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Abstract 

Confidence intervals (based on the F-distribution and the standard 
normal distribution) for the difference between two intraclass 
correlation coefficients under unequal family sizes based on two 
independent multinormal samples have been proposed. It has been 
found that the confidence interval based on the F-distribution produces 
better results than the confidence interval based on the standard 
normal distribution in terms of shorter average length. The coverage 
probability of the interval based on the F-distribution is competitive 
with that based on the standard normal distribution. An example with 
data is presented. 
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1. Introduction 

Consider estimation of the intraclass correlation coefficient for blood 
pressure of p children in each of n families. The p measurements on a family 
provide ( ) 21−pp  unique pairs of observations. From the n families, we 

generate a total of ( ) 21−pnp  unique pairs from which a correlation 

coefficient can be computed in the usual way. The correlation coefficient 
thus computed is called intraclass correlation coefficient. 

Several authors have studied statistical inference concerning intraclass 
correlation coefficient based on a single multinormal sample: Scheffe [12], 
Rao [8], Rosner et al. [9, 10], Donner and Bull [2], Srivastava [13], 
Srivastava and Keen [15], Konishi [6], Gokhale and Sengupta [4] and 
Sengupta [11]. 

Donner and Bull [2] discussed the likelihood ratio test for testing the 
equality of two intraclass correlation coefficients based on two independent 
multinormal samples under equal family sizes. Konishi and Gupta [7] 
proposed a modified likelihood ratio test and derived its asymptotic null 
distribution. They also discussed another test procedure based on a 
modification of Fisher’s Z-transformation following Konishi [6]. 

Huang and Sinha [5] considered an optimum invariant test for the 
equality of intraclass correlation coefficients under equal family sizes for 
more than two intraclass correlation coefficients based on independent 
samples from several multinormal distributions. 

For unequal family sizes, Young and Bhandary [17] proposed the 

likelihood ratio test, large sample Z-test and large sample ∗Z -test for the 
equality of two intraclass correlation coefficients based on two independent 
multinormal samples. 

For several populations and unequal family sizes, Bhandary and Alam 
[1] proposed the likelihood ratio test and large sample ANOVA test for         
the equality of several intraclass correlation coefficients based on several 
independent multinormal samples. Donner and Zou [3] proposed asymptotic 
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test for the equality of dependent intraclass correlation coefficients under 
unequal family sizes. 

But none of the above authors derived any confidence interval estimator 
for the difference between two intraclass correlation coefficients under 
unequal family sizes. In this paper, it is considered confidence interval 
estimators for the difference between two intraclass correlation coefficients 
based on two independent multinormal samples under unequal family sizes. 

It has been carried out conditional analysis assuming family sizes fixed 
though unequal. 

It could be of interest to estimate the difference in heritability in blood 
pressure or cholesterol or lung etc., between families in Native American/or/ 
White races and the families in Asian races and therefore we need to develop 
an interval estimator for the difference between two intraclass correlation 
coefficients under unequal family sizes. 

In Section 2, confidence interval estimators for the difference between 
two intraclass correlation coefficients under unequal family sizes have been 
proposed. These interval estimators are compared in Section 3 using a 
simulation technique. It is found on the basis of simulation study that the 
confidence interval estimator based on the F-distribution produces better 
result than the confidence interval estimator based on the standard normal 
distribution in terms of shorter average length. The coverage probability of 
the interval based on the F-distribution is competitive with that based on      
the standard normal distribution. An example with data is presented in 
Section 4. 

2. Proposed Confidence Intervals 

2.1. Interval based on standard normal distribution 

Let ( )′= iipiii xxxX ...,,, 21  be a 1×ip  vector of observations from ith 

family; ....,,2,1 1ki =  The mean vector and the covariance matrix for the 

familial data are: 
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Srivastava [13] gives estimator of 1ρ  and 2
1σ  under unequal family sizes 

which are good substitute for the maximum likelihood estimator and are 
given by the following: 
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Srivastava and Katapa [14] derived the asymptotic distribution of .ˆ1ρ  
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Consider the two sample problem with 1k  and 2k  families from each 

population. 
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and 1ρ̂  is given by (2.3). 

