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Abstract 

In this paper, we study relations between quantum covariances, anti-
symmetric covariance and symmetric covariance. From the relation, 
we derive a type of Schrödinger uncertainty relation and this can be 
seen as a refinement of the relation, which is given in [5]. 

1. Introduction 

Heisenberg uncertainty relation and Schrödinger uncertainty relation 
have been reinterpreted using quantum covariances as studied in [3-5] and 
many other papers. In this paper, we first review the various definitions of 
covariances given in [6]. Using the properties of operator monotone 
functions, we study relations between those covariances such as covariance, 
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quantum covariance, antisymmetric covariance and symmetric covariance. 
Such relations will give us a useful inequality which leads to a refinement of 
Schrödinger uncertainty relation which is given in [5] and [2]. 

2. Operator Monotone Functions 

Let ( )Cnn MM =  be the set of all nn ×  complex matrices and let 

{ }AAA nn =|∈= ∗MMsa  be the set of all self-adjoint matrices, endowed 

with the Hilbert-Schmidt scalar product ( ) .,,Tr, HS nMBABABA ∈= ∗  

Let nD  be the set of strictly positive matrices in nM  and let nn DD ⊂1  be 

the set of positive density matrices; { }.1Tr1 =ρ|∈ρ= nnD D  Note that nD  

and 1
nD  are differentiable manifolds and the tangent space of nD  at ρ can be 

identified with saMn  and the tangent space of 1
nD  at ρ is { ∈= An

0,saM  

}.0TrMsa =| An  

A function ( ) +→∞+ R,0:f  is said to be operator monotone if, for 

any natural number n and saM, nBA ∈  such that ,0 BA ≤≤  the inequalities 

( ) ( )BfAf ≤≤0  hold. An operator monotone function f is called 

normalized if ( ) 11 =f  and symmetric if ( ) .1
⎟
⎠
⎞⎜

⎝
⎛= xxfxf  Let opF  be the set 

of symmetric, normalized operator monotone functions ( ) .,0: +→∞+ Rf  

Examples of elements in opF  are the following: 

( )
x

xxf
+

=
1

2:rd    and   ( ) .
2

1:sd
xxf +

=  

For any ,opF∈f  for all ,0>x  

 ( ) ( ) ( ).sdrd xfxfxf ≤≤  (1) 
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For ,opF∈f  define ( ) ( ).lim0
0

xff
x→

=  Then for any opF∈f  and ,0≥x  

we have 

 ( ) ( ) ( ) ( ).12
110 xxfxf +≤≤+  (2) 

Define 

{ ( ) } { ( ) }.00:,00: opopopop =|∈=≠|∈= ffff nr FFFF  

Obviously one has nr
opopop FFF ∪=  and .opop ∅=nr FF ∩  

For rf opF∈  and ,0>x  let 

( ) ( ) ( ) ( )
( ) .0112

1~ 2
⎥⎦
⎤

⎢⎣
⎡ −−+= xf

fxxxf  

Then nf op
~

F∈  and this gives the bijection between r
opF  and .op

nF  For 

example, ( ) ( )xfxf rdsd
~

=  and hence 

( ) ( ) ( ).~
sdsd xfxfxf ≤≤  

For ,, op
rgf F∈  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )⎥⎦
⎤

⎢⎣
⎡ −−+≤⎥⎦

⎤
⎢⎣
⎡ −−+⇒≤ xg

gxxxf
fxxgf 0112

10112
1~~ 22  

( )
( )

( )
( )xg

g
xf

f 00 ≥⇒  

( )
( )

( )
( ) .00 g
xg

f
xf ≤⇒  (3) 

For each ,opF∈f  we define the mean function +++ →× RRR:fm  

by 

( ) ( )1, −= xyyfyxm f  for ., +∈ Ryx  
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For example, if ( ) ( ) ,
1

2
rd x

xxfxf
+

==  then ( ) yx
xyyxm f +

= 2,  and if 

( ) ,2
1 xxf +=  then ( ) .2, yxyxm f

+=  By definition, for all op, F∈gf  

and ,, +∈ Ryx  

( ) ( ).,, yxmyxmgf gf ≤⇒≤  

Thus, by (1), (2), we have for each ,opF∈f  

( ) ,2,2 yxyxmyx
xy

f
+≤≤

+
 (4) 

 ( ) ( ) ( ) .2,0 yxyxmyxf f
+≤≤+  (5) 

We may extend the mean function to { }0∪+R  and we have for 

,op
rf F∈  

( ) ( )1~ ~, −= xyfyyxm f  

( )
( )⎥⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ −−+= xf

f
y
x

y
xy 0112

2
 

( ) ( )
( ) .,2

0
2

2

yxm
yxfyx

f

−−+=  (6) 

Proposition 1. Let .opF∈f  Then for each +∈ Ryx,  such that 

,0≥− yx  we have 

 ( ) ( ).2
1,2

~ yxyxmyx
f −≤−+  (7) 

