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Abstract 

We exhibit boundedness of an integral operator with homogeneous 

kernel, from the power weighted space pL  into the related power 

weighted qL  space. In turns, the boundedness is used to prove a 
generalized version of Hardy inequality, in which the classical one can 
be obtained as a special case. 

1. Introduction 

The classical Hardy integral inequality 
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where ,1>p  has been proved with various ways [2]. A more traditional 

approach is using integration by parts. Via an alternate route, using 
homogeneous kernel of degree –1, one can prove a more general inequality 
(see [1]). 
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Okikiolu [3] proved the boundedness of integral operator with 
homogeneous kernel of degree ,1−μ  where .10 <μ≤  Using special kernel, 

one can have an inequality similar to (1), with differing exponents, on the left 
and right hand sides. 

In this paper, we will prove a similar result to [3], that is the boundedness 
of the operator: 

( ) ( ) ( ) ( )∫
∞

∞−
= dyyfyxkxHf ,  

in a weighted space, where the weight is an appropriate power function.  
Here ( )yxk ,  is a homogeneous kernel of degree ,1−μ  where .10 <μ≤  

Comparing to [3], we do not impose the symmetric condition for the 
operator. This is a first step to answering an open question raised in [4], on 
necessary and sufficient condition for boundedness of integral operators  
with general Hardy-type kernels. Using an appropriate power function as a 
weight, we prove our main result using similar technique employed in [3], 
albeit some modification. 

In the rest of this paper, we use our main result to obtain the following 
inequality: 
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where ,1>p  ,10 <μ≤  μ−= pq
11  and for any ,0≥a  0≥b  with some 

conditions which will be detailed later. Notice that if ,0=μ  0=a  and 

,0=b  we have the classical Hardy inequality. We also generalize a variant 
of Hardy inequality stated in [1, p. 188]. 

2. Main Results and Discussion 

We will work on the power weighted Lebesgue space of the real 
functions of one variable defined on the whole space .R  Suppose 1>p  and 
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.0≥a  The weighted Lebesgue space in R  is the set (of equivalence classes) 
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 as the norm of the space. 

We will discuss the boundedness of integral operator 

( ) ( ) ( ) ( )∫
∞

∞−
= dyyfyxkxHf ,  

on the weighted Lebesgue space, for which the kernel k satisfies the 
homogeneous condition 

( ) ( )yxkyxk ,, 1−μλ=λλ  

for all real number ,0≠λ  and some .10 <μ≤  Our main result can be 

stated as follows. 

Theorem 1. Let ,10,1 <μ≤>p  and q such that 

 011 >μ−= pq  (2) 

and .q
b

p
a =  Let RRR →×:k  be a homogenous kernel with degree 

.1−μ  Then the operator H satisfies 
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Proof. We borrow the idea from [3] to estimate the operator 

( ) ( )xHf  
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≤ dyyfyxk ,  

( ) ( ) ( ) ( ) ( ) .,, 11∫
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 (3) 

The numbers α and β will be determined later. The conjugate number p′  of 

p is the number that satisfies .111 =′+ pp  Holder inequality is applied         

to three functions in (3) with parameters that satisfies the relation (2) or 

.111 =′++μ pq  It yields 
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Using the homogeneous property of k, 2I  is manipulated 

( ) ( ) ( ) ( ) ( ) ( ) .,1 1111
2 ∫

∞

∞−

′β−−′β−−μ′α+μ−= dyyxkxyxI pppa  

Write yxu 1−=  or ,xuy =  then 
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( ) ( ) ( ) ( ) ( ) ( )∫
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where the constant K is 
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Now we compute the norm of the operator. Using the Fubini Theorem, the 
norm of the operator can be written 
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Upon using the variable yxu 1−=  or ,1yux −=  then 
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We now choose α and β such that 

( ) ( ) ,11 apqqaqbq =+′+−μ+α+μ−+α  (6) 

 ( ) ( ) ( ) .21 papqqaqb ′α+μ−=−′−−μ−α+μ+−  (7) 

In this case, we have 
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Therefore, equation (5) transforms into 
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Then we obtain the result. 

Furthermore, from the equation (6), we have 

aqba μ−=  

or .q
b

p
a =   
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We now apply the above result for a special case. If we set 
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where ( ){ },, xyyxE <|=  then we have the operator 
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and the following inequality. 
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We can consider the inequality as a generalized Hardy integral 
inequality, in which the classical Hardy inequality is a special case, for 

0== ba  and .0=μ  See page 188 in [1]. 

For the next example, if we set 
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and ( ) ( )xhxxf γ=  for suitable β and γ, then we have the following 

inequality. 

Corollary 3. Let 10,1 <μ≤>p  and .1 μ−=1
pq  For all 0≥a  and 
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