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Abstract

In this paper, we prove a common fixed point theorem for compatible

mappings satisfying the generalized ¢-weak contraction condition
involving cubic terms.

1. Introduction

For the last four decades there has been a considerable interest to study
common fixed point for a pair (or family) of mappings satisfying contractive
conditions in metric spaces. Several interesting and elegant results were

Received: October 16, 2017; Accepted: December 3, 2017

2010 Mathematics Subject Classification: 47H10, 54H25.

Keywords and phrases: common fixed point, ¢-weak contraction, compatible mapping.
“Corresponding author



800 D. Jain, S. Kumar, S. M. Kang and C. Y. Jung

obtained in this direction by various authors. It was the turning point in the
fixed point theory literature when the notion of commutativity mappings
was used by Jungck [4] to obtain a generalization of Banach’s fixed point
theorem for a pair of mappings. This result was further generalized, extended
and unified using various types of contractions and minimal commutative
mappings.

Fixed point theorems statements basically involve sufficient conditions
for the existence of fixed points. Therefore, one of the central concerns in
fixed point theory is to find a minimal set of sufficient conditions which
ensures the guarantee of fixed points or common fixed points. Common
fixed point theorems for contraction type mappings necessarily require a
commutativity condition, a condition on the containment of ranges of
the mappings, continuity of one or more mappings besides a contraction
condition. Mostly fixed point or common fixed point theorems attempt to
weaken the above described condition. The study of common fixed points of
pair of self mappings satisfying contractive type conditions becomes more
interesting when we extend such studies to the class of noncommuting
contractive type mapping pair.

In 1969, Boyd and Wong [2] replaced the constant k in Banach
contractive condition by an upper semi-continuous function as follows:

Let (X, d) be a complete metric space and v : [0, ) — [0, o) be
upper semi-continuous from the right such that 0 < y(t) <t forall t > 0. If
T : X — X satisfies d(Tx, Ty) < w(d(x, y)) forall x, y € X, then it has a

unique fixed point x € X and {T,x} converges to x for all x € X.

The first ever attempt to relax the commutativity of mappings to a
smaller subset of the domain of mappings was initiated by Sessa [9] in 1982
who gave the notion of weak commutativity. One can notice that the notion
of weak commutativity is a point property, while the notion of compatibility
is an iterate of sequence. Two self mappings f and g of a metric space
(X, d) are said to be weakly commuting if d(fgx, gfx) < d(gx, fx) for all

X e X.
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Further, in 1986, Jungck [5] introduced more generalized commutativity,
so-called compatibility. Clearly commuting and weakly commuting
mappings are compatible but converse need not be true (see [6]).

In 1997, Alber and Guerre-Delabriere [1] introduced the concept of weak
contraction and in 2001, Rhoades [8] had shown that the results of Alber and
Guerre-Delabriere [1] are also valid in complete metric spaces.

A mapping T : X — X is said to be ¢-weak contraction if for each

X, Y € X, there exists a function ¢ : [0, ©) — [0, »), ¢(t) > 0 forall t >0
and ¢(0) = 0 such that

d(Tx, Ty) < d(x, y) - ¢(d(x, ¥))-

In 2013, Murthy and Vara Prasad [7] introduced a new type of inequality
having cubic terms that extended and generalized the results of Alber and
Guerre-Delabriere [1] and others cited in the literature of fixed point theory.
Further Jain et al. [3] extended and generalized the result of Murthy and Vara
Prasad [7] for pairs of mappings.

In this paper, we extend and generalize the result of Jain et al. [3] for two
pairs of mappings satisfying the generalized ¢-weak contractive condition
involving various combination of the metric function.

2. Preliminaries
In this section, we give some basic definitions and results that are useful

for proving our main results.

In 1986, Jungck [5] introduced the notion of compatible mappings as
follows:

Definition 2.1. Two self mappings f and g on a metric space (X, d)
are called compatible if lim,_,,, d(fgx,, gfx,) =0, whenever {x,} is a

sequence in X such that lim,_,,, X, = limy_,, gx, =t forsome t € X.
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Proposition 2.2 [5]. Let S and T be compatible mappings of a metric
space (X, d) into itself. If St =Tt for some t e X, then STt =SSt =

TTt =TSt

Proposition 2.3 [5]. Let S and T be compatible mappings of a metric
space (X, d) into itself. Suppose that lim,_,., Sx, = lim,_,,, Tx, =t for
some t € X. Then

(1) lim,_,,, TSx, = St if Sis continuous at t;
(if) lim,_,,, STx, =Tt if T is continuous at t;
(iii) STt =TSt and St =Tt if Sand T are continuous at t.

