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Abstract 

In this paper, explicit formulas are proposed to evaluate the 
performance characteristics of the double moving average control 
chart (DMA chart) for the first order integer-valued autoregressive 
(INAR(1)) model and to check the accuracy of explicit formulas by 
means of Monte Carlo (MC) simulation. The characteristics of control 
charts are frequently measured by average run length (ARL), which is 
the expectation of the samples taken before a system signals that it is 
out of control. The results obtained from the proposed explicit 
formulas of the average run length (ARL) are in excellent agreement 
with the results obtained from the MC. The performance of the DMA 
chart gets better as the value of the span (w) decreases for upward 
shifts. The numerical results showed that when the process is out of 
control with increasing shifts, the DMA chart performs better as the 
value of the span (w) decreases. 
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1. Introduction 

Statistical quality control (SQC) is often implemented with processes of 
counts. Count data is used in various fields of practice due to the ease of data 
collection. The marginal distribution of count processes can often be 
modeled by a Poisson distribution with parameter λ [19]. One particular area 
where these counts can be useful is in process monitoring to detect shifts of a 
process from an in control state to various out of control states. Hence, 
quality loss can be reduced or prevented through corrective actions to bring 
the process back to a normal state [1]. Most prominent are two charts of the 
Shewhart type, namely, the c and u chart, which both monitor the marginal 
distribution of the process [5]. The c chart has been often used to monitor 
count data. Although the original control charts were developed for 
independent count data, such as the c and u chart, they used only the 
information in the last sample and ignored information given by the entire 
data sequence (memory-less property). Thus, these charts are known to have 
a poor performance in terms of detecting small shifts in the process mean. In 
the past few decades, an exponentially weighted moving average control 
chart (EWMA chart) was introduced by Roberts [14], which was effective at 
detecting small and moderate shifts. A cumulative sum control chart 
(CUSUM chart) was introduced by Page [6], which is sensitive to small 
shifts in the process mean. Recently, a moving average control chart (MA 
chart) was proposed by Khoo [11] and studied in order to monitor the 
fraction of non-conforming observations. The numerical results showed that 
the MA chart was more efficient than the p chart. Later, Khoo and Wong [12] 
proposed a double moving average control chart (DMA chart) when 
observations are from normal distributions. The numerical results showed 
that the DMA chart improved the average run length (ARL) of the MA chart 
using a Monte Carlo (MC) simulation. Typically, the count process assumes 
that they are independent and identically distributed (i.i.d.). However, 
observations could be serially autocorrelated, which may adversely affect the 
performance of the control chart under the assumption of independence [13]. 
A popular class of models for stationary real value processes is time series 
models, such as autoregressive (AR), moving average (MA) and 
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autoregressive moving average (ARMA) models. These models have a 
simple autocorrelation structure and other attractive properties. As an 
example, count type data on bed utilization in a hospital [3] and web page 
requests arriving at a server [2] turned out to be highly autocorrelated. These 
counts often refer to rare events, making the Poisson distribution a 
reasonable choice for the marginal distribution of .tN  In case of real-valued 

time series, the ARMA model is able to model a great variety of serial 
dependent structures of stationary processes. Although the arithmetic 
operations are well defined over { },...,1,00 =N  the recursion ARMA model 

cannot be applied to an integer-valued case, since the multiplication of an 
integer by a real number usually results in a non-integer value. This 
motivated us to replace the scalar multiplication in the recursion ARMA 
model by binomial thinning [7]. Al-Osh and Alzaid [10] introduced the first 
order integer-valued autoregressive model (INAR(1) model), which is well 
suited for modeling the autocorrelation structure of a process with a Poisson 
distribution. The statistical properties of the INAR(1) model were discussed 
by McKenzie [8]. 

