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Abstract 

In this paper, we compute the uncertainties in the oscillator’s position, 
momentum, and the mean-square deviations from the average for 
various linear combinations of number states, squeezed states. 

1. Introduction 

The term coherent state, also called Glauber state, has been introduced 
by Glauber [2] in 1963. It is not strongly related to the classical term 
coherence, and refers to a special sort of pure quantum mechanical state of 
the light field corresponding to a single resonator mode. A squeezed coherent 
state is any state of the quantum mechanical Hilbert space such that the 
uncertainty principle is saturated. Squeezed states give measurement results 
better than those expected from the Heisenberg uncertainty principle, 
connection with optical interferometers used to measure the relative positions 
of gravity-wave detectors and in optical communications [1, 4, 5]. 

We describe a dynamical system in terms of a pair of complex operators 

a and ,†a  which we call them as the annihilation and creation operators. 
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These operators, which obey the following commutation relation: 

 [ ] ,1, =†aa  (1) 

play a fundamental role in descriptions of systems of harmonic oscillators 
and quantized fields. It is obvious from the algebraic properties of the 

operators a and †a  that we may construct a sequence of states for the 
harmonic oscillator system. These number states labeled by n  satisfy the 

identity 

,1−= nnna  

,11 ++= nnna†  

nnnaa =†  (2) 

for a nonnegative integer n. They are generated from the state 0  by the rule 

 
( ) .0

!n
an

n†
=  (3) 

The annihilation and creation operators are defined in terms of the position 
and momentum operators by 

 
2

: ipxa +=  (4) 

and the Hermitian conjugate 

 .
2

: ipxa −=†  (5) 

We are interested in calculating the uncertainties in the oscillator’s position 
and momentum for the number states and for various linear combinations        
of number states. These uncertainties are characterized by the mean-square 
deviations from the average, or variances: 

 ( ) 22:var xxx −=  (6) 
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and 

 ( ) ,:var 22 ppp −=  (7) 

the symbol ⋅  denotes the quantum-mechanical ensemble average, or 

expectation value (see [3]). To compute the averages, we should solve (4) 
and (5) for the position and momentum operators: 

 
2

†aax +=  (8) 

and 

 .
2i
aap
†−=  (9) 

Then for the number states, we obtain 

0== px  

and 

 ( ) ( ) .2
1varvar +== npx  (10) 

In this paper, we mainly consider: 

Theorem 1.1. For a squeezed state ,β  we have 

(a) ,0=x  

(b) ,0=p  

(c) ( )
( )

{ ( ) } ,2
1222!

!2
2

222

0

2

2

2
02 +ν−ν−μ−νμ

μ
ν−

νμ
= ∗∗∗∗∗

∞

=
∗∗ ∑ n

n
ncx

n

n
 

(d) ( )
( )

{ ( ) } ,2
1222!

!2
2

222

0

2

2

2
02 +ν+ν+μ+νμ

μ
ν−

νμ
= ∗∗∗∗∗

∞

=
∗∗ ∑ n

n
ncp

n

n
 

where we express the squeezed state ∑
∞

=
=β

0n
n nc  satisfying: 
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Theorem 1.2. Let .N∈n  Then equation (14) has the solution: 

( )
02 2!

!2 cn
nc

n
n ⎟

⎠
⎞⎜

⎝
⎛

μ
ν−=    and   ,012 =−nc  

where μ, ν and 0c  are complex numbers. 

2. Proofs of Theorem 1.1 and Theorem 1.2 

We show that a quite general property of a nonlinear device is to create 

negative and positive frequency output phasors B and ∗B  that are each 

combinations of input phasors A and .∗A  That is, 

∗∗ λ+ν+μ= AAAAB  

and 

,AAAAB ∗∗∗∗∗∗ λ+ν+μ=  

where μ, ν, and λ are complex numbers. We can write the following 
quantum-mechanical operators to represent these output phasors: 

†† aaaab λ+ν+μ=  (11) 

and 

.aaaab ††† ∗∗∗ λ+ν+μ=  

If a squeezed state β  is to be an eigen-function of b with eigenvalue β, then 

by (2) and (11), we have 

+β+β+β 210 221100 ccc  

∑
∞

=
β=

0n
nn nc  

ββ=  

β= b  
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( )∑
∞

=
λ+ν+μ=

0n
n ncaaaa ††  

( )∑∑∑
∞

=

∞

=

∞

=

+λ+++ν+−μ=
001

1111
n

n
n

n
n

n nncnncnnc  

( ) ( )++ν++++μ= 22123120 10321 ccccc  

( )+++λ+ 23120 210 ccc  

( ) ( ) ( ) 23231220 21310201 cccccccc λ+ν+μ+λ+ν+μ+λ+μ=  

+  

and so 

,0100 ccc λ+μ=β  

 ,22 10211 cccc λ+ν+μ=β  (12) 

in general 

.1 1211 −−−− λ+−ν+μ=β nnnnn cncncnc  

This shows that 

( ) .1 211
n

cncnc nnn
n μ

−ν−λ−β
= −−−  

It is clear that the above recursion relation provides 

 λ=β − nn 1    and   ,ν>μ  (13) 

so that the sequence of nc  converges, we can write 

 .1 2
n
cnc n

n μ
−ν

−= −  (14) 
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Proof of Theorem 1.2. Now equation (14) deduces that 