Similarly, 2
2S  is obtained with 1ρ̂  replaced by 2ρ̂  and 1k  replaced by 

.2k  
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The square of the denominator of (2.8) is a consistent estimator of 
( ).ˆˆ 21 ρ−ρVar  Using the expression (2.8), a ( )%1100 α−  confidence 

interval for 21 ρ−ρ  is 
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A second approximate %21100 




 α−  confidence interval for 21 ρ−ρ  is: 
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Therefore, an approximate ( )%1100 α−  confidence interval for 21 ρ−ρ  is 

as follows: 
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This approximate interval is conservative. Performance of the intervals given 
by (2.9) and (2.17) in terms of average lengths and coverage probabilities 
will be discussed in the next section using simulated data. 

3. Simulation Results 

Multivariate normal random vectors were generated using R. Two cases 
of five ( )521 == kk  and thirty ( )3021 == kk  vectors of family data were 

created for each of the two populations. The family size distribution was 
truncated to maintain the family size at a minimum of 2 siblings and a 
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maximum of 15 siblings. The previous research in simulating family sizes 
(Rosner et al. [9] and Srivastava and Keen [15]) used a negative binomial 
distribution with a mean = 2.86 and a probability of success of 0.483. Here,                  
it was set at a mean = 2.86 and a theta = 41.2552 which were the same               
as those of the previous researchers. The parameters 1ρ  and 2ρ  took 

combinations over the range of values from 0.1 to 0.9. There were 10,000 
Monte Carlo samples for each pair of 1ρ  and .2ρ  The average length and 

coverage probability of each interval at 05.0=α  were noted (Table 1). On 
the basis of our study, the interval based on the F-distribution showed shorter 
average length than the interval based on the standard normal distribution. 
The coverage probability of the interval based on the F-distribution                  
is competitive with the coverage probability of the interval based on the 
standard normal distribution (Table 2). 

Table 1. Comparison of length ( )05.0=α  

 5=k   30=k   

1ρ  2ρ  Z 0F  Z 0F  

0.1 0.4 1.3791 1.0303 0.5810 0.5565 

0.1 0.5 1.3452 0.9597 0.5624 0.5175 

0.2 0.3 1.3954 1.0399 0.5968 0.5630 

0.2 0.7 1.2439 0.7782 0.5095 0.4090 

0.3 0.3 1.3890 1.0018 0.5969 0.5271 

0.3 0.5 1.3378 0.8874 0.5707 0.4553 

0.3 0.7 1.2347 0.7479 0.5097 0.3769 

0.3 0.9 1.0617 0.5574 0.4381 0.2967 

0.4 0.2 1.3763 0.9925 0.5881 0.5262 

0.4 0.4 1.3487 0.8975 0.5791 0.4567 

0.4 0.5 1.3177 0.8439 0.5604 0.4202 

0.4 0.7 1.2181 0.7106 0.4989 0.3423 

0.4 0.9 1.0351 0.5201 0.4256 0.2626 

0.5 0.1 1.3484 0.9653 0.5631 0.5179 

0.5 0.4 1.3188 0.8439 0.5606 0.4193 
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0.5 0.5 1.2863 0.7954 0.5415 0.3835 

