JP Journal of Algebra, Number Theory and Applications
© 2018 Pushpa Publishing House, Allahabad, India
http://www.pphmj.com
http://dx.doi.org/10.17654/NT040020207
Volume 40, Number 2, 2018, Pages 207-218
ISSN: 0972-5555

A REVISIT TO NON-LINEAR DIFFERENTIAL EQUATIONS ASSOCIATED WITH GENOCCHI NUMBERS

Sang Jo Yun and Jin-Woo Park ${ }^{*}$
Department of Mathematics
Dong-A University
Busan 604-714
Republic of Korea
Department of Mathematics Education
Daegu University
Gyeongsan-si
Gyeongsangbuk-do, 712-714
Republic of Korea

Abstract

In this paper, we obtain non-linear differential equations arising from the generating function of the Genocchi numbers. Also, we derive explicit formulae for the Genocchi numbers which are derived from those non-linear differential equations.

1. Introduction

The Genocchi polynomials are defined by the generating function to be

[^0]\[

$$
\begin{equation*}
\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!} \quad(\text { see }[1,2,3,5,6,12,15,16,17]) . \tag{1.1}
\end{equation*}
$$

\]

In the special case $x=0, G_{n}=G_{n}(0)(n \geq 0)$ are called Genocchi numbers. The first few Genocchi numbers are $0,1,-1,0,1,0,-3,0,17, \ldots$.

By the definition of Genocchi numbers, it is well known that

$$
\begin{aligned}
G_{2 n} & =2\left(1-2^{2 n}\right) B_{2 n} \\
& =2 n E_{2 n-1},
\end{aligned}
$$

where B_{n} and E_{n} are the Bernoulli numbers and Euler numbers, respectively which are defined by the generating function to be

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!},
$$

and

$$
\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}
$$

Genocchi numbers have been studied extensively in many different contexts of mathematics and applied mathematics, for example, complex analytic number theory, p-adic analytic number theory, homotopy theory, quantum physics.

There have been many works related with non-linear differential equations. For example, in [8], Kim and Kim studied non-linear differential equations arising from Frobenius-Euler polynomials, differential equations arising from Bernoulli numbers of second kind, Changee numbers and polynomials, Mittag-Leffer polynomials, degenerate Changhee polynomials are investigated by Kim et al. in [4, 5, 7, 9, 10, 11, 13]. Also, non-linear differential equations related special numbers and polynomials are studied in [12, 14, 15]. In particular, in [6], Kim investigated differential equations associated with Genocchi polynomials.

In this paper, we obtain non-linear differential equations arising from the generating function of the Genocchi numbers. In addition, we derive explicit formulae for the Genocchi numbers which are derived from those non-linear differential equations.

2. Some Properties for Genocchi Numbers

In this section, we assume that

$$
\begin{equation*}
F=F(t)=\frac{2}{e^{t}+1} \text {, and } F^{N}(t)=\underbrace{F \times \cdots \times F}_{N \text {-times }} \text { for } N \in \mathbb{N} \text {. } \tag{2.1}
\end{equation*}
$$

By (2.1), we have

$$
\begin{align*}
F^{(1)} & =\frac{d F(t)}{d t}=\frac{-2 e^{t}}{\left(e^{t}+1\right)^{2}}=F+\frac{1}{2} F^{2}, \tag{2.2}\\
F^{(2)} & =\frac{d F^{(1)}}{d t}=F^{(1)}+\frac{1}{2} 2 F F^{(1)} \\
& =\left(F+\frac{1}{2} F^{2}\right)+F\left(F+\frac{1}{2} F^{2}\right)=F-\frac{3}{2} F^{2}+\frac{1}{2} F^{3}, \tag{2.3}
\end{align*}
$$

where $F^{(k)}=\left(\frac{d}{d t}\right)^{k} F(t)$ and $k \in \mathbb{N}$. From (2.2) and (2.3), we get

$$
\begin{aligned}
F^{(3)} & =\frac{d F^{(2)}(t)}{d t}=F^{(1)}-6 F F^{(1)}+\frac{3}{2} F^{2} F^{(1)} \\
& =-F+\frac{7}{2} F^{2}-3 F^{2}+\frac{3}{2} F^{4} .
\end{aligned}
$$

