Far East Journal of Mathematical Sciences (FJMS)

QUANTUM COVARIANCES AND SCHRÖDINGER TYPE OF UNCERTAINTY RELATION

Eunsang Kim and Tae Ryong Park*
Department of Applied Mathematics
Hanyang University
Ansan Kyunggi-do, Korea
Department of Computer Engineering
Seokyeong University
Seoul, Korea

Abstract

In this paper, we study relations between quantum covariances, antisymmetric covariance and symmetric covariance. From the relation, we derive a type of Schrödinger uncertainty relation and this can be seen as a refinement of the relation, which is given in [5].

1. Introduction

Heisenberg uncertainty relation and Schrödinger uncertainty relation have been reinterpreted using quantum covariances as studied in [3-5] and many other papers. In this paper, we first review the various definitions of covariances given in [6]. Using the properties of operator monotone functions, we study relations between those covariances such as covariance,

Received: October 18, 2017; Accepted: November 22, 2017
2010 Mathematics Subject Classification: 62B10.
Keywords and phrases: quantum covariances, uncertainty relations.
This work was supported by Seokyeong University in 2015.
*Corresponding author
quantum covariance, antisymmetric covariance and symmetric covariance. Such relations will give us a useful inequality which leads to a refinement of Schrödinger uncertainty relation which is given in [5] and [2].

2. Operator Monotone Functions

Let $\mathrm{M}_{n}=\mathrm{M}_{n}(\mathbb{C})$ be the set of all $n \times n$ complex matrices and let $\mathrm{M}_{n}^{\mathrm{sa}}=\left\{A \in \mathrm{M}_{n} \mid A^{*}=A\right\}$ be the set of all self-adjoint matrices, endowed with the Hilbert-Schmidt scalar product $\langle A, B\rangle_{\mathrm{HS}}=\operatorname{Tr}\left(A^{*} B\right), A, B \in M_{n}$. Let \mathcal{D}_{n} be the set of strictly positive matrices in M_{n} and let $\mathcal{D}_{n}^{1} \subset \mathcal{D}_{n}$ be the set of positive density matrices; $D_{n}^{1}=\left\{\rho \in \mathcal{D}_{n} \mid \operatorname{Tr} \rho=1\right\}$. Note that \mathcal{D}_{n} and \mathcal{D}_{n}^{1} are differentiable manifolds and the tangent space of \mathcal{D}_{n} at ρ can be identified with $\mathrm{M}_{n}^{\mathrm{sa}}$ and the tangent space of \mathcal{D}_{n}^{1} at ρ is $\mathrm{M}_{n}^{\mathrm{sa}, 0}=\{A \in$ $\left.\mathrm{M}_{n}^{\mathrm{sa}} \mid \operatorname{Tr} A=0\right\}$.

A function $f:(0,+\infty) \rightarrow \mathbb{R}^{+}$is said to be operator monotone if, for any natural number n and $A, B \in \mathrm{M}_{n}^{\text {sa }}$ such that $0 \leq A \leq B$, the inequalities $0 \leq f(A) \leq f(B)$ hold. An operator monotone function f is called normalized if $f(1)=1$ and symmetric if $f(x)=x f\left(\frac{1}{x}\right)$. Let $\mathcal{F}_{\mathrm{op}}$ be the set of symmetric, normalized operator monotone functions $f:(0,+\infty) \rightarrow \mathbb{R}^{+}$. Examples of elements in $\mathcal{F}_{\text {op }}$ are the following:

$$
f_{\mathrm{rd}}(x):=\frac{2 x}{1+x} \quad \text { and } \quad f_{\mathrm{sd}}(x):=\frac{1+x}{2}
$$

For any $f \in \mathcal{F}_{\text {op }}$, for all $x>0$,

$$
\begin{equation*}
f_{\mathrm{rd}}(x) \leq f(x) \leq f_{\mathrm{sd}}(x) \tag{1}
\end{equation*}
$$