The average run length (ARL) statistic is one of the indicators used for 
comparing the efficiency of quality control charts. The performance of a 
control chart when the process is in control can usually be characterized by 
the in control average run length ( )0ARL  - the average of observations 

before the control chart gives a false alarm as the in control process has gone 
to an out of control process. The performance of a control chart when the 
process is out of control is the average of delay time (ADT) - the average of 
observations between the process going out of control and the control chart 
giving an alarm that the process has gone out of control. Ideally, the value of 

0ARL  of an acceptable chart should be sufficiently large and the value of 

ADT should be minimal. Most work that focused on evaluating the ARL for 
control charts has been studied in the previous literature. Traditionally, 
Roberts [14] studied the ARL for the EWMA chart using Monte Carlo 
simulations (MC) for processes following normal distributions, which could 
be used to find the ARL for a variety of parameter values. This approach is 
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often used to test accuracy with other methods. Crowder [15] studied 
numerical quadrature methods to solve the exact integral equations (IE) for 
the ARL for normal distributions. Brook and Evans [4] used approximate 
formulas for the ARL of the EWMA chart by applying a finite-state Markov 
chain approach (MCA). Areepong and Novikov [20] derived explicit 
formulas for the ARL of the EWMA chart. Areepong and Sukparungsee [21] 
studied analytical ARL of the binomial of the DMA chart. Areepong [22] 
studied explicit formulas of the ARL for the MA chart to monitor the number 
of defective products. Areepong and Sukparungsee [23] studied closed-form 
formulas of the ARL of the MA chart for a nonconforming zero inflated 
process. Sukparungsee [16] studied average run length of double moving 
average control chart for zero-inflated count processes. Sukparungsee and 
Areepong [17] studied explicit expressions for the ARL of the DMA chart 
for a zero inflated binomial process. According to the explicit formulas, the 
results are in good agreement with the results obtained from the MC. 
Recently, Phantu et al. [18] studied explicit expressions of the ARL of the 
MA chart for a Poisson integer-valued autoregressive model. 

In the literature, one can find at least four numerical procedures to 
evaluate average run length. The MC is simple to program and based on a 
large number of sample trajectories, so it is very time consuming. Moreover, 
it is difficult to use for optimization, though it is convenient in terms of 
controlling the accuracy of analytical approximations. An IE is the most 
advanced method currently available but it requires intensive programming 
to implement, even for the case of a Gaussian distribution. The MCA is 
considered a popular technique based on the approximation of matrix 
inversions. In addition, there are no theoretical results on the accuracy of this 
procedure in terms of the rate of convergence. The martingale approach is 
simple and convenient for approximation but it could also be implemented 
for the case of light-tailed distributions in which the moment generating 
functions exist. However, the results for 0ARL  and ADT usually cannot be 

obtained analytically and require intensive programming with specialized 
software even for the case of a normal distribution. 
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In this paper, we propose explicit formulas to evaluate the 0ARL  and 

ADT of the DMA chart when observations are Poisson count process with 
the first order integer-valued autoregressive (INAR(1)) model. Additionally, 
the explicit formulas of the 0ARL  and ADT can be generated as a set of 

optimal parameters that depend on the span (w) parameter for designing the 
DMA chart with a minimum of ADT. 

2. Binomial Thinning 

The binomial thinning operator introduced by Steutel and Harn [9] 
preserves the status of an integer random variable when N operates on by a 
parameter ( ),1,0∈α  which has proven to be an adequate alternative to 

scalar multiplication. If N is a discrete random variable with range { },...,,0 n  

the thinning operation is defined as 

 ∑
=

=α
N

i
iXN

1
,  (1) 

where iX  are i.i.d. Bernoulli counting sequence random variables ( )1=iXP  

α=  and ( ) .10 α−==iXP  The operator ( )  is a random operator. The 

random variable Nα  has a binomial distribution with parameter N and α 
counts the number of survivors from the count N remaining after thinning. 
Notice that the thinning operator confers greater dispersion on the number of 
survivors than the ordinary multiplication operator. For instance, in integer 
time series models, N may often be an equi-dispersed Poisson random 
variable with an equal mean and variance λ. 