Continuing this process, we set

$$
\begin{equation*}
F^{(N)}=\sum_{k=0}^{N} a_{k}(N) F^{K+1} . \tag{2.4}
\end{equation*}
$$

From now on, we will determine the coefficients $a_{i}(N)$ in (2.4). Let us take the derivative of (2.4) with respect to t. From (2.2) and (2.4), we have

$$
\begin{align*}
F^{(N+1)}= & \sum_{k=0}^{N} a_{k}(N)(k+1) F^{k} F^{(1)} \\
= & -\sum_{k=0}^{N} a_{k}(N)(k+1) F^{k+1}+\sum_{k=0}^{N} a_{k}(N) \frac{k+1}{2} F^{k+2} \\
= & -\sum_{k=0}^{N} a_{k}(N)(k+1) F^{k+1}+\sum_{k=1}^{N+1} a_{k-1}(N) \frac{k}{2} F^{k+1} \\
= & \sum_{k=0}^{N}\left\{-a_{k}(N)(k+1)+a_{k-1}(N) \frac{k}{2}\right\} F^{k+1} \\
& -a_{0}(N) F+a_{N}(N) \frac{N+1}{2} F^{N+2} . \tag{2.5}
\end{align*}
$$

By replacing N by $N+1$ in (2.4), we get

$$
\begin{equation*}
F^{(N+1)}=\sum_{k=0}^{N+1} a_{k}(N+1) F^{k+1} \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we have

$$
\begin{align*}
& -a_{0}(N)=a_{0}(N+1), a_{N}(N) \frac{N+1}{2}=a_{N+1}(N+1), \tag{2.7}\\
& a_{k}(N+1)=-(k+1) a_{k}(N)+\frac{k}{2} a_{k-1}(N), \quad 1 \leq k \leq N . \tag{2.8}
\end{align*}
$$

By (2.2) and (2.3),

$$
\begin{equation*}
a_{0}(1)=-1, \quad a_{1}(1)=\frac{1}{2}, \tag{2.9}
\end{equation*}
$$

and by (2.7) and (2.9),

$$
a_{0}(N+1)=-a_{0}(N)=a_{0}(N-1)=\cdots=(-1)^{N} a_{0}(1)=(-1)^{N+1} .
$$

From (2.7) and (2.9), we get

$$
\begin{aligned}
a_{N+1}(N+1) & =\frac{N+1}{2} a_{N}(N)=\frac{N+1}{2} \frac{N}{2} a_{N-1}(N-1)=\cdots \\
& =\frac{(N+1)!}{2^{N}} a_{1}(1)=\frac{(N+1)!}{2^{N+1}} .
\end{aligned}
$$

By (2.8), we have

$$
\begin{align*}
& a_{1}(N+1) \\
= & -2 a_{1}(N)+\frac{1}{2} a_{0}(N) \\
= & -2\left(-2 a_{1}(N-1)+\frac{1}{2} a_{0}(N-1)\right)+\frac{1}{2} a_{0}(N) \\
= & (-2)^{2} a_{1}(N-1)+\frac{1}{2}\left(a_{0}(N-1)+(-2) a_{0}(N-1)\right) \\
= & (-2)^{2}\left(-2 a_{1}(N-2)+\frac{1}{2} a_{0}(N-2)\right)+\frac{1}{2}\left(a_{0}(N)+(-2) a_{0}(N-1)\right) \\
= & (-2)^{3} a_{1}(N-2)+\frac{1}{2}\left(a_{0}(N)+(-2) a_{0}(N-1)+(-2)^{2} a_{0}(N-2)\right) \\
= & \cdots \\
= & (-2)^{N} a_{1}(1)+\frac{1}{2}\left(a_{0}(N)+(-2) a_{0}(N-1)+\cdots+(-2)^{N-1} a_{0}(1)\right) \\
= & \frac{1}{2}\left(a_{0}(N)+(-2) a_{0}(N-1)+\cdots+(-2)^{N-1} a_{0}(1)+(-2)^{N}\right) \\
= & \frac{1}{2} h_{N, 1} \\
= & \frac{(-1)^{N}}{2}\left(1+2+2^{2}+\cdots+2^{N}\right)=\frac{(-1)^{N}}{2}\left(2^{N+1}-1\right) \tag{2.10}
\end{align*}
$$

