Far East Journal of Mathematical Sciences (FIMS)

© 2018 Pushpa Publishing House, Allahabad, India

http://www.pphmj.com

http://dx.doi.org/10.17654/MS103030633

Volume 103, Number 3, 2018, Pages 633-643 ISSN: 0972-0871

QUANTUM COVARIANCES AND SCHRODINGER TYPE
OF UNCERTAINTY RELATION

Eunsang Kim and Tae Ryong Park”

Department of Applied Mathematics
Hanyang University
Ansan Kyunggi-do, Korea

Department of Computer Engineering
Seokyeong University
Seoul, Korea

Abstract

In this paper, we study relations between quantum covariances, anti-
symmetric covariance and symmetric covariance. From the relation,
we derive a type of Schrédinger uncertainty relation and this can be
seen as a refinement of the relation, which is given in [5].

1. Introduction

Heisenberg uncertainty relation and Schrddinger uncertainty relation
have been reinterpreted using quantum covariances as studied in [3-5] and
many other papers. In this paper, we first review the various definitions of
covariances given in [6]. Using the properties of operator monotone
functions, we study relations between those covariances such as covariance,
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guantum covariance, antisymmetric covariance and symmetric covariance.
Such relations will give us a useful inequality which leads to a refinement of
Schrddinger uncertainty relation which is given in [5] and [2].

2. Operator Monotone Functions

Let My = M,(C) be the set of all nxn complex matrices and let
M3 = {A e M, |A" = A} be the set of all self-adjoint matrices, endowed
with the Hilbert-Schmidt scalar product (A, B),,s = Tr(A'B), A, B € M,.
Let D, be the set of strictly positive matrices in M,, and let D}, c Dy, be
the set of positive density matrices; D} = {p € D, |Trp =1}. Note that D,
and D}, are differentiable manifolds and the tangent space of D,, at p can be
identified with M3 and the tangent space of D} at p is M0 = (A e

M | Tr A = 0}.

A function f : (0, +o0) - R™ is said to be operator monotone if, for

any natural number nand A, B € M3 such that 0 < A < B, the inequalities

0< f(A)< f(B) hold. An operator monotone function f is called
normalized if f(1) =1 and symmetric if f(x) = xf (%) Let Fop be the set

of symmetric, normalized operator monotone functions f : (0, +0) - R™.

Examples of elements in F, are the following:

2X 1+x
frg(x) = Tix and fey(x) = —

Forany f e ]—"Op, forall x >0,

(0 < (X < fog(x). &)
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For f e Fqp, define f(0) = XIi_r)no f(x). Then forany f e Fg, and x >0,
we have

£(0)(L+ x) < f(x)s%(1+ X). @)
Define

Fop = 1{f € Fopl £(0) 2 0},  Fgp = {f e Fop| (0) = 0}.
Obviously one has Fo, = Fg, U Fgp and Fgp N Fop = 2.

For f e ]-“gp and x > 0, let
F(x) = [(x+1) (x—1)? Igm

Then f e Fo op and this gives the bijection between }“op and }“Qp. For

example, fo(x) = fq(x) and hence

fsg(x) < F(x) < fg(x).

For f, g € Fop,

= 1 f(0)]_ 1 0)
< §[(x+1) (x - 1)2”)}35[(“1) (x - 12 g(x)}

00 _ g(x) -

For each f e F,, we define the mean function m¢ : R™ x R" — R”
by

ms (X, y) = yf (xy_l) for x, y e R*.
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. 2X 2Xy .
For example, if f(x)= f4(Xx)=——, then m¢ (X, = and if
p (x) = frg(x) iy P06 Y) == y

1+

f(x) = 2", then my (x, y) = 2=

2

. By definition, for all f, g e Fq,
and x, y e R™,

f <g=ms(x y)<my(x, y).
Thus, by (1), (2), we have for each f e 7,

2xy

X+Yy
X+Yy ’

(4)

<mg(x y) <

FO(x+y) <mp(x y) < =5, (5)

We may extend the mean function to R* U{0} and we have for

f e Fop,

m=(x, y) = yf (y 1)

2£(0
36

£(0)(x — )
S Ty ©)

Proposition 1. Let f e 7,,. Then for each x,y e R" such that

X —y >0, we have

Y mp(x, y) < 5 (x-y). ™)
2
Proof. By (6), X; y _ mz(x, y) = % and by (2), we have

f(0)(x+y) <m¢(x, y). Thus,
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1 1 f(0) 1
< = <
me(X, y) = FO)(x+y) 7 2me(x, y) ~ 2(x+y)

fO)(x-y) - 1
2m; (%, y) < 2(Xx +yy) =32

and hence

FO(x-y? _1

2mi(x,y) ~ 20 .
Proposition 2. For f e F,,, we have the following inequality:
2 2
o TR
Proof. By (4), XJlr y < T &, mE Thus,
2
FO)(x+y) = I
and
O (x-y)* fO(x+y)* | FO)(x-y)
2mi(y) 2mi(ay) C 2m(oy) | OUEY)
> £(0)2(x — y)°. O

3. Monotone Metrics and Covariances

Foreach f e Fop,, one may associate the monotone family of metrics on

the manifold D, [7, 8]. For A, B € M3 and p e D}, the metric is defined
by
(A B) = Tr(Am¢ (L,, R,)(B)),

where L,(A) = pA and R,(A) = Ap.
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By extending operator monotone functions to complex analytic functions

on a neighborhood of R*, one may have the Riesz-Dunford operator calculus

(cf. [1]):

f0)= 5[ T@E-p "

where the spectrum of p is contained in C. The operators L, and R, are

positive definite with respect to the Hilbert-Schmidt inner product on M,,.
Then

f(Lp) = [ 1@ - 1) e

and

1
(2ri)?