3. Fixed Points for Compatible Mappings

In 2013, Murthy and Vara Prasad [7] proved the following result:

Theorem 3.1. Let T be a mapping of a complete metric space (X, d)

into itself satisfying the following:
[1+ pd(x, y)]d>(Tx, Ty)
< pmax{l/2[d?(x, TX)d(y, Ty) + d(x, T\)d*(y, Ty)],
d(x, TX)d(x, Ty)d(y, Tx), d(x, Ty)d(y, Tx)d(y, Ty)}
+m(x, y) = (m(x, y)),
where
m(x, y) = max{d®(x, y), d(x, T\)d(y, Ty), d(x, Ty)d(y, Tx),
1/2[d(x, Tx)d(x, Ty) + d(y, Tx)d(y, Ty)]},

p >0 is a real number and ¢ : [0, ) — [0, ) is a continuous function
with ¢(t) = 0 iff t = 0 and ¢(t) > O for each t > 0.

Then T has a unique fixed point in X.
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Now we extend and generalize Theorem 3.1 for pairs of compatible
mappings as follows:

Theorem 3.2. Let S, T, A and B be four mappings of a complete metric
space (X, d) into itself satisfying the following conditions:

(C1) S(X) <= B(X) and T(X) < A(X);
(C2)
[+ pd(Ax, By)Jd*(Sx, Ty)
< pmax{l/2[d?(Ax, Sx)d(By, Ty) + d(Ax, Sx)d?(By, Ty)],
d(Ax, Sx)d(Ax, Ty)d(By, Sx), d(Ax, Ty)d(By, Sx)d(By, Ty)}
+m(Ax, By) — ¢(m(Ax, By))
forall x, y € X, where
m(Ax, By) = max{d*(Ax, By), d(Ax, Sx)d(By, Ty), d(Ax, Ty)d(By, Sx),
Y2[d(Ax, Sx)d(Ax, Ty) +d(By, Sx)d(By, Ty)]},
p >0 is a real number and ¢ : [0, ©) — [0, ) is a continuous function
with ¢(t) = 0 iff t = 0 and ¢(t) > O for each t > 0;
(C3) one of S, T, A and B is continuous.

Assume that the pairs (A, S) and (B, T) are compatible. Then S, T, A

and B have a unique common fixed point in X.

Proof. Let Xxg € X be an arbitrary point. From (C1), we can find
X, such that Sxg = Bx; = yg for this x one can find x, € X such that
Tx; = Axo = y;. Continuing in this way one can construct a sequence {yp}
such that

Yon = SXon = BXaoni1s Yone1 = TXonsg = AXgpyp, N2 0. 3.1)

For brevity, we write oo, = d(Yapn, Yon41)-
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First we prove that {o.p,} is non increasing sequence and converges to

Zero.

Case I. If nis even, taking x = Xo,, and y = X471 in (C2), we get
[1+ pd(AXzn, BXons1)]d?(SXan, TXons1)
< pmax{l/2 [dz(AXZn’ Sx2n)d(BX2n 41, TX2n11)
+ d(Axpn, SXon)d? (BXona1, TXonsa)],
d(AXan, Sxan)d(Axan, TXons1)d(BXania, SXon),

d(Axan, TXon41)d(BXons1, SXon )d(BXani1, TXons1))

+ m(AXo, BXoni1) — d(M(AXap, BXoni1)),

where
m(AXzn, BXony1)
= max{(d*(Axan, BXans1), d(Axan, Sxn)d(BXans1 Thans1),
d(Axan, Txons1)d(BXany1, SXon ), 1/2[d (Axan, Sxon ) d(Axan, TXon:1)
+ d(BXan 1, SX2n)d(BXan1, TXons1)]}-
Using (3.1), we have
1+ pd(Yan-1. Y2n)1d*(Y2n: Y2ns1)