0.5 0.7 1.1790 0.6607 0.4765 0.3073 

0.5 0.9 0.9977 0.4782 0.4002 0.2288 

0.6 0.3 1.2944 0.8254 0.5426 0.4163 

0.6 0.6 1.1929 0.6711 0.4836 0.3102 

0.6 0.9 0.9347 0.4270 0.3607 0.1933 

0.7 0.3 1.2349 0.7469 0.5094 0.3758 

0.7 0.7 1.0527 0.5379 0.4021 0.2348 

0.7 0.9 0.8458 0.3699 0.3067 0.1562 

0.8 0.5 1.0957 0.5759 0.4370 0.2663 

0.8 0.8 0.8590 0.3919 0.2973 0.1587 

0.8 0.9 0.7210 0.3020 0.2398 0.1188 

0.9 0.9 0.5581 0.2206 0.1637 0.0800 

Table 2. Comparison of coverage probability ( )05.0=α  

 5=k   30=k   

1ρ  2ρ  Z 0F  Z 0F  

0.1 0.1 0.9808 0.9751 0.9782 0.9724 

0.1 0.2 0.9741 0.9741 0.9663 0.9748 

0.1 0.3 0.9697 0.9636 0.9577 0.9710 

0.1 0.4 0.9620 0.9459 0.9568 0.9611 

0.1 0.5 0.9573 0.9081 0.9632 0.9446 

0.2 0.1 0.9762 0.9732 0.9616 0.9726 

0.2 0.2 0.9683 0.9754 0.9489 0.9757 

0.2 0.3 0.9607 0.9713 0.9488 0.9726 

0.2 0.4 0.9545 0.9530 0.9427 0.9655 

0.2 0.5 0.9498 0.9185 0.9453 0.9515 

0.3 0.1 0.9676 0.9627 0.9577 0.9690 

0.3 0.2 0.9617 0.9723 0.9455 0.9754 

0.3 0.3 0.9528 0.9746 0.9432 0.9737 

0.3 0.4 0.9380 0.9672 0.9445 0.9717 

0.3 0.5 0.9331 0.9395 0.9424 0.9603 



Confidence Interval Estimation for a Difference … 345 

0.3 0.6 0.9320 0.8832 0.9386 0.8717 

0.4 0.1 0.9653 0.9434 0.9567 0.9630 

0.4 0.2 0.9578 0.9622 0.9459 0.9658 

0.4 0.3 0.9421 0.9681 0.9392 0.9716 

0.4 0.4 0.9340 0.9732 0.9391 0.9756 

0.4 0.5 0.9233 0.9621 0.9360 0.9691 

0.4 0.6 0.9266 0.9142 0.9404 0.9494 

0.4 0.7 0.9222 0.8394 0.9389 0.8856 

0.5 0.1 0.9570 0.9136 0.9641 0.9492 

0.5 0.2 0.9491 0.9255 0.9431 0.9508 

0.5 0.3 0.9341 0.9394 0.9382 0.9598 

0.5 0.4 0.9265 0.9647 0.9396 0.9714 

0.5 0.5 0.9180 0.9770 0.9392 0.9756 

0.5 0.6 0.9071 0.9517 0.9416 0.9651 

0.5 0.7 0.9046 0.8757 0.9420 0.9221 

0.6 0.3 0.9387 0.8922 0.9399 0.9336 

0.6 0.4 0.9220 0.9221 0.9378 0.9505 

0.6 0.5 0.9117 0.9537 0.9416 0.9635 

0.6 0.6 0.9106 0.9766 0.9455 0.9769 

0.6 0.7 0.9129 0.9299 0.9478 0.9560 

0.7 0.5 0.9127 0.8843 0.9419 0.9214 

0.7 0.6 0.9107 0.9318 0.9458 0.9598 

0.7 0.7 0.9158 0.9751 0.9514 0.9717 

0.7 0.8 0.9201 0.8883 0.9495 0.9311 

0.8 0.5 0.9064 0.7655 0.9435 0.8141 

0.8 0.6 0.9096 0.8112 0.9450 0.8595 

0.8 0.7 0.9185 0.8892 0.9528 0.9284 

0.8 0.8 0.9383 0.9748 0.9532 0.9729 

0.8 0.9 0.9341 0.7805 0.9523 0.8374 

0.9 0.8 0.9384 0.7863 0.9514 0.8378 

0.9 0.9 0.9677 0.9771 0.9620 0.9752 
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4. Example with Real Life Data 

In this section, a comparison of the two intervals is going to be done 
using data from Srivastava and Katapa [14] (Table 3). 

Table 3. Values of pattern intensity on soles of feet in 14 families in two 
groups 

Sample Family# Mother Father #Siblings Data 

A 1 2 3 2 2, 2 

A 2 2 3 2 2, 3 

A 6 4 3 3 4, 3, 3 

A 8 3 7 7 2, 4, 7, 4, 4, 7, 8 

A 11 5 6 4 5, 3, 4, 4 

A 12 2 4 2 2, 4 

A 14 2 3 3 2, 2, 2 

Sample Family# Mother Father #Siblings Data 

B 3 2 3 3 2, 2, 2 

B 4 2 4 5 2, 2, 2, 2, 2 

B 5 6 7 2 6, 6 

B 7 4 3 7 2, 2, 3, 6, 3, 5, 4 

B 9 5 5 2 5, 6 

B 10 5 4 3 4, 5, 4 

B 13 6 3 4 4, 3, 3, 3 

Here 71 =k  and .72 =k  

The approximate 95% confidence intervals for the difference between 
two intraclass correlation coefficients are (–0.70297, 0.0367) using the            
F-distribution approximation and (–1.2981, 0.23691) using the standard 
normal approximation. 

The length of the 95% confidence interval based on the F-distribution 
approximation is much shorter than the length of the 95% confidence interval 
based on the standard normal distribution. 
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