where

$$
\begin{aligned}
h_{N} & =h_{N, 1}=a_{0}(N)+(-2) a_{0}(N-1)+\cdots+(-2)^{N-1} a_{0}(1)+(-2)^{N} \\
& =(-1)^{N}\left(2^{N+1}-1\right) .
\end{aligned}
$$

From (2.8) and (2.10), we get

$$
\begin{align*}
& a_{2}(N+1) \\
= & -3 a_{2}(N)+\frac{2}{2} a_{1}(N) \\
= & -3\left(-3 a_{2}(N-1)+\frac{2}{2} a_{1}(N-1)\right)+\frac{2}{2} a_{0}(N) \\
= & (-3)^{2} a_{2}(N-1)+\frac{2}{2}\left(a_{1}(N-1)+(-3) a_{1}(N-1)\right) \\
= & (-3)^{2}\left(-3 a_{2}(N-2)+\frac{2}{2} a_{1}(N-2)\right)+\frac{2}{2}\left(a_{1}(N)+(-3) a_{1}(N-1)\right) \\
= & (-3)^{3} a_{2}(N-2)+\frac{2}{2}\left(a_{1}(N)+(-3) a_{1}(N-1)+(-3)^{2} a_{1}(N-2)\right) \\
= & \cdots \\
= & (-3)^{N-1} a_{2}(2)+\frac{2}{2}\left(a_{1}(N)+(-3) a_{1}(N-1)+\cdots+(-3)^{N-2} a_{1}(2)\right) \\
= & \frac{2}{2}\left(a_{1}(N)+(-3) a_{1}(N-1)+\cdots+(-3)^{N-2} a_{1}(2)+(-3)^{N-1} a_{1}(1)\right) \\
= & \frac{2}{2} h_{N, 2} \tag{2.11}
\end{align*}
$$

where

$$
\begin{aligned}
h_{N, 2} & =a_{1}(N)+(-3) a_{1}(N-1)+\cdots+(-3)^{N-1} a_{1}(1) \\
& =\frac{1}{2} h_{N-1,1}+\frac{(-3)}{2} h_{N-2,1}+\cdots+\frac{(-3)^{N-2}}{2} h_{1,1}+(-3)^{N-1} \frac{1}{2} .
\end{aligned}
$$

By (2.8) and (2.11), we get

$$
\begin{aligned}
& a_{3}(N+1) \\
= & -4 a_{3}(N)+\frac{3}{2} a_{2}(N)
\end{aligned}
$$

$$
\begin{align*}
& =-4\left(-4 a_{3}(N-1)+\frac{3}{2} a_{2}(N-1)\right)+\frac{3}{2} a_{2}(N) \\
& =(-4)^{2} a_{3}(N-1)+\frac{3}{2}\left(a_{2}(N-1)+(-4) a_{2}(N-1)\right) \\
& =(-4)^{2}\left(-4 a_{3}(N-2)+\frac{3}{2} a_{2}(N-2)\right)+\frac{3}{2}\left(a_{2}(N)+(-4) a_{2}(N-1)\right) \\
& =(-4)^{3} a_{3}(N-2)+\frac{3}{2}\left(a_{2}(N)+(-4) a_{2}(N-1)+(-4)^{2} a_{2}(N-2)\right) \\
& =\cdots \\
& =(-4)^{N-2} a_{3}(3)+\frac{3}{2}\left(a_{2}(N)+(-4) a_{2}(N-1)+\cdots+(-4)^{N-3} a_{2}(3)\right) \\
& =\frac{3}{2}\left(a_{2}(N)+(-4) a_{2}(N-1)+\cdots+(-4)^{N-3} a_{2}(3)+(-4)^{N-2} a_{2}(2)\right) \\
& =\frac{3}{2} h_{N, 3} \tag{2.12}
\end{align*}
$$