< pmax{y/2[d?(Yan_1, Y2n)d(Yan: Y2ns1)

+d(Yan_1, Y2n)d2(Yan Yons)]:
d(Y2n-1, Y2n)d(Y2n-1, Y2n+1)d(Y2n, Y2n),
d(Y2n-1, Y2n+1)d(Y2n, Y2n)d(Yon, Y2n1)}

+M(Y2n-1, Y2n) = ¢(M(Y2n_1, Y2n)), (3.2)
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where
M(Y2n-1. Y2n)
= max{d*(y2n-1, Y2n). d(Yan-1. Y2n)d(Y2n. Yans1).
d(Y2n-1, Yons1)d(Y2n, Yon),
1/2[d(y2n-1, Y2n)d(Y2n-1, Y2n+1) + d(Y2n, Y2n)d(V2n, Yoni1)])-
Onusing ooy = d(Yon, Yonst) in (3.2), we have
[L+ poonglady < pmax{l/2[o5n_qoian + azn_103,], 0, 0}
+M(Y2n-1, Y2n) = ®(M(Y2n-1. Y2n)), 3.3)
where
M(Y2n-1. Y2n)
= max{05n_1, 0tan—102n: 0, Y2[cton_1d(Y2n-1, Y2n41) + 0.
By triangular inequality and using property of ¢, we get
d(Y2n-1, Yon+1) < d(Yan-1, Y2n)d(Y2n: Y2n+1)
= O2n-1 T 02n
and
M(Yan—1. Yon) < Max{adn_1, oan_g0izn, 0, Y2[cton_1(0tans + otzn), O}.
If app_1 < app, then (3.3) reduces to
pady < pady - pady,
which is a contradiction. Hence, oc%n < a%n_l implies that oy, < app_g.

In a similar way, if n is odd, then we can obtain a1 < apy. It follows

that the sequence {a.,,} is decreasing.
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Let lim,_,,, ap, =r for some r > 0. Suppose that r > 0. Then from
inequality (C2), we have

[1+ pd(Axon, BXpns1)1d*(SXan, TXons1)
<p max{]/2[d2(AX2n, Sx2n)d(BXan 1, TX2n41)
+ d(AXan, SXon)d?(BXona1, Tona1)]
d(Axzn, Sxon)d(Axzn, TXan11)d(BXani1, SXon),
d(AXzn, TX2n+1)d(BXan i1, SXon)d(BXani1, TXonia)}

+ M(Axgn, BXopi1) — d(M(AXo,, BXoni)),

where
m(AXzn, BXon1)
= max{(d(Axan, BXons1), d(AXan, SXon)d(BXansa, TXansa),
d(AXzn, TXon41)d(BXons1, SXon ),
1/2[d(Axan, Sxon)d(Axan, TXony1)

+ d(BXan11, SXon)d(BXans1, TXons1)])-

Now by using (3.3), triangular inequality and property of ¢ and proceed
limits n — o, we get

1+ pr]r2 < pr3 +rl - ¢(r2).

Then ¢(r2) <0, since r is positive, by property of ¢, we get r =0, we
conclude that
lim Qopn = lim d(yzn, y2n_1) =r =0. (3.4)
Nn—o0 N—o0
Now we show that {y,} is a Cauchy sequence. Suppose that we assume

that {y,} is not a Cauchy sequence. For given & >0, we can find two
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sequences of positive integers {m(k)} and {n(k)} such that for all positive
integers k, n(k) > m(k) > k,
d(Ym(k)» Yn(k)) = & d(Ymk)r Yn(k)-1) < &
Now
€ < d(Ym(k): Ynk)) < d(Ym(k)s Yn(k)-1) + d(Ynk)-10 Yn(k))-
Letting k — o, we get
Jim d(ym): Ynk)) = & (3.5)
Now from the triangular inequality we have,
| d(Yn(k)s Ym(k)+1) = dYm@k) Ynk)) I < dVme)r Ym(k)+1):
Taking limits as k — oo and using (3.4) and (3.5), we have
Jim d(ynk) Ym(k)+1) = &
Again from the triangular inequality, we have
| d(Ym(k)» Ynk)+1) = AYmqk)s Yng) | < dYng)s Yngk)+1)-
Taking limits as k — oo and using (3.4) and (3.5), we have
Jim d(Ym): Yn(ky+1) = &
Similarly on using triangular inequality, we have
| d(Ym(k)+10 Yn(k)+1) = A(Ym(k)s Yng)) |
< d(Ym(k): Ym)+1) + d(Yn(k): Yn(k)+1)-

