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Abstract

Current status data arises in survival analysis and reliability analysis,

when a continuous response is reduced to an indicator of whether the

response is greater or less than an observed random threshold value. In

this article, we study the accelerated failure time (AFT) model with

current status data. With empirical processes techniques, we prove that

the semiparametric least squares (SLS) estimators are consistent, with

convergence rates 31n  and 21n  for estimating the unknown error

distribution function and the unknown regression parameter,

respectively. Asymptotic normality and inference for the regression

parameter based on the weighted bootstrap are also investigated. A

simulation study is applied to evaluate the finite sample efficacy and

asymptotic properties. We analyze the California Partner Study data for

demonstration.

1. Introduction

Current status data (also known as case I interval censored data)
often arises in survival analysis and reliability analysis, where the target
measurement is the time of occurrence of some event, but observations
are limited to indicators of whether or not the event has occurred at the
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time the sample is collected: only the current status of each individual

with respect to event occurrence is observed. Such data are commonly
encountered in biomedicine, economics, biography and sociology.
Consider the tumorigenicitys study described in Hoel and Walburg [3].
144 RFM mice were assigned to either a germ-free or a conventional
environment. The purpose of this study was to investigate the
environmental effect on the incidence of lung tumors. Since lung tumors
cannot be observed before death in RFM mice, it is appropriate to treat
this data as current status data. Another example of current status data
is the partner study of HIV transmission, which will be discussed in
Section 4. For detailed discussions of the history and methodologies for
current status data, see Jewell and van der Laan [7].

Let Y and T denote the failure time of interest and the censoring

time, respectively. Then a data observation consists of ( ) ∈∆= ZTX ,,

{ } ,1,0 dRR ××+  where ( )TYI ≤=∆  indicates whether the event time of

interest Y has occurred or not at censoring time T and Z is a

d-dimensional real valued covariate. Previous study of semiparametric

models with current status data includes the nonlinear regression model
in Honda [4], the Cox model in Huang [5], the additive models in Lin,
Oakes and Ying [9] and the partly linear transformation model in Ma
[10]. In this article, we investigate the accelerated failure time (AFT)
model.

The AFT model has been of extensive interest (Shen [12], Abrevaya
[1], Aragon and Quiroz [2]) because of its simple format and successes
with data analysis. More precisely, the AFT model assumes

,ε+β′= ZY (1)

where β is the unknown regression parameter and ε has an unknown

distribution function F with support on .R  Another commonly used

version of the AFT model assumes ( ) ,log ε+β′= ZY  where the log

function can be replaced with other known monotone transformation
functions. See Klein and Moeschberger [8] for reference.

Linear regression with current status data has been studied by Shen
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[12] using a sieve approach. It is shown that ( )F,β  can be consistently

estimated. However, Shen [12] also points out that his approach suffers

from great computational complexities, especially for high dimensional

covariates or large sample size cases. As an alternative, rank based

estimator is investigated in Aragon and Quiroz [2] and Abrevaya [1].

With the rank estimator, only β can be estimated. Considering the

computational complexity of Shen’s approach and the interest in F in a

lot of data analysis (Jewell and Shiboski [6], Ma [10]), we study the

semiparametric least square (SLS) estimator in this article, which can fill

the gap between the rank estimator and the sieve estimator.

The goal is to develop (1) an estimation algorithm, with which ( )F,β

can be consistently estimated, (2) a computationally algorithm, which is

more efficient compared with Shen [12], and (3) an inference procedure

for the estimator of β. The motivations of this article come from the

following concerns. The best possible convergence rates for estimating β

and F are 21n  and ,31n  respectively. This has been observed in general

