− a  and 22 1 −a  is 

( ).2,0 −  The parabola 24

2
1 +a  and the lines 22 1 −− a  and 22 1 −a  intersect, 

respectively, at the points ( )6,4−  and ( ).6,4  
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