Taking limit as k — oo in the above inequality and using (3.4) and (3.5), we
have

Jim d(Yn(k)s1 Ym(k)+1) = &
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On putting x = Xm(k) and y = Xn(k) in (C2), we get
[1+ pd(AxXm(ic)» BXn())]d* (SXm(k): Tn(k))
< pmax{1/2[d(Ax(k), SXm(k))d(BXn(k)» Tn(k))
+ d(Axm(k) S¥m(k))d 2 (Bxn(k), TXn(k))],
d(AXm(k)s SXm(k))d(AXm(k)s TXn(k))d(BXn(k)s SXm(k))»
d(AXm(k)r TXn(k))d(BXn(k)s SXm(k))d(BXn(k), TXn(k))}
+ M(AXm(k)s BXn(k)) — &(M(Axm(k), BXn(k))),
where
M(AXm(k), BXn(k))
= max{d?(AXm(c): BXn(ic)): d(Axm(k)» Sm(i))d (BXn(k)» Tn(k)):
d(AXm(k)r TXn(k))d(BXn(k)s SXm(k)):
1/2[d(Axm(k)r SXm(k))d (AXm(k)s TXa(k))
+ d(BXn(k)» SXm(k))d (BXn(k)» Txn(i))]}-
Using (3.1), we obtain
1+ pd(Ym(k)-1: Yn(k)-1d*Ymk): Yn(k)
< pmax{l/2[d*(Ym()-1. Ym(k))dVnk)-1» Yn(k))
+ d(Ym(k)-1» Ym()) 4> Yn(k)-1+ Yng))l:
d(Ym(k)-1 Ym(k))dVmk)-1+ Yn(k))d(Ynk)-1s Ym(k)):
d(Ym(k)-1 Ynk))d(Ynk)-12 Ym(k))d(Yn(k)-1+ Yn(k)}

+ M(AXm(k)s BXa(k)) = 6(M(AXin(k), BXn(k))),
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where
M(AXmn(k)» BXn(k))
= max{d?(Ym(k)-1: Yn(k)-1)» A¥mk)-1 Ym(k))d(Yn(k)—1: Yn(k))-
d(Ym(k)-1: Yn(k))d(Yn(k)-1» Ym(k)):
12[d(Ym(k)-10 Ym(k))dYm(k)-1 Yn(k))

+ d(Yn(k)-1» Ym(k))d(Yn(k)-1: Ynk))I-

Letting k — o, we get

A

[1+ pele? < pmax{l/2[0 + 0], 0, O} + &2 — ¢(&?)

&2 —4(e?),

which is a contradiction. Thus, {y,} is a Cauchy sequence in X. Since
(X, d) is a complete metric space. Hence, {y,} converges to a point z
as n — oo. Consequently, the subsequences {Sxo.}, {AXon}, {TXon,1} and

{BX,p41} also converge to the same point z.

Now suppose that A is continuous. Then {AAx,,} and {ASx,,}

converges to Az as n — oo. Since the mappings A and S are compatible on X,
it follows from Proposition 2.3 that {SAx,,} converges to Azas n — .

Now we claim that z = Az. For this put x = AXp, and y = Xpp4q in
equation (C2), we get

[1+ pd(AAXan, BXony1)]d2(SAXzn, Txans1)
< pmax{ly2[d Z(AAXva SAXap )d(BXan 11, TX2n+11)

2
+ d(AAXa,, SAXgn)d“(BXani1, TXoni1)],

d(AAXy, SAXo, )d(AAXa,, TXon41)d(BXoni1, SAXp),
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d(AAXan, TXon41)d(BXan 1, SAX2n)d(BXon 1, TXon11)}
+ M(AAXan, BXoni1) — 9(M(AAXz,, BXonyy)),
where
M(AAX2, BXony1)
= maX{dZ(AAXZn’ BXan+1), d(AAX2n, SAXon)d(BXan i1, TXoni1),
d(AAXzn, TXon11)d(BXani1, SAXzn),
1/2[d(AAXop, SAXop)d(AAX,, TXon41)