Proof. By (6), ( ) ( ) ( )
( )yxm

yxfyxmyx
ff ,2

0,2

2
~ −=−+  and by (2), we have 

( ) ( ) ( ).,0 yxmyxf f≤+  Thus, 
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( ) ( ) ( )
( )
( ) ( )yxyxm

f
yxfyxm ff +

≤⇒
+

≤ 2
1

,2
0

0
1

,
1  

( ) ( )
( ) ( ) 2

1
2,2

0 ≤
+
−≤−⇒ yx

yx
yxm
yxf

f
 

and hence 

 ( ) ( )
( ) ( ).2

1
,2

0 2
yxyxm

yxf
f

−≤−  ~ 

Proposition 2. For ,opf F∈  we have the following inequality: 

 ( ) ( ) ( ) ( )
( )

( ) ( )
( ) .,2

0
,2

00
22

22
yxm
yxf

yxm
yxfyxf

ff

+−≤−  (8) 

Proof. By (4), ( ) .,
11

yxmyx f
≤

+
 Thus, 

( ) ( ) ( ) ( )
( )yxm

yxfyxf
f ,2

00
2+≤+  

and 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )yxfyxm

yxf
yxm
yxf

yxm
yxf

fff
+⋅−≥+− 0,2

0
,2

0
,2

0 222
 

( ) ( ) .0 22 yxf −≥  ~ 

3. Monotone Metrics and Covariances 

For each ,opF∈f  one may associate the monotone family of metrics on 

the manifold nD  [7, 8]. For saM, nBA ∈  and ,1
nD∈ρ  the metric is defined 

by 

( ( ) ( )),,Tr, , BRLAmBA ff ρρρ =  

where ( ) AAL ρ=ρ  and ( ) .ρ=ρ AAR  
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By extending operator monotone functions to complex analytic functions 

on a neighborhood of ,+R  one may have the Riesz-Dunford operator calculus 

(cf. [1]): 

( ) ( ) ( )∫ ξρ−ξξ
π

=ρ −
C

dfif ,2
1 1  

where the spectrum of ρ is contained in C. The operators ρL  and ρR  are 

positive definite with respect to the Hilbert-Schmidt inner product on .nM  

Then 

( ) ( ) ( )∫ ξ−ξξ= −
ρρ C

dLfLf 1Id  

and 

( ) ( )
( )

( ) ( ) ( )∫∫ ηξρ−ηρ−ξηξ
π

= −−
ρρ C ff ddBm

i
BRLm .,

2
1, 11

2  

Along the lines of [6], we have 

Proposition 3. Let ( ) 1
21 ...,,,Diag nn D∈λλλ=ρ  and .M, sa

nBA ∈  

Then for all ,opf F∈  we have 

 ( )∑
=

−
ρ λλ=

1,

1
, .,,

lk
kllklkff BAmBA  (9) 

Proof. For ,MnA ∈  we can write 

∑
=

=
n

ji
ijijEAA

1,
,  

where ijE  is the nn ×  matrix which is all entries except (ij)-entry are zero. 

First we have 
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( ( ) ( )klfijfklij ERLmEEE 1
, ,Tr, −

ρρρ =  

( ) ( )
( ) ( )∫∫ ηξρ−ηρ−ξ

ηξπ
= −−

C klij
f

ddEE
mi

11
2 ,

1Tr
2

1  

( ) .,
1

ηξ
δδ=

f
likj m  (10) 

Since ∑
=

=
n

ji
ijijEAA

1,
 and ∑

=
=

n

lk
klklEBB

1,
,  we have 

( )∑
=

ρ ηξ
δδ=

n

lkji
klij

f
likjf BAmBA

1,,,
, ,

1,  

( )∑
=

−λλ=
1,

1.,
lk

lkfkllk mBA  
 

For saM, nBA ∈  and ( ),...,,Diag 1 nλλ=ρ  the covariance of A and B is 

defined by 

( ) ( ) ( ) ( )BABAABBA ρρ−ρ+ρ=ρ TrTrTr
2
1,Cov  

( ) ( )∑
=

ρρ−
λ+λ

=
n

lk
kllk

lk BABA
1,

TrTr2  

[ ] [ ]∑
=

λ+λ
=

n

lk
kllk

lk BA
1,

00 ,2  (11) 

where ( ) .Tr0 IAAA ρ−=  In what follows, we only consider the matrices 

satisfying ( ) .0Tr =ρA  Let ( ) ( ).,Cov AVAA ρρ =  Then by the Cauchy-

Schwarz inequality, we get 

( ) ( ) ( ) .,Cov 2BABVAV ρρρ ≥  
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The Heisenberg uncertainty relation is given by 

( ) ( ) [ ]( ) 2,Tr
4
1 BABVAV ρ≥ρρ  

and the Schrödinger uncertainty relation is then 

( ) ( ) ( ) [ ]( ) ,,Tr
4
1,Cov 22 BABABVAV ρ≥− ρρρ  

where [ ] ., BAABBA −=  

For ,opF∈f  the quantum f-covariance of A and B, introduced in [5], is 

( ) ( ( ) ( ))BRLAmBA f
f

ρρρ = ,Tr,Cov  

( )∑
=

λλ=
n

lk
kllklkf BAm

1,
,,  (12) 

where the local form of the quantum covariance can be obtained as in the 
proof of Proposition 2. 