where

$$
\begin{aligned}
h_{N, 3} & =a_{2}(N)+(-4) a_{2}(N-1)+\cdots+(-4)^{N-3} a_{2}(3)+(-4)^{N-2} \cdot \frac{2!}{2^{2}} \\
& =\frac{2}{2} h_{N-1,2}+\frac{2 \cdot(-4)}{2} h_{N-2,2}+\cdots+\frac{2 \cdot(-4)^{N-3}}{2} h_{2,2}+(-4)^{N-2} \cdot \frac{2!}{2^{2}} .
\end{aligned}
$$

From (2.8) and (2.12), we get

$$
\begin{aligned}
& a_{4}(N+1) \\
= & -5 a_{4}(N)+\frac{4}{2} a_{3}(N) \\
= & -5\left(-5 a_{4}(N-1)+\frac{4}{2} a_{3}(N-1)\right)+\frac{4}{2} a_{3}(N) \\
= & (-5)^{2} a_{4}(N-1)+\frac{4}{2}\left(a_{3}(N-1)+(-5) a_{3}(N-1)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(-5)^{2}\left(-5 a_{4}(N-2)+\frac{4}{2} a_{3}(N-2)\right)+\frac{4}{2}\left(a_{3}(N)+(-5) a_{3}(N-1)\right) \\
& =(-5)^{3} a_{4}(N-2)+\frac{4}{2}\left(a_{3}(N)+(-5) a_{3}(N-1)+(-5)^{2} a_{3}(N-2)\right) \\
& =\cdots \\
& =(-5)^{N-3} a_{4}(4)+\frac{4}{2}\left(a_{3}(N)+(-5) a_{3}(N-1)+\cdots+(-5)^{N-4} a_{3}(4)\right) \\
& =\frac{4}{2}\left(a_{3}(N)+(-5) a_{3}(N-1)+\cdots+(-5)^{N-4} a_{3}(4)+(-5)^{N-3} \frac{3!}{2^{3}}\right) \\
& =\frac{4}{2} h_{N, 4},
\end{aligned}
$$

where

$$
\begin{aligned}
h_{N, 4} & =a_{3}(N)+(-5) a_{3}(N-1)+\cdots+(-5)^{N-4} a_{3}(4)+(-5)^{N-3} \frac{3!}{2^{3}} \\
& =\frac{3}{2} h_{N-1,3}+\frac{3 \cdot(-5)}{2} h_{N-2,3}+\cdots+\frac{3 \cdot(-5)^{N-4}}{2} h_{3,3}+(-5)^{N-3} \frac{3!}{2^{3}} .
\end{aligned}
$$

Continuing this process, we have

$$
\begin{equation*}
a_{j}(N+1)=\frac{j}{2} h_{N, j} \quad(j \in \mathbb{N}), \tag{2.13}
\end{equation*}
$$

where $a_{0}(N+1)=(-1)^{N+1}$,

$$
\begin{align*}
h_{N, 1} & =a_{0}(N)+(-2) a_{0}(N-1)+\cdots+(-2)^{N-1} a_{0}(1)+(-2)^{N} a_{0}(0) \\
& =(-1)^{N}\left(2^{N+1}-1\right), \tag{2.14}
\end{align*}
$$

and

$$
\begin{aligned}
h_{N, j}= & a_{j}(N)+(-j-1) a_{j}(N-1)+\cdots+(-j-1)^{N-j} a_{j}(j+1) \\
& +(-j-1)^{N-j+1} \frac{(j-1)!}{2^{j-1}}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{j}{2} h_{N-1, j-1}+\frac{j(-j-1)}{2} h_{N-2, j-1}+\cdots \\
& +\frac{j(-j-1)^{N-j}}{2} h_{j, j}+(-j-1)^{N-j+1} \frac{(j-1)!}{2^{j-1}} . \tag{2.15}
\end{align*}
$$

Hence, by (2.6), (2.13), (2.14) and (2.15), we obtain the following theorem.