,
2
1

02 cc
μ
ν−=  

,
4
3

24 cc
μ
ν−=  

 

.
2

12
222 −μ

−ν−= nn c
n

nc  

Multiplying both sides, we have 

2220242 2
12

4
3

2
1

−
−

⎟
⎠
⎞⎜

⎝
⎛

μ
ν−= n

n
n ccc

n
nccc  

( )
( ) 2220222 242

212321
−

⋅
⋅−⋅⋅

⎟
⎠
⎞⎜

⎝
⎛

μ
ν−= n

n
ccc

n
nn  

( )
( ) 2220242
!2

−⋅⎟
⎠
⎞⎜

⎝
⎛

μ
ν−= n

n
cccn

n  

( )
2220

!2
!2

−
⋅

⎟
⎠
⎞⎜

⎝
⎛

μ
ν−= nn

n
ccc

n
n  

and so 

( ) .2!
!2

02 cn
nc

n
n ⎟

⎠
⎞⎜

⎝
⎛

μ
ν−=  

Finally, by (12)-(14), we conclude that 

 .012 =−nc  ~ 

Now, for instance we put 026.0,1,5.1 0 ==ν=μ c  with increasing n 

to visualize some values of nc  in Theorem 1.2 at the pictures (A), (B) and 
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(C) in Figure 1. Throughout Figure 1, we conclude that nc2  vibrates versus n 

and as n is bigger then nc2  approaches to zero. And we let ,1,5.1 −=ν=μ  

026.00 =c  with various n in the pictures (A), (B) and (C) in Figure 2. Then 

Figure 2 implies that for bigger n, the values of nc2  decrease slowly and 

approach to zero. 

 

(A) nc  versus ( ).101 ≤≤ nn  

 

(B) nc  versus ( ).201 ≤≤ nn  

 

(C) nc  versus ( ).301 ≤≤ nn  

Figure 1. nc  versus n with .026.0,1,5.1 0 ==ν=μ c  
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(A) nc  versus ( ).101 ≤≤ nn  

 

(B) nc  versus ( ).201 ≤≤ nn  

 

(C) nc  versus ( ).301 ≤≤ nn  

Figure 2. nc  versus n with .026.0,1,5.1 0 =−=ν=μ c  

We can also see that by (13) the eigenvalues of nβ  are plotted as Figure 

3 which shows that eigenvalues are proportional to n. 

 

(A) nβ  versus n with .5.0=λ  

 

(B) nβ  versus n with .1=λ  

Figure 3. nβ  versus ( )301 ≤≤ nn  with 5.0=λ  and .1=λ  

In the following lemma, we calculate the expectation value of the 
number operator in a squeezed state: 
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Lemma 2.1. For the number operator aa†  and a squeezed state ,β  we 

have 

( )
( )( )∑

∞

=
μ
ν−

−
=ββ

1

2

2
2

0 .2!1
!22

n

n

nn
ncaa†  

Proof. From (2) and Theorem 1.2, we deduce that 

∑ ∑
∞

=

∞

=

⋅⋅=ββ
0 0m n

nm ncaacmaa ††  

∑
∞

=

∗ |=
0, nm

nm nmncc  

∑
∞

=

∗ δ=
0,

,
nm

nmnm ncc  

∑
∞

=
=

0

2

n
ncn  

( )∑ ∑
∞

=

∞

=
+++=

0 0

2
12

2
2 122

n n
nn cncn  

∑
∞

=
=

1

2
22

n
ncn  

( )
( )( )∑

∞

=
μ
ν−

−
=

1

2
0

2

2 .2!1
!22

n

n
c

nn
n  ~ 

Corollary 2.2. For a squeezed state ,β  we have 

(a) ,0=ββ a  

(b) .0=ββ †a  
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Proof. (a) By (2) and Theorem 1.2, we obtain 

∑ ∑∑ ∑
∞

=

∞

=

∗
∞

=

∞

=

−|⋅=⋅⋅=ββ
0 10 0

1
m n

nm
m n

nm nmnccncacma  

∑ ∑
∞

=

∞

=
−

∗ δ=
0 1

1,
m n

nmnm ncc  

∑
∞

=

∗
−=

1
1

n
nn ncc  

.0=  

(b) In a similar manner to part (a), we note that 

∑∑ ∑
∞

=

∗
∞

=

∞

=

+|⋅+=⋅⋅=ββ
0,0 0

11
nm

nm
m n

nm nmnccncacma ††  

∑
∞

=
+

∗ δ+=
0,

1,1
nm

nmnm ncc  

∑
∞

=

∗
+ +=

0
1 1

n
nn ncc  

.0=  ~ 

Proof of Theorem 1.1. (a) From (8) and Corollary 2.2, we observe that 

( ) .0
2

1
2

=ββ+ββ=β+β=ββ= †
†

aaaaxx  

(b) By (9) and Corollary 2.2, it is clear. 
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(c) Employing (1), (2) and (8), we note that 