M (Ly, Ry)(B) = —— [[_my (& m)(&~p) *B(n—p) "den

Along the lines of [6], we have

Proposition 3. Let p = Diag(A, A, ..., Ap) € DY and A B e M,

Then forall f e fop, we have

(A B), ¢ = D ome (e ) AyBy. 9)

k,I1=1
Proof. For A € M,,, we can write
n
A= AjEj,

i j=1

where E;jj is the n x n matrix which is all entries except (ij)-entry are zero.

First we have
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(Eij» Ea)p, ¢ = Tr(Ejms (L, Ry) H(Ex)

1 1 3 .
= Tr|| 7~ Ei€-p) "Ea(n-p)ded
(2mi)? r”c me (& ) j(§ = p) "Eq(n—p) didn
= &j0); S (10)
m¢ (& n)
n n
Since A= ) A;Ej and B = ) ByEy, we have
i, j=t k,1=1
n 1
<A, B>p,f :. -Z_ akjalimp‘ijBkl
ik, 1=1
= Z AkBamy (i, ) 0
k,1=1

For A, B € M2 and p = Diag(Aq, ..., A,y), the covariance of A and B is
defined by

1
Cov, (A B) = ETr(pAB + pBA) — Tr(pA)Tr(pB)
n

Ak + A
=y X 5 AkBu — Tr(pA)Tr(pB)
K,1=1

= Z M ;M [A0]|k[BO]k|’ (12)

k,I=1

where Ay = A—Tr(pA)l. In what follows, we only consider the matrices
satisfying Tr(pA) = 0. Let Cov,(A, A)=V,(A). Then by the Cauchy-

Schwarz inequality, we get

V,(A)V,(B) > | Cov,(A, B)|*.
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The Heisenberg uncertainty relation is given by
1 2
Vp(A)Vp(B) 2 Z' TI’(p[A, B])l
and the Schrédinger uncertainty relation is then
2.1 2

Vo (AV,(B) ~| Cov, (A, B) [? = 2| Tr(p[A, B],

where [A, B] = AB — BA.
For f e ]—"Op, the quantum f-covariance of A and B, introduced in [5], is

Cov/ (A, B)=Tr(Am¢ (L, R,)(B))

= > mt (e, 1) AkcBu, (12)

k,I=1

where the local form of the quantum covariance can be obtained as in the
proof of Proposition 2.

The antisymmetric f-covariance, which was given in [6], is defined as
f(0) ,. .
14 8) = i, AL il B, . 13)
Proposition 4. For A, B € M$ and p = Diag(Aq, A5, ..., Ap) € D%,
11 (A, B) = Cov, (A B)-Cov/[ (A B). (14)
Proof. Since p = Diag(Aq, Ay, ..., ), We have
f(0) . )
(a8 =Ty, Al ilp, B,

= "0, Almy (L. Ry ([p. B)

N

= @ Z [p. Allp, Blyems (i, A1)
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10 3 O —1)°
T2 Z:: mfk(%k IM)A'kBk'

L F0) (O = M)?
kzlll me(;k L AkBy

=y Pk ;M - mz (A, M)}AikBkl

k,1=1
f
= Cov, (A, B) - Cov/ (A, B).

By Proposition 1, we get

n
Ay + A
|10 (A B)[=| D K5 —mz (e ) || A ][ B |
=1
1§ 1
<3| 2 1 =2l A l[Bu || = 5| Tr(e[A, BD.

k,1=1

Finally, we improve the inequality given in [5].

Theorem 1. Let A BeM}? and p = Diag(ry, Ao, ...,

Suppose that f, g fgp suchthat f < g. Then

f
Cov,(A B) < Cov, (A B) <

1 1
21(0) 20(0)

Cov§ (A, B).

641

(15)

An) e DE.

Proof. By (3), we have f(x) < 9(x) and by the property of mean

f(0) = 9(0

function

T ™ (6 V) < 55 mg(x Y.



642 Eunsang Kim and Tae Ryong Park

Thus, the second equality follows. By (2), f(0)(1+ x) < f(x). Thus,

fOA+x) _ f(x) _ @+x) _ f(x)
> STy >y = 21(0)

and hence the first inequality follows from

X+Y m¢ (X, Y)

2~ 2f(0) -
The symmetric f-covariance, which was introduced in [6], is given as
f(0
of a8 =T, Ay pu 8, o (19)

where {A, B} = AB + BA. The local form of the symmetric f-covariance can

written as

n 2
g =ty Bthl g, ar)
k,1=1

Now we prove the main theorem which can be seen as a Schrddinger
type of uncertainty relation.

Theorem 2. Let A, B e M® and p = Diag(ry, Ay, ..., ) € DY. For

all f e ]-'Orp, we have

1
FO7 15 (A B) < 517 (R)I] (B).
Proof. By (15) and Proposition 2,

(0% 1] (A B)?

1 2 2/ A 2
<7 D10 e =24 | A Pl B [
K.1=1

1 £(0) (ke =) T(0)(hy + 1) .
SZ|<|:1 meOltk,Ml) me({k,x:) | A [l By |
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1 £(0) (A — M) 21 £(0) (A + 1) 2
=3 Z 2m¢ (A, Ap) Al Z 2m¢ (A, Ap) [Bu |
K 1=1 K 1=1
<L faafe) O
<7l o (B).
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