+ d(BXgn41, SAXpn)d(BXoni1, TXonsa)]-

Letting n — oo, we have

m(Az, z) = max{d?(Az, 2), d(Az, 2)d(z, 2), d(Az, 2)d(z, Az),

1/2[d(Az, Az)d(Az, z) + d(z, Az)d(z, 2)]}
= d?(Az, 2).
Hence, we have
[+ pd(Az, 2)]d?(Az, 2)
< pmax{1/2[0 + 0], 0, 0} + d?(Az, z) - ¢(d?(Az, 2)).

Thus, we get d?(Az, z) = 0 and hence Az = z.

Next we will show that Sz = z. For this put x =z and y = Xp,41 In
(C2),
[1+ pd(Az, Bxany1)]d*(Sz, Txons1)

< pmax{l/2[d?(Az, Sz)d(z, z) + d(Az, Sz)d?(z, z)],
d(Az, Sz)d(Az, z)d(z, Sz), d(Az, z)d(z, Sz)d(z, z)}

+ m(Az, z) — d(m(Az, 2)),
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where
m(Az, z) = max{d?(Az, z), d(Az, Sz)d(z, z), d(Az, 2)d(z, Sz),

1/2[d(Az, Sz)d(Az, z)+ d(z, Sz)d(z, z)]} = 0.
Hence, we get

[1+ pd(z, 2)]d?(Sz, z) < pmax{l/2[0 + 0], 0, 0} + 0 — ¢(0).

Thus, we get d?(Sz, z) = 0. This implies that Sz = z. Since S(X) < B(X)
and hence there exists a point u € X such that z = Sz = Bu.

We claim that z = Tu. For this, we put x = z and y = u in (C2), we get
[1+ pd(Az, Bu)]d?(Sz, Tu)
< pmax{l/2[d?(Az, Sz)d(Bu, Tu) + d(Az, Sz)d?(Bu, Tu)],
d(Az, Sz)d(Az, Tu)d(Bu, Sz), d(Az, Tu)d(Bu, Sz)d(Bu, Tu)}
+m(Az, Bu) - ¢(m(Az, Bu)),
where
m(Az, Bu) = max{dz(Az, Bu), d(Az, Sz)d(Bu, Tu), d(Az, Tu)d(Bu, Sz),
1/2[d(Az, Sz)d(Az, Tu) + d(Bu, Sz)d(Bu, Tu)]}
= max{d*(z, 2), d(z, 2)d(z, Tu), d(z, Tu)d(z, 2),
1/2[d(z, z)d(Az, Tu) + d(z, 2)d(z, Tu)]}
=0.

Hence, we have
[1+ pd(z, z)]dz(z, Tu)
< pmax{]/Z[dZ(z, 2)d(z, Tu) + d(z, 2)d?(z, Tu)],

d(z, z)d(z, Tu)d(z, z), d(z, Tu)d(z, z)d(z, Tu)} + 0 — ¢(0),
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which implies that z = Tu. Since (B, T) is compatible in X and Bu =
Tu = z, by Proposition 2.2, we have BTu = TBu and hence Bz = BTu =
TBu = Tz. Also, we have

[L+ pd(Az, B2)]d?(Sz, Tz)
< pmax{l/2[d?(Az, Sz)d(Bz, Tz) + d(Az, Sz)d?(Bz, Tz)],
d(Az, Sz)d(Az, Tz)d(Bz, Sz), d(Az, Tz)d(Bz, Sz)d(Bz, Tz)}
+ m(Az, Bz) - ¢(m(Az, Bz)),
where
m(Az, Bz) = max{d2(Az, Bz), d(Az, Sz)d(Bz, Tz), d(Az, Tz)d(Bz, Sz),
12[d(Az, Sz)d(Az, Tz) + d(Bz, Sz)d(Bz, T2)]}
= d?(z, B2).
Hence, we become
[L+ pd(z, Bz)]d*(z, Bz)
< pmax{l/2[0 + 0], 0, 0} + d*(z, Bz) - ¢(d*(z, Bz)),

which implies that z = Bz. Hence, z = Bz = Tz = Az = Sz. Therefore, zis a
common fixed point of S, T, A and B.