For $f \in \mathcal{F}_{\text {op }}$, define $f(0)=\lim _{x \rightarrow 0} f(x)$. Then for any $f \in \mathcal{F}_{\text {op }}$ and $x \geq 0$, we have

$$
\begin{equation*}
f(0)(1+x) \leq f(x) \leq \frac{1}{2}(1+x) . \tag{2}
\end{equation*}
$$

Define

$$
\mathcal{F}_{\mathrm{op}}^{r}:=\left\{f \in \mathcal{F}_{\mathrm{op}} \mid f(0) \neq 0\right\}, \quad \mathcal{F}_{\mathrm{op}}^{n}:=\left\{f \in \mathcal{F}_{\mathrm{op}} \mid f(0)=0\right\} .
$$

Obviously one has $\mathcal{F}_{\mathrm{op}}=\mathcal{F}_{\mathrm{op}}^{r} \cup \mathcal{F}_{\mathrm{op}}^{n}$ and $\mathcal{F}_{\mathrm{op}}^{r} \cap \mathcal{F}_{\mathrm{op}}^{n}=\varnothing$.
For $f \in \mathcal{F}_{\text {op }}^{r}$ and $x>0$, let

$$
\tilde{f}(x)=\frac{1}{2}\left[(x+1)-(x-1)^{2} \frac{f(0)}{f(x)}\right] .
$$

Then $\tilde{f} \in \mathcal{F}_{\mathrm{op}}^{n}$ and this gives the bijection between $\mathcal{F}_{\mathrm{op}}^{r}$ and $\mathcal{F}_{\mathrm{op}}^{n}$. For example, $\tilde{f}_{\mathrm{sd}}(x)=f_{\mathrm{rd}}(x)$ and hence

$$
\tilde{f}_{\mathrm{sd}}(x) \leq f(x) \leq f_{\mathrm{sd}}(x) .
$$

For $f, g \in \mathcal{F}_{\mathrm{op}}^{r}$,

$$
\begin{align*}
\tilde{f} \leq \tilde{g} & \Rightarrow \frac{1}{2}\left[(x+1)-(x-1)^{2} \frac{f(0)}{f(x)}\right] \leq \frac{1}{2}\left[(x+1)-(x-1)^{2} \frac{g(0)}{g(x)}\right] \\
& \Rightarrow \frac{f(0)}{f(x)} \geq \frac{g(0)}{g(x)} \\
& \Rightarrow \frac{f(x)}{f(0)} \leq \frac{g(x)}{g(0)} . \tag{3}
\end{align*}
$$

For each $f \in \mathcal{F}_{\mathrm{op}}$, we define the mean function $m_{f}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ by

$$
m_{f}(x, y)=y f\left(x y^{-1}\right) \text { for } x, y \in \mathbb{R}^{+} .
$$

For example, if $f(x)=f_{\mathrm{rd}}(x)=\frac{2 x}{1+x}$, then $m_{f}(x, y)=\frac{2 x y}{x+y}$ and if $f(x)=\frac{1+x}{2}$, then $m_{f}(x, y)=\frac{x+y}{2}$. By definition, for all $f, g \in \mathcal{F}_{\mathrm{op}}$ and $x, y \in \mathbb{R}^{+}$,

$$
f \leq g \Rightarrow m_{f}(x, y) \leq m_{g}(x, y)
$$

Thus, by (1), (2), we have for each $f \in \mathcal{F}_{\text {op }}$,

$$
\begin{align*}
& \frac{2 x y}{x+y} \leq m_{f}(x, y) \leq \frac{x+y}{2}, \tag{4}\\
& f(0)(x+y) \leq m_{f}(x, y) \leq \frac{x+y}{2} . \tag{5}
\end{align*}
$$

We may extend the mean function to $\mathbb{R}^{+} \cup\{0\}$ and we have for $f \in \mathcal{F}_{\text {op }}^{r}$,

$$
\begin{align*}
m_{\tilde{f}}(x, y) & =y \tilde{f}\left(x y^{-1}\right) \\
& =\frac{y}{2}\left[\frac{x}{y}+1-\left(\frac{x}{y}-1\right)^{2} \frac{f(0)}{f(x)}\right] \\
& =\frac{x+y}{2}-\frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)} \tag{6}
\end{align*}
$$