Theorem 2.1. For $N \in \mathbb{N}$, let us consider the following non-linear differential equation with respect to t :

$$
\begin{equation*}
F^{(N+1)}=\sum_{k=0}^{N+1} \frac{k}{2} h_{N, k} F^{k+1}, \tag{2.16}
\end{equation*}
$$

where
$h_{N, 0}=1$ for all $N \in \mathbb{N}$,
$h_{N, 1}=(-1)^{N}\left(2^{N+1}-1\right)$,
$h_{N, j}=\sum_{k=0}^{N-j-1} \frac{j(-j-1)^{k}}{2} h_{N-k-1, j}+(-j-1)^{N-j+1} \frac{(j-1)!}{2^{j-1}}(2 \leq j \leq N)$.
Then $F=F(t)=\frac{2}{e^{t}+1}$ is a solution of (2.16).
From (1.1), we know that

$$
\begin{equation*}
F=\frac{2}{e^{t}+1}=\frac{1}{t} \frac{2 t}{e^{t}+1}=\frac{1}{t}\left(\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}\right)=\sum_{n=2}^{\infty} G_{n} \frac{t^{n-1}}{n!}+\frac{1}{t} \tag{2.17}
\end{equation*}
$$

Hence, by (2.17), we get

$$
\begin{equation*}
F^{(N)}=(-1)^{N} N!\frac{1}{t^{N+1}}+\sum_{k=0}^{\infty} \frac{G_{N+k+1}}{N+k+1} \frac{t^{k-N+-1}}{k!} \tag{2.18}
\end{equation*}
$$

and from (2.18), we have

$$
\begin{align*}
t^{N+1} F^{(N)} & =(-1)^{N} N!+\sum_{k=N+1}^{\infty} \frac{G_{k}}{k} \frac{t^{k}}{(k-N-1)!} \\
& =(-1)^{N} N!+\sum_{k=N+1}^{\infty} \frac{G_{k}}{k} \frac{k!}{(k-N-1)!} \frac{t^{k}}{k!} \\
& =(-1)^{N} N!+\sum_{k=N+1}^{\infty} \frac{(k-1)!G_{k}}{(k-N-1)!} \frac{t^{k}}{k!} \\
& =(-1)^{N} N!+\sum_{k=N+1}^{\infty}\binom{k-1}{N} N!G_{k} \frac{t^{k}}{k!} . \tag{2.19}
\end{align*}
$$

The higher-order Genocchi numbers are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{2 t}{e^{t}+1}\right)^{k}=\sum_{n=0}^{\infty} G_{n}^{(k)} \frac{t^{n}}{n!} \quad(\text { see }[1,3,5,16]) \tag{2.20}
\end{equation*}
$$

By Theorem 2.1 and (2.20), we have

$$
\begin{aligned}
t^{N+1} F^{(N)} & =t^{N+1} \sum_{k=0}^{N} \frac{k}{2} h_{N-1, k} F^{k+1} \\
& =t^{N+1} \sum_{k=0}^{N} \frac{k}{2} h_{N-1, k}\left(\frac{2 t}{e^{t}+1}\right)^{k+1} t^{-k-1} \\
& =\sum_{k=0}^{N} \frac{N}{2} h_{N-1, k}\left(\frac{2 t}{e^{t}+1}\right)^{k+1} t^{N-k} \\
& =\sum_{k=0}^{N} \frac{k}{2} h_{N-1, k}\left(\sum_{n=0}^{\infty} G_{n}^{(k+1)} \frac{t^{n}}{n!}\right) t^{N-k} \\
& =\sum_{k=0}^{N} \frac{k}{2} h_{N-1, k} \sum_{n=0}^{\infty} G_{n}^{(k+1)} \frac{t^{N+n-k}}{n!}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{k=0}^{N} \frac{k}{2} h_{N-1, k} \sum_{n=N-k}^{\infty} G_{n-N+k}^{(k+1)} \frac{n!}{(n-N+k)!} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{N} \frac{k}{2} h_{N-1, k} G_{n-N+k}^{(k+1)}(N-k)!\binom{n}{N-k}\right) \frac{t^{n}}{n!} . \tag{2.21}
\end{align*}
$$