Suppose 1−tN  is an integer random variable arising at time 1−t  and 

subject to binomial thinning to produce the number of survivors in the next 
period. Then, conditional on 1−tN  for Nα  is an integer random variable 

with variance ( ) ,1 1−α−α tN  whereas 1−α tN  has zero conditional variance 

and the mean and variance of the unconditional counterparts are αλ and .2αλ  
Expectation and variance of Nα  can be obtained easily by applying well-
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known rules for conditional moments as follows: 

[ ] [ ]NENE α=α  and [ ] [ ] ( ) [ ].12 NENVNV α−α+α=α  

3. The First Order Integer-valued Autoregressive Model 

The first order integer-valued autoregressive (INAR(1)) model is 
perfectly suited for modeling count data. The INAR(1) model makes use of 
thinning operators for coherency in the nature of count data. Some of the best 
results have been achieved with the INAR(1) model based on a binomial 
thinning operator, which were introduced by McKenzie [7] and Al-Osh and 
Alzaid [10]. This thinning operator is generated by counting series of 
Bernoulli distributed random variables. This model has many modifications 
and generalizations with respect to their order and marginal distribution, and 
it is quite suitable for use in counting certain random events. The INAR(1) 
model is defined by 
 ,1 ttt NN ε+α= −  (2) 

where tN  is the observable count at time t, α is the first order integer-valued 

autoregressive parameter, ( )  is the thinning operation at time t performed 

independently of each other and tε  is an innovation. The INAR(1) model is 

the best fitting model for Poisson marginal distributions and tε  follows the 

Poisson distribution with mean ( )α−μ 1  then ( )( )α−με 1~ Poit  distribution. 

According to the above situation, it can be modeled as the INAR(1) model, in 
which the expectation and variance of the INAR(1) model are 

[ ] [ ] .1 α−
μ== tt NVNE  

Generally, the INAR(1) model could be changed in any unexpected 
occurrence, and then the change-point model of this process can be described 
by the following. Assume 00, αμ  and ( )00 1 α−μ  are in control parameters. 

11, αμ  and ( )11 1 α−μ  are out of control parameter where ( ) ,1 01 μδ+=μ  

( ) ( ) ( ) ( )001101 111,1 α−μδ+=α−μαδ+=α  and δ is the magnitude of 

the shift for out of control processes. 
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4. Double Moving Average Control Chart 

A double moving average control chart (DMA chart) was proposed by 
Khoo and Wong [12]. The observations of DMA statistic are the collected 
double moving average of the MA statistic. The DMA statistic is defined by 
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where iMA  is the statistic of the MA chart and w is the span at time t. The MA 

statistic can be written as follows: 
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Let observations ...,,, 21 NN  be i.i.d. random variable with INAR(1) 

model, which are the collected moving average of span w at time i. The 
expectation and variance of the DMA chart are 
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The upper and lower control limits of the DMA chart are 
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where H is coefficient of control limit of DMA chart or a constant to be 
chosen. 

5. Derivative of Explicit Formulas for Evaluating the Average Run 
Length of a Double Moving Average Control Chart 

In this section, the analytical ARL of the DMA chart in INAR(1) 
observations is derived. Based on the central limit theorem (CLT), the 
average run length of the DMA chart can be derived as follows: 

Let .nARL =  Then 

Pnn
11 =  (out of control signal at time )wi ≤  

Pn
1+  (out of control signal at time )12 −<< wiw  

( ) Pn
wn

⎥⎦
⎤

⎢⎣
⎡ −−+ 22  (out of control signal at time ).12 −≥ wi  (6) 

According to equation (6), the DMA statistics in terms of out of control 
signals at time i state are replaced as follows: 
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Substitute the control limit of the DMA statistic from equation (5) into 
equation (7). Then, equation (7) can be rewritten as follows: 
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The central limit theorem is used to derive the explicit formulas. 
Therefore, equation (8) can be rewritten as 
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Then, the explicit formula of the ARL for the DMA chart is rewritten by 
substituting A, B and C into equation (9) as follows: 
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Since the in control process is given parameters ,0μ=μ  0α=α  and 