Similarly we can also complete the proof when B is continuous.

Next suppose that S is continuous. Then {SSx,,} and {SAx,,} converge

to Sz as n — oo. Since the mappings A and S are compatible on X, it follows
from Proposition 2.3 that {ASx,,, } convergesto Szas n — oo.

Now we claim that z = Sz. For this put x = Sxo, and y = Xpp4q iIN
(C2), we get
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[1+ pd(ASXon, BXansa)]d(SSXan, Txon.1)
< pmax{l/2[d2(ASXsn, SSXon)d(BXons1, TXoni1)
+ d(ASxy,, SSx2n)d2(Bx2n+1, TXons1)]s
d(ASXop, SSXon)d(ASXon, TXopn41)d(BXon41, SSXon),

d(ASXan, TXan11)d(BXon i1, SSX2n)d(BXan 1, TX2n11)}
+ M(ASXzn, BXani1) — o(M(ASXzn, BXani1)),
where
m(ASX2, BXony1)
= max{dZ(Aszn, BXont1)s d(ASXon, SSXon)d(BXoni1s TXon41),
d(ASXzn, TXan11)d(BXans1, SSXan),
1/2[d(ASXap, SSXop)d(ASXop, TX2n41)
+ d(BXan 1, SSX2n)d(BXan i1, TXon )]}
Letting n — oo, we get
m(Sz, z) = max{dz(Sz, z), d(Sz, z)d(z, z), d(Sz, z)d(z, Sz),
1/2[d(Sz, Sz)d(Sz, z) + d(z, Sz)d(z, 2)]}
= d?(Sz, 2).
Hence, we become
[1+ pd(Sz, 2)]d?(Sz, 2)
< pmax{l/2[0 + 0], 0, 0} + d?(Sz, z) - ¢(d?(Sz, 2)).

Thus, we get d?(Sz, z) = 0 implies that Sz = z. Since S(X) < B(X) and
hence there exists a point v e X suchthat z = Sz = Bv.
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We claim that z = Tv. For this, we put x = Sxo, and y = v in (C2), we
get

1+ pd(ASX,p,, BV)]d?(SSxop, TV
2n 2n

< pmax{l/2[d2(ASX,p,, SSXon)d(BY, TV) + d(ASXoy, SSXon )d2(Bv, TV)],
d(ASXy, SSXo,)d(ASXop, TV)d(Bv, SSXo,),
d(ASXy,, Tv)d(Bv, SSxo,)d(Bv, Tv)}
+ m(ASXy,, BV) — o(m(ASxyp,, Bv)),
where
m(ASx,p,, Bv)
= max{d(ASxon, BV), d(ASXon, SSXon)d(BY, Tv),
d(ASxop,, Tv)d(Bv, SSX5,), Y/2[d(ASXy,, SSXop )d(ASXy,, TV)
+ d(Bv, SSxo,)d(Bv, Tv)]}.
Letting n — oo, we get
m(z, Bz) = max{d?(z, z), d(z, 2)d(z, Tv), d(z, Tv)d(z, 2),

1/2[d(z, z)d(z, Tv) + d(z, 2)d(z, Tv)]} = 0.

Hence, we become
[L+ pd(z, 2)]d?(z, Tv)
< pmax{l/2[d?(z, z)d(z, Tv) + d(z, z)d?(z, TV)],
d(z, 2)d(z, TV)d(z, 2), d(z, Tv)d(z, 2)d(z, Tv)} + 0 - ¢(0),

which implies that z = Tv. Since (B, T) is compatible on X and Bv =Tv = z,
by Proposition 2.2, we have BTv = TBv and hence Bz = BTv = TBv = Tv.

Now we put X = Xp, and y = z in (C2).
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[1+ pd(Axy,, Bz)]d2(8x2n, Tz)
< pmax{l/2[d2(Ax,, SXon)d(Bz, Tz) + d(Axop, SXop )d2(Bz, T2)],
d(Axop, SXon)d(AXyp, T2)d(Bz, Sxop ),
d(Axop, T2)d(Bz, Sxy,,)d(Bz, Tz)}
+ m(AXap,, Bz) — ¢(m(Ax,,, Bz)),
where
m(AXy,, Bz)
= max{d?(Ax,,, Bz), d(Axyp, SXon)d(Bz, Tz), d(Axop, T2)d(Bz, SXop),
1/2[d(AXap, SXon)d(Axo,, Tz) + d(Bz, Sxop,)d(Bz, Tz)]}.
Letting n — oo, we get

m(z, Tz) = d?(z, Tz).