Therefore, by (2.19) and (2.21), we obtain the following theorem.
Theorem 2.2. For $n \geq 0$ and $N \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{k=0}^{N} \frac{k}{2} h_{N-1, k} G_{n-N+k}^{(k+1)}(N-k)!\binom{n}{N-k} \\
= & \begin{cases}(-1)^{N} N! & \text { if } 0 \leq n \leq N, \\
\sum_{n=N+1}^{\infty} & \binom{n-1}{N} N!G_{n} \\
\text { if } n \geq N+1 .\end{cases}
\end{aligned}
$$

Acknowledgement

This research was supported by the Daegu University Research Grant, 2017.

References

[1] S. Araci, E. Sen and M. Acigoz, Theorems on Genocchi polynomials of higher order arising from Genocchi basis, Taiwanese J. Math. 18(2) (2014), 473-482.
[2] S. Gaboury, R. Tremblay and B. J. Fugère, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc. 17(1) (2014), 115-123.
[3] D. Kang, J. H. Jeong, B. M. Lee, S. H. Rim and S. H. Choi, Some identities of higher order Genocchi polynomials arising from higher order Genocchi basis, J. Comput. Anal. Appl. 17(1) (2014), 141-146.
[4] D. S. Kim and T. Kim, Some identities for Bernoulli numbers of the second kind arising from a nonlinear differential equation, Bull. Korean Math. Soc. 52 (2015), 2001-2010.
[5] S. Kim, B. M. Kim and J. Kwon, Differential equations associated with Genocchi polynomials, Global J. Pure Appl. Math. 12(5) (2016), 4579-4585.
[6] T. Kim, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20(1) (2010), 23-28.
[7] T. Kim, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory 132(12) (2012), 2854-2865.
[8] T. Kim and D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys. 23 (2016), 88-92.
[9] T. Kim, D. S. Kim, L. C. Jang and H. I. Kwon, Differential equations associated with Mittag-Leffer polynomials, Global J. Pure Appl. 12(4) (2016), 2839-2847.
[10] T. Kim, D. V. Dolgy, D. S. Kim and J. J. Seo, Differential equations for Changhee polynomials and their applications, J. Nonlinear Sci. Appl. 9 (2016), 2857-2864.
[11] T. Kim, D. S. Kim and J. J. Seo, Differential equations associated with degenerate Bell polynomials, Inter. J. Pure Appl. Math. 108(3) (2016), 551-559.
[12] T. Kim, S. H. Rim, D. V. Dolgy and S. H. Lee, Some identities of Genocchi polynomials arising from Genocchi basis, J. Inequal. Appl. 2013(43) (2013), 6 pp.
[13] T. Kim and J. J. Seo, Revisit nonlinear differential equations arising from the generating functions of degenerate Bernoulli numbers, Adv. Stud. Contemp. Math. 26(3) (2016), 401-406.
[14] H. I. Kwon, T. Kim and J. J. Seo, A note on Daehee numbers arising from differential equations, Global J. Pure Appl. Math. 12(3) (2016), 2349-2354.
[15] B. Kurt, The multiplication formulae for the Genocchi polynomials, Proc. Jangjeon Math. Soc. 13(1) (2010), 89-96.
[16] D. Lim, Some identities of degenerate Genocchi polynomials, Bull. Korean Math. Soc. 53(2) (2016), 569-579.
[17] H. Ozden, p-adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Comput. 218(3) (2011), 970-973.

[^0]: Received: October 13, 2017; Accepted: January 1, 2018
 2010 Mathematics Subject Classification: 05A10, 05A19.
 Keywords and phrases: non-linear differential equations, Genocchi numbers, higher-order Genocchi numbers.
 *Corresponding author