,11 00 α−μ=α−μ  the explicit formula for the 0ARL  of the DMA chart 

is as follows: 
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On the other hand, if the process is in an out of control state with 
parameter ,1μ=μ  1α=α  and ,11 11 α−μ=α−μ  where ( ) ,1 01 μδ+=μ  

( ) 01 1 αδ+=α  and ( ) ,111 0011 α−μδ+=α−μ  where δ is a magnitude 

of shift, the explicit formula for the ADT of the DMA chart can be written as 
follows: 

( )⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

α−

μ

α−
μ

−+
>−= ∑

∑

−

=

=

≤1

1

1 1
2

1

1
1

1

1
1

15.0
1

w

i i

j

wi

ij

UCL
ZPADT  



Suganya Phantu, Saowanit Sukparungsee and Yupaporn Areepong 112 

( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

α−

μ

α−
μ

−−
<+

∑
=

≤

i

j

wi

ij

LCL
ZP

1 1
2

1

1
1

1

1
1

15.0
 

( )
( )

∑
∑

−

+=
−

+−=

−<<

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

α−

μ
⎟
⎠
⎞⎜

⎝
⎛+−+

α−
μ

−+
>−

22

1 1

1 1
2

1

1
1

12
2

1
111

15.0w

wj w

wij

wiw

wwwij

UCL
ZP  

( )
( ) ⎥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

α−

μ
⎟
⎠
⎞⎜

⎝
⎛+−+

α−
μ

−−
<+

∑
−

+−=

−<<

1

1 1
2

1

1
1

12
2

1
111

15.0

w

wij

wiw

wwwij

LCL
ZP  

( )⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

α−

μ
α−

μ
−+

>×
−≥

1
2

1

1
1

12
3

1

15.0

w

UCL
ZP

wi
 

( )

( ).22

1

15.0
1

1
2

1

1
1

12
3 −+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

α−

μ
α−

μ
−−

<+

−

−≥
w

w

LCL
ZP

wi
 (13) 

6. Results 

In this section, the numerical results of the ARL for the INAR(1) model 
obtained by the explicit formulas for 0ARL  and ADT of DMA chart are 

calculated from equation (12) and equation (13), and compared with the 
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numerical results obtained from the MC. The parameter values for the DMA 
chart were chosen given the desired 3700 =ARL  and .3=H  The in control 

parameters are given 10 =μ  and ,2.00 =α  the out of control parameters are 

11, αμ  and ,1 11 α−μ  and the given parameters ( ) ( ) ( ) ,5.1,1.00.1,1.0=δ  

2.0. Table 1 shows the ARL of the DMA chart considering a change in μ. 
The results show that the ARL values calculated from explicit formulas and 
approximated from MC are in excellent agreement. The performance of the 
DMA chart is sensitive to only a few of the out of control situations, i.e., 
when ,4.0≤δ  the DMA chart with 5=w  shows the best performance 
because of the minimum ADT value. Note that calculations with the explicit 
formulas are simple and very fast with computational times of less than 1 
second while the MC are very time consuming. Tables 2 and 3 are presented 
in the same manner as Table 1 when considering changes in α and changes     
in .1 α−μ  For the INAR(1) model, the ARL of the DMA chart when 

considering changes in μ, α and α−μ 1  shows that when the shifts increase, 

the DMA performs better as the value of w decreases. Therefore, the 
proposed formulas for 0ARL  and ADT for the DMA chart are simple to use, 

accurate and efficient for optimal design when compared with the results 
obtained from the MC. Moreover, they are easy to implement and greatly 
reduce the computation times. 
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Table 1. Comparison of the ARL of the DMA chart using explicit formulas 
with the MC for INAR(1) model given 2.0,1 00 =α=μ  and considering a 

change in μ 

δ w = 2 w = 5 w = 10 w = 15 

0.0 370.398 370.398 370.398 370.398 

 (371.052 ± 1.682a) (370.885 ± 1.702) (371.652 ± 1.637) (370.424 ± 1.603) 
0.1 201.525 119.819 52.267 37.871 