Hence, we reduce to
[1+ pd(z, Tz)]dz(z, Tz)
< pmax{1/2[0 + 0], 0, 0} + d2(z, Tz) — ¢(d %(z, Tz)).

This gives z =Tz. Since T(X)c< A(X) and hence there exists a point
w e X suchthat z =Tz = Aw.

We claim that z = Sw. For this, we put x =w and y = z in (C2), we
get

[1+ pd(Aw, Bz)]d?(Sw, Tz)
< pmax{l/2[d?(Aw, Sw)d(Bz, Tz) + d(Aw, Sw)d?(Bz, Tz)],
d(Aw, Sw)d(Aw, Tz)d(Bz, Sw), d(Aw, Tz)d(Bz, Sw)d(Bz, Tz)}

+ m(Aw, Bz) — ¢(m(Aw, Bz)),
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where
m(Aw, Bz) = max{dZ(Aw, Bz), d(Aw, Sw)d(Bz, Tz),
d(Aw, Tz)d(Bz, Sw),

1/2[d(Aw, Sw)d(Aw, Tz) + d(Bz, Sw)d(Bz, Tz)]}

= max{(d?(z, 2), d(z, Sw)d(Tz, Tz), d(z, 2)d(z, Sw),
Y2[d(z, sw)d(z, z) + d(z, Sw)d(Tz, Tz)]}
=0.
Hence, we have
[L+ pd(z, 2)]d*(Sw, 2)
< pmax{y2[d?(z, Sw)d(z, z) + d(z, Sw)d?(z, 2)],
d(z, Sw)d(z, 2)d(z, Sw), d(z, 2)d(z, Sw)d(z, 2)} + 0 - ¢(0),

which implies that Sw = z. Since (S, A) is compatible on X, Sw = Aw = z,
by Proposition 2.2, we have ASw = SAw and hence Az = ASw = SAw =
Sz. That is, z = Az = Sz = Bz = Tz. Therefore, z is a common fixed point
of S, T, Aand B.

Similarly we can complete the proof when T is continuous.

Finally, in order to prove the uniqueness, suppose that z and w (z # w)

are two common fixed points of S, T, A and B.

Put x =z and y = w in (C2).
[L+ pd(z, w)]d?(z, w) = [L+ pd(Az, Bw)]d?(Sz, Tw)
< pmax{0, 0, 0} + m(Az, Bw) — ¢(m(Az, Bw))

= d%(z, w) = §(d*(z, w)).
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Thus, we have dz(z, w) =0 and hence z =w. Therefore, S, T, A and B

have a unique common fixed point in X. This completes the proof. O
If we put p =0 in Theorem 3.2, then we have the following result:

Corollary 3.3. Let S, T, A and B be four mappings of a complete metric
space (X, d) into itself satisfying (C1), (C3) and the following condition:
d2(Sx, Ty) < m(Ax, By) — (m(Ax, By))
forall x, y € X, where

m(Ax, By)

= max{dz(Ax, By), d(Ax, Sx)d(By, Ty), d(Ax, Ty)d(By, Sx),
1/2[d(Ax, Sx)d(Ax, Ty) + d(By, Sx)d(By, Ty)]},

¢ : [0, ©) — [0, o) is a continuous function with ¢(t) =0 iff t =0 and
¢(t) > 0 foreach t > 0.

Assume that the pairs (A, S) and (B, T) are compatible. Then S, T, A

and B have a unique common fixed point in X.

Remark 3.4. If we put A =B =1 (the identity mapping) and S =T in
Theorem 3.2, we get the required result (Theorem 3.1) of Murthy and Vara
Prasad [7].

Remark 3.5. If we put A=B and S =T in Theorem 3.2, we get the
result of Jain et al. [3]. Further, if we put S =1 (the identity mapping) in
Jain et al. [3, Theorem 2.2], we get the required result (Theorem 3.1) of
Murthy and Vara Prasad [7].
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