β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +β=ββ=
2

22
2

†aaxx  

β+++β= †††† aaaaaaaa2
1  

β+++β= ††† aaaaaa 122
1  

⎜
⎜
⎝

⎛
⋅⋅+⋅⋅= ∑ ∑∑ ∑

∞

=

∞

=

∞

=

∞

= 0 00 0
22

1

m n
nm

m n
nm ncaacmncaacm †  

 ⎟
⎟
⎠

⎞
⋅++ ∑ ∑∑ ∑

∞

=

∞

=

∞

=

∞

= 0 00 0 m n
nm

m n
nm ncaacmnccm ††  

∑∑ ∑
∞

=

∗
∞

=

∞

=
−

∗ δ+
⎜
⎜
⎝

⎛
δ−=

0,
,

0 2
2, 212

1

nm
nmnm

m n
nmnm nccnncc  

⎟
⎟

⎠

⎞
δ+++δ+ ∑∑

∞

=
+

∗
∞

=

∗

0,
2,

0,
, 21

nm
nmnm

nm
nmnm nncccc  

( ) ∑ ∑∑
∞

=

∞

=

∗∗
∞

=

∗
− ++

⎜
⎜
⎝

⎛
−=

0 02
2 212

1

n n
nnnn

n
nn cccncccnn  

( ) ( )
⎟
⎟
⎠

⎞
+++ ∑

∞

=

∗
+

0
221

n
nn ccnn  

( ( ) ( ) ( ) )∗
+

∗
∞

=

∗
− ++++−1+= ∑ 2

0
2 212122

1
nn

n
nn cnnnccnnc  
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then by Theorem 1.2, since 12 −nc  does not exist, 

( ( ) ( )( ) ).2212412222
1

22222
0

2
2 ∗

+
∗∗

−

∞

=

++++−1+= ∑ nnn
n

n cnnnccnncx  

 (15) 
Now applying 

( ) ( ) ( )
( )

∗
−

∗

∗
∗

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

μ
ν−

−
−⋅−=− 0

1

22 2!1
!22122122 cn

nnncnn
n

n  

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ν
μ−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

μ
ν−= ∗

∗
∗

∗

∗
ncn

n
n

2
2!

!2
0  

∗
∗

∗

ν

μ−= nnc2
2  

and 

( ) ( ) ∗
+++ 222212 ncnn  

( ) ( ) ( )
( )

∗
+

∗

∗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

μ
ν−

+
+⋅++= 0

1

2!1
!222212 cn

nnn
n

 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

μ
ν−

+
++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

μ
ν−= ∗

∗
∗

∗

∗

21
2212

2!
!2

0 n
nncn

n
n

 

( ) ,12 2
∗

∗

∗
+

μ

ν−= ncn  

to equation (15) we conclude that 

( )∑
∞

=
∗

∗

∗

∗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

μ
ν−+

ν
μ−1+=

0

2
2

2 1242
22

1

n
n nnncx  

( ( ) )∑
∞

=

∗∗∗∗∗
∗∗ ν−ν−μ−νμ
νμ
1+=

0

2222
2 .22

22
1

n
n nc  
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(d) It is obvious by part (c). ~ 

Using (6), (7), and Theorem 1.1, we obtain 

( ) 22var xxx −=  

( )
( )

{ ( ) } 2
1222!

!2
2

222

0

2

2

2
0 +ν−ν−μ−νμ

μ
ν−

νμ
= ∗∗∗∗∗

∞

=
∗∗ ∑ n

n
nc

n

n
 

and 

( ) 22var ppp −=  

( )
( )

{ ( ) } 2
1222!

!2
2

222

0

2

2

2
0 +ν+ν+μ+νμ

μ
ν−

νμ
= ∗∗∗∗∗

∞

=
∗∗ ∑ n

n
nc

n

n
 

for a squeezed state β  thus we can compare these values with (10) for a 

number state .n  

3. Conclusion 

In this article, we add an input term ∗λAA  newly to the previous input 
phasors as follows: 

∗∗ λ+ν+μ= AAAAB  

and 

,AAAAB ∗∗∗∗∗∗ λ+ν+μ=  

where μ, ν and λ are complex numbers. So we can obtain quantum-
mechanical operators to represent output phasors: 

†† aaaab λ+ν+μ=  

and 

.aaaab ††† ∗∗∗ λ+ν+μ=  
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Through these operators, we can compute oscillator’s position, momentum, 
and the mean-square deviations from the average for squeezed states. 
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