 (201.627 ± 0.943) (119.586 ± 0.937) (52.476 ± 0.946) (37.666 ± 0.905) 
0.3 53.518 16.632 16.182 22.985 

 (53.825 ± 0.766) (16.723 ± 0.788) (16.345 ± 0.704) (22.431 ± 0.761) 
0.5 19.475 8.296 12.952 15.033 

 (30.854 ± 0.631) (8.522 ± 0.513) (12.345 ± 0.544) (15.442 ± 0.537) 
0.7 9.629 6.468 9.375 8.942 

 (9.523 ± 0.349) (6.387 ± 0.367) (9.508 ± 0.334) (8.945 ± 0.332) 
0.9 5.933 5.519 6.593 6.163 

 (5.299 ± 0.181) (5.174 ± 0.177) (6.875 ± 0.148) (6.456 ± 0.172) 
1.0 4.943 5.116 5.655 5.382 

 (4.329 ± 0.095) (5.674 ± 0.093) (5.623 ± 0.097) (5.348 ± 0.091) 
1.5 2.816 3.443 3.355 3.347 

 (2.755 ± 0.052) (3.547 ± 0.055) (3.377 ± 0.046) (3.525 ± 0.039) 
2.0 2.126 2.461 2.434 2.434 

 (2.238 ± 0.037) (2.946 ± 0.028) (2.317 ± 0.030) (2.684 ± 0.029) 
a is standard deviation. ( ) is Monte Carlo simulation. 
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Table 2. Comparison of the ARL of the DMA chart using explicit formulas 
with the MC for INAR(1) model given 2.0,1 00 =α=μ  and considering a 

change in α 

δ w = 2 w = 5 w = 10 w = 15 

0.0 370.398 370.398 370.398 370.398 

 (370.526 ± 1.689a) (370.586 ± 1.756) (370.528 ± 1.473) (370.293 ± 1.597) 
0.1 298.968 264.593 221.813 180.796 

 (298.346 ± 0.994) (264.382 ± 0.917) (227.468 ± 0.974) (180.376 ± 0.965) 
0.3 185.959 110.495 57.390 42.074 

 (185.747 ± 0.726) (110.276 ± 0.775) (57.446 ± 0.718) (42.635 ± 0.746) 
0.5 111.428 46.243 24.896 27.102 

 (111.643 ± 0.528) (46.529 ± 0.511) (24.586 ± 0.583) (27.568 ± 0.508) 
0.7 66.141 22.663 17.577 24.022 

 (65.379 ± 0.372) (22.645 ± 0.338) (17.607 ± 0.359) (24.647 ± 0.384) 
0.9 39.711 13.506 15.151 21.917 

 (39.551 ± 0.167) (13.824 ± 0.119) (15.347 ± 0.185) (21.748 ± 0.174) 
1.0 31.043 11.155 14.401 20.649 

 (31.229 ± 0.096) (11.523 ± 0.093) (14.376 ± 0.095) (20.318 ± 0.092) 
1.5 10.335 6.547 10.763 12.284 

 (10.284 ± 0.052) (6.284 ± 0.055) (10.364 ± 0.052) (12.638 ± 0.047) 
2.0 4.494 4.893 6.494 6.268 

 (4.442 ± 0.033) (4.526 ± 0.036) (6.538 ± 0.037) (6.523 ± 0.034) 
a is standard deviation. ( ) is Monte Carlo simulation. 
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Table 3. Comparison of the ARL of the DMA chart using explicit formulas 
with the MC for INAR(1) model given 2.0,1 00 =α=μ  and considering a 

change in α−μ 1  

δ w = 2 w = 5 w = 10 w = 15 

0.0 370.398 370.398 370.398 370.398 

 (370.526 ± 1.684a) (370.585 ± 1.704) (370.869 ± 1.683) (370.684 ± 1.624) 
0.1 295.972 136.45 46.25 34.103 

 (295.374 ± 0.927) (136.451 ± 0.942) (46.827 ± 0.937) (34.527 ± 0.968) 
0.3 100.394 16.300 15.998 21.593 