Proposition 1. Let $f \in \mathcal{F}_{\mathrm{op}}$. Then for each $x, y \in \mathbb{R}^{+}$such that $x-y \geq 0$, we have

$$
\begin{equation*}
\frac{x+y}{2}-m_{\tilde{f}}(x, y) \leq \frac{1}{2}(x-y) . \tag{7}
\end{equation*}
$$

Proof. By (6), $\frac{x+y}{2}-m_{\tilde{f}}(x, y)=\frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)}$ and by (2), we have $f(0)(x+y) \leq m_{f}(x, y)$. Thus,

$$
\begin{aligned}
\frac{1}{m_{f}(x, y)} \leq \frac{1}{f(0)(x+y)} & \Rightarrow \frac{f(0)}{2 m_{f}(x, y)} \leq \frac{1}{2(x+y)} \\
& \Rightarrow \frac{f(0)(x-y)}{2 m_{f}(x, y)} \leq \frac{x-y}{2(x+y)} \leq \frac{1}{2}
\end{aligned}
$$

and hence

$$
\frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)} \leq \frac{1}{2}(x-y)
$$

Proposition 2. For $f \in \mathcal{F}_{\text {op }}$, we have the following inequality:

$$
\begin{equation*}
f(0)^{2}(x-y)^{2} \leq \frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)} \frac{f(0)(x+y)^{2}}{2 m_{f}(x, y)} \tag{8}
\end{equation*}
$$

Proof. By (4), $\frac{1}{x+y} \leq \frac{1}{m_{f}(x, y)}$. Thus,

$$
f(0)(x+y) \leq \frac{f(0)(x+y)^{2}}{2 m_{f}(x, y)}
$$

and

$$
\begin{aligned}
\frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)} \frac{f(0)(x+y)^{2}}{2 m_{f}(x, y)} & \geq \frac{f(0)(x-y)^{2}}{2 m_{f}(x, y)} \cdot f(0)(x+y) \\
& \geq f(0)^{2}(x-y)^{2}
\end{aligned}
$$

3. Monotone Metrics and Covariances

For each $f \in \mathcal{F}_{\mathrm{op}}$, one may associate the monotone family of metrics on the manifold $\mathcal{D}_{n}[7,8]$. For $A, B \in \mathrm{M}_{n}^{\text {sa }}$ and $\rho \in \mathcal{D}_{n}^{1}$, the metric is defined by

$$
\langle A, B\rangle_{\rho, f}=\operatorname{Tr}\left(A m_{f}\left(L_{\rho}, R_{\rho}\right)(B)\right)
$$

where $L_{\rho}(A)=\rho A$ and $R_{\rho}(A)=A \rho$.

By extending operator monotone functions to complex analytic functions on a neighborhood of \mathbb{R}^{+}, one may have the Riesz-Dunford operator calculus (cf. [1]):

$$
f(\rho)=\frac{1}{2 \pi i} \int_{C} f(\xi)(\xi-\rho)^{-1} d \xi
$$

where the spectrum of ρ is contained in C. The operators L_{ρ} and R_{ρ} are positive definite with respect to the Hilbert-Schmidt inner product on M_{n}. Then

$$
f\left(L_{\rho}\right)=\int_{C} f(\xi)\left(\xi \operatorname{Id}-L_{\rho}\right)^{-1} d \xi
$$

and

$$
m_{f}\left(L_{\rho}, R_{\rho}\right)(B)=\frac{1}{(2 \pi i)^{2}} \iint_{C} m_{f}(\xi, \eta)(\xi-\rho)^{-1} B(\eta-\rho)^{-1} d \xi d \eta .
$$

Along the lines of [6], we have
Proposition 3. Let $\rho=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathcal{D}_{n}^{1}$ and $A, B \in \mathrm{M}_{n}^{\mathrm{sa}}$. Then for all $f \in \mathcal{F}_{\text {op }}$, we have

$$
\begin{equation*}
\langle A, B\rangle_{\rho, f}=\sum_{k, l=1} m_{f}\left(\lambda_{k}, \lambda_{l}\right)^{-1} A_{l k} B_{k l} . \tag{9}
\end{equation*}
$$