The antisymmetric f-covariance, which was given in [6], is defined as 

 ( ) ( ) [ ] [ ] .,,,
2
0, , f

f BiAifBAI ρρ ρρ=  (13) 

Proposition 4. For saM, nBA ∈  and ( ) ,...,,,Diag 1
21 nn D∈λλλ=ρ  

 ( ) ( ) ( ).,Cov,Cov,
~

BABABAI ff
ρρρ −=  (14) 

Proof. Since ( ),...,,,Diag 21 nλλλ=ρ  we have 

( ) ( ) [ ] [ ] f
f BiAifBAI ,,,,2

0, ρρ ρρ=  

( ) ([ ] ( ) [ ]( )BRLmAf
f ,,,Tr

2
0

ρρ= ρρ  

( ) [ ] [ ] ( )∑
=

λλρρ=
n

lk
lkflkkl mBAf

1,
,,,2

0  
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( ) ( )
( )∑

=
λλ

λ−λ
=

n

lk
kllk

lkf
lk BAm

f

1,

2

,2
0  

( ) ( )
( )∑

=
λλ
λ−λ

=
n

lk
kllk

lkf
lk BAm

f

1,

2

,2
0  

( )∑
=

⎥⎦
⎤

⎢⎣
⎡ λλ−

λ+λ
=

n

lk
kllklkf

lk BAm
1,

~ ,2  

( ) ( ).,Cov,Cov
~

BABA f
ρρ −=  
 

By Proposition 1, we get 

( ) ( ) kllk

n

lk
lkf

lkf BAmBAI ∑
=

ρ λλ−
λ+λ

=
1,

~ ,2,  

[ ]( ) .,Tr2
1

2
1

1,
BABA

n

lk
kllklk ρ=λ−λ≤ ∑

=

 (15) 

Finally, we improve the inequality given in [5]. 

Theorem 1. Let saM, nBA ∈  and ( ) ....,,,Diag 1
21 nn D∈λλλ=ρ  

Suppose that r
opgf F∈,  such that .~~ gf ≤  Then 

( )
( )

( )
( )

( ).,Cov
02

1,Cov
02

1,Cov BA
g

BA
f

BA gf
ρρρ ≤≤  

Proof. By (3), we have ( )
( )

( )
( )00 g
xg

f
xf ≤  and by the property of mean 

function 

( ) ( ) ( ) ( ).,0
1,0

1 yxmgyxmf gf ≤  
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Thus, the second equality follows. By (2), ( ) ( ) ( ).10 xfxf ≤+  Thus, 

( ) ( ) ( ) ( ) ( )
( )022

1
22

10
f

xfxxfxf ≤+⇒≤+  

and hence the first inequality follows from 

 
( )
( ) .02
,

2 f
yxmyx f≤+  
 

The symmetric f-covariance, which was introduced in [6], is given as 

 ( ) ( ) { } { } ,,,,2
0, , f

f BAfBAJ ρρ ρρ=  (16) 

where { } ., BAABBA +=  The local form of the symmetric f-covariance can 

written as 

 ( ) ( ) ( )
( )∑

=
ρ λλ

λ+λ
=

n

lk
kllk

lkf
lkf BAm

fBAJ
1,

2
.,2

0,  (17) 

Now we prove the main theorem which can be seen as a Schrödinger 
type of uncertainty relation. 

Theorem 2. Let saM, nBA ∈  and ( ) ....,,,Diag 1
21 nn D∈λλλ=ρ  For 

all ,r
opf F∈  we have 

( ) ( ) ( ) ( ).4
1,0 22 BJAIBAIf fff

ρρρ ≤  

Proof. By (15) and Proposition 2, 

( ) ( ) 22 ,0 BAIf f
ρ  

( )∑
=

λ−λ≤
1,

222204
1

lk
kllklk BAf  

( ) ( )
( )

( ) ( )
( )∑

=
λλ
λ+λ

λλ
λ−λ

≤
1,

22
22

,2
0

,2
0

4
1

lk
kllk

lkf
lk

lkf
lk BAm

f
m

f  
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( ) ( )
( )

( ) ( )
( )∑ ∑

= =
λλ
λ+λ

λλ
λ−λ

≤
1, 1,

2
2

2
2

,2
0

4
1

,2
0

4
1

lk lk
kl

lkf
lk

lk
lkf
lk Bm

fAm
f  

( ) ( ).4
1 BJAI ff

ρρ≤  
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