 (100.763 ± 0.748) (16.547 ± 0.773) (15.472 ± 0.764) (21.475 ± 0.756) 
0.5 34.532 8.087 11.492 10.929 

 (37.284 ± 0.507) (8.044 ± 0.527) (11.783 ± 0.527) (10.427 ± 0.529) 
0.7 14.474 6.402 7.031 6.605 

 (14.663 ± 0.371) (6.482 ± 0.362) (7.286 ± 0.376) (8.284 ± 0.382) 
0.9 7.501 4.284 4.773 4.944 

 (7.648 ± 0.176) (4.372 ± 0.176) (4.821 ± 0.118) (4.985 ± 0.174) 
1.0 5.820 3.602 3.796 4.392 

 (5.626 ± 0.095) (3.686 ± 0.093) (4.388 ± 0.092) (4.359 ± 0.094) 
1.5 2.799 2.808 2.824 2.965 

 (2.825 ± 0.052) (2.678 ± 0.057) (2.746 ± 0.057) (2.967 ± 0.055) 
2.0 2.037 2.060 2.060 2.060 

 (2.071 ± 0.031) (2.035 ± 0.040) (2.467 ± 0.038) (2.143 ± 0.033) 
a is standard deviation. ( ) is Monte Carlo simulation. 

The numerical results from Tables 1-3 can be analyzed as optimal 
parameters for process changes in each magnitude of change in which a pair 
of optimal parameters are the coefficient of the DMA chart and width of span 
( )., wH  The results of the optimal parameters for the DMA chart are 

calculated from equations 10-11. The pair of optimal parameter values of the 
DMA chart are determined to correspond to the value of 3700 =ARL  with 

minimum ADT; in control parameters are given ,30 =μ  2.00 =α  and 

,75.31 00 =α−μ  out of control parameters values are given 11, αμ  and 

11 1 α−μ  and shift parameters ( ) ( ) ( ) .0.2,5.1,1.00.1,1.0=δ  The results in 
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terms of an optimal parameter of the DMA chart are H and span (w) with 
minimum ADT, which are shown in Table 4. 

Table 4. Optimal parameter of the DMA chart for INAR(1) model when 
3700 =ARL  and 3=H  for given 2.0,3 00 =α=μ  

Change in μ Change in α Change in μ/1 – α 
δ 

w ADT w ADT w ADT 
0.1 14 37.87 17 173.5 19 153.5 
0.2 11 20.21 13 71.39 17 60.55 
0.3 7 15.36 12 38.32 14 27.45 
0.4 5 10.62 11 25.38 13 15.99 
0.5 5 8.296 9 22.11 11 13.10 
0.6 4 6.879 8 18.93 9 8.312 
0.7 4 5.883 7 17.32 8 7.932 
0.8 3 5.219 6 16.01 7 6.547 
0.9 3 4.530 5 13.50 5 6.883 
1.0 3 4.057 5 11.15 5 5.704 
1.5 2 2.816 4 6.141 4 3.282 
2.0 2 2.216 3 3.863 3 2.263 

7. Conclusion 

The explicit formulas of the ARL of the DMA chart for the INAR(1) 
model were derived. The results obtained from the explicit formulas 
compared with the MC show that the accuracy of the explicit formulas is in 
excellent agreement with the MC and they take much less time to compute. 
In addition, the explicit formulas are able to find a pair of optimal parameters 
( )wH ,  with a minimum of ADT. The results show that when the magnitude 

of the shift increases, the DMA chart performs better as the value of w 
decreases for all case studies. Furthermore, these explicit formulas are simple 
and easy to implement, greatly reducing computational times to less than 1 
second. 

8. Discussion 

The DMA chart has memory-less properties and the ability to detect 
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small shifts. Without loss of generality, this chart can be relaxed due to its 
feasibility with the span of the control limit (w). The DMA chart performs 
better as the values of w increase for small shifts. However, the number of 
observations must be sufficiently large. 
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