Proof. For $A \in \mathrm{M}_{n}$, we can write

$$
A=\sum_{i, j=1}^{n} A_{i j} E_{i j}
$$

where $E_{i j}$ is the $n \times n$ matrix which is all entries except (ij)-entry are zero. First we have

$$
\begin{align*}
\left\langle E_{i j}, E_{k l}\right\rangle_{\rho, f} & =\operatorname{Tr}\left(E_{i j} m_{f}\left(L_{\rho}, R_{\rho}\right)^{-1}\left(E_{k l}\right)\right. \\
& =\frac{1}{(2 \pi i)^{2}} \operatorname{Tr} \iint_{C} \frac{1}{m_{f}(\xi, \eta)} E_{i j}(\xi-\rho)^{-1} E_{k l}(\eta-\rho)^{-1} d \xi d \eta \\
& =\delta_{k j} \delta_{l i} \frac{1}{m_{f}(\xi, \eta)} \tag{10}
\end{align*}
$$

Since $A=\sum_{i, j=1}^{n} A_{i j} E_{i j}$ and $B=\sum_{k, l=1}^{n} B_{k l} E_{k l}$, we have

$$
\begin{aligned}
\langle A, B\rangle_{\rho, f} & =\sum_{i, j, k, l=1}^{n} \delta_{k j} \delta_{l i} \frac{1}{m_{f}(\xi, \eta)} A_{i j} B_{k l} \\
& =\sum_{k, l=1} A_{l k} B_{k l} m_{f}\left(\lambda_{k}, \lambda_{l}\right)^{-1} .
\end{aligned}
$$

For $A, B \in \mathrm{M}_{n}^{\text {sa }}$ and $\rho=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the covariance of A and B is defined by

$$
\begin{align*}
\operatorname{Cov}_{\rho}(A, B) & =\frac{1}{2} \operatorname{Tr}(\rho A B+\rho B A)-\operatorname{Tr}(\rho A) \operatorname{Tr}(\rho B) \\
& =\sum_{k, l=1}^{n} \frac{\lambda_{k}+\lambda_{l}}{2} A_{l k} B_{k l}-\operatorname{Tr}(\rho A) \operatorname{Tr}(\rho B) \\
& =\sum_{k, l=1}^{n} \frac{\lambda_{k}+\lambda_{l}}{2}\left[A_{0}\right]_{l k}\left[B_{0}\right]_{k l}, \tag{11}
\end{align*}
$$

where $A_{0}=A-\operatorname{Tr}(\rho A) I$. In what follows, we only consider the matrices satisfying $\operatorname{Tr}(\rho A)=0$. Let $\operatorname{Cov}_{\rho}(A, A)=V_{\rho}(A)$. Then by the CauchySchwarz inequality, we get

$$
V_{\rho}(A) V_{\rho}(B) \geq\left|\operatorname{Cov}_{\rho}(A, B)\right|^{2} .
$$

The Heisenberg uncertainty relation is given by

$$
V_{\rho}(A) V_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2}
$$

and the Schrödinger uncertainty relation is then

$$
V_{\rho}(A) V_{\rho}(B)-\left|\operatorname{Cov}_{\rho}(A, B)\right|^{2} \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2},
$$

where $[A, B]=A B-B A$.
For $f \in \mathcal{F}_{\text {op }}$, the quantum f-covariance of A and B, introduced in [5], is

$$
\begin{align*}
\operatorname{Cov}_{\rho}^{f}(A, B) & =\operatorname{Tr}\left(A m_{f}\left(L_{\rho}, R_{\rho}\right)(B)\right) \\
& =\sum_{k, l=1}^{n} m_{f}\left(\lambda_{k}, \lambda_{l}\right) A_{l k} B_{k l}, \tag{12}
\end{align*}
$$

where the local form of the quantum covariance can be obtained as in the proof of Proposition 2.

The antisymmetric f-covariance, which was given in [6], is defined as

$$
\begin{equation*}
I_{\rho}^{f}(A, B)=\frac{f(0)}{2}\langle i[\rho, A], i[\rho, B]\rangle_{\rho, f} . \tag{13}
\end{equation*}
$$

Proposition 4. For $A, B \in \mathrm{M}_{n}^{\mathrm{sa}}$ and $\rho=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathcal{D}_{n}^{1}$,

$$
\begin{equation*}
I_{\rho}^{f}(A, B)=\operatorname{Cov}_{\rho}(A, B)-\operatorname{Cov}_{\rho}^{\tilde{f}}(A, B) . \tag{14}
\end{equation*}
$$

Proof. Since $\rho=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, we have

$$
\begin{aligned}
I_{\rho}^{f}(A, B) & =\frac{f(0)}{2}\langle i[\rho, A], i[\rho, B]\rangle_{\rho, f} \\
& =\frac{f(0)}{2} \operatorname{Tr}\left([\rho, A] m_{f}\left(L_{\rho}, R_{\rho}\right)([\rho, B])\right. \\
& =\frac{f(0)}{2} \sum_{k, l=1}^{n}[\rho, A]_{k l}[\rho, B]_{l k} m_{f}\left(\lambda_{k}, \lambda_{l}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{f(0)}{2} \sum_{k, l=1}^{n} \frac{\left(\lambda_{k}-\lambda_{l}\right)^{2}}{m_{f}\left(\lambda_{k}, \lambda_{l}\right)} A_{l k} B_{k l} \\
& =\sum_{k, l=1}^{n} \frac{f(0)\left(\lambda_{k}-\lambda_{l}\right)^{2}}{2 m_{f}\left(\lambda_{k}, \lambda_{l}\right)} A_{l k} B_{k l} \\
& =\sum_{k, l=1}^{n}\left[\frac{\lambda_{k}+\lambda_{l}}{2}-m_{\tilde{f}}\left(\lambda_{k}, \lambda_{l}\right)\right] A_{l k} B_{k l} \\
& =\operatorname{Cov}_{\rho}(A, B)-\operatorname{Cov}_{\rho} \tilde{f}(A, B) .
\end{aligned}
$$

By Proposition 1, we get

$$
\begin{align*}
\left|I_{\rho}^{f}(A, B)\right| & =\left|\sum_{k, l=1}^{n} \frac{\lambda_{k}+\lambda_{l}}{2}-m_{\tilde{f}}\left(\lambda_{k}, \lambda_{l}\right)\right|\left|A_{l k}\right|\left|B_{k l}\right| \\
& \leq \frac{1}{2}\left|\sum_{k, l=1}^{n}\right| \lambda_{k}-\lambda_{l}| | A_{l k}| | B_{k l}| |=\frac{1}{2}|\operatorname{Tr}(\rho[A, B])| . \tag{15}
\end{align*}
$$

Finally, we improve the inequality given in [5].
Theorem 1. Let $A, B \in \mathrm{M}_{n}^{\mathrm{sa}}$ and $\rho=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathcal{D}_{n}^{1}$.
Suppose that $f, g \in \mathcal{F}_{o p}^{r}$ such that $\tilde{f} \leq \tilde{g}$. Then

$$
\operatorname{Cov}_{\rho}(A, B) \leq \frac{1}{2 f(0)} \operatorname{Cov}_{\rho}^{f}(A, B) \leq \frac{1}{2 g(0)} \operatorname{Cov}_{\rho}^{g}(A, B) .
$$

Proof. By (3), we have $\frac{f(x)}{f(0)} \leq \frac{g(x)}{g(0)}$ and by the property of mean function

$$
\frac{1}{f(0)} m_{f}(x, y) \leq \frac{1}{g(0)} m_{g}(x, y) .
$$

Thus, the second equality follows. By (2), $f(0)(1+x) \leq f(x)$. Thus,

$$
\frac{f(0)(1+x)}{2} \leq \frac{f(x)}{2} \Rightarrow \frac{(1+x)}{2} \leq \frac{f(x)}{2 f(0)}
$$

and hence the first inequality follows from

$$
\frac{x+y}{2} \leq \frac{m_{f}(x, y)}{2 f(0)}
$$

The symmetric f-covariance, which was introduced in [6], is given as

$$
\begin{equation*}
J_{\rho}^{f}(A, B)=\frac{f(0)}{2}\langle\{\rho, A\},\{\rho, B\}\rangle_{\rho, f}, \tag{16}
\end{equation*}
$$

where $\{A, B\}=A B+B A$. The local form of the symmetric f-covariance can written as

$$
\begin{equation*}
J_{\rho}^{f}(A, B)=\frac{f(0)}{2} \sum_{k, l=1}^{n} \frac{\left(\lambda_{k}+\lambda_{l}\right)^{2}}{m_{f}\left(\lambda_{k}, \lambda_{l}\right)} A_{l k} B_{k l} \tag{17}
\end{equation*}
$$

Now we prove the main theorem which can be seen as a Schrödinger type of uncertainty relation.

Theorem 2. Let $A, B \in \mathrm{M}_{n}^{\mathrm{sa}}$ and $\rho=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathcal{D}_{n}^{1}$. For all $f \in \mathcal{F}_{o p}^{r}$, we have

$$
f(0)^{2}\left|I_{\rho}^{f}(A, B)\right|^{2} \leq \frac{1}{4} I_{\rho}^{f}(A) J_{\rho}^{f}(B) .
$$

Proof. By (15) and Proposition 2,

$$
\begin{aligned}
& f(0)^{2}\left|I_{\rho}^{f}(A, B)\right|^{2} \\
\leq & \frac{1}{4} \sum_{k, l=1} f(0)^{2}\left|\lambda_{k}-\lambda_{l}\right|^{2}\left|A_{l k}\right|^{2}\left|B_{k l}\right|^{2} \\
\leq & \frac{1}{4} \sum_{k, l=1} \frac{f(0)\left(\lambda_{k}-\lambda_{l}\right)^{2}}{2 m_{f}\left(\lambda_{k}, \lambda_{l}\right)} \frac{f(0)\left(\lambda_{k}+\lambda_{l}\right)^{2}}{2 m_{f}\left(\lambda_{k}, \lambda_{l}\right)}\left|A_{l k}\right|^{2}\left|B_{k l}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{4} \sum_{k, l=1} \frac{f(0)\left(\lambda_{k}-\lambda_{l}\right)^{2}}{2 m_{f}\left(\lambda_{k}, \lambda_{l}\right)}\left|A_{l k}\right|^{2} \frac{1}{4} \sum_{k, l=1} \frac{f(0)\left(\lambda_{k}+\lambda_{l}\right)^{2}}{2 m_{f}\left(\lambda_{k}, \lambda_{l}\right)}\left|B_{k l}\right|^{2} \\
& \leq \frac{1}{4} I_{\rho}^{f}(A) J_{\rho}^{f}(B) .
\end{aligned}
$$

References

[1] J. Dittmann, On the curvature of monotone metrics and a conjecture concerning the Kubo-Mori metric, Linear Algebra Appl. 315 (2000), 83-112.
[2] S. Furuichi and K. Yanagi, Schrödinger uncertainty relation, Wigner-YanaseDyson skew information and metric adjusted correlation measure, J. Math. Anal. Appl. 388 (2012), 1147-1156.
[3] P. Gibilisco, D. Imparato and T. Isola, Uncertainty principle and quantum Fisher information II, J. Math. Phys. 59 (2007), 147-159.
[4] P. Gibilisco and T. Isola, Uncertainty principle and quantum Fisher information, Ann. Inst. Statist. Math. 48 (2007), 072109.
[5] P. Gibilisco and T. Isola, How to distinguish quantum covariances using uncertainty relations, J. Math. Anal. Appl. 384 (2011), 670-676.
[6] A. Lovas and A. Andai, Refinement of Robertson-type uncertainty principles with geometric interpretation, Int. J. Quantum Inf. 14 (2016), 1650013, 15 pp.
[7] D. Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. 244 (1996), 81-96.
[8] D. Petz and Cs. Sudár, Geometries of quantum states, J. Math. Phys. 37 (1996), 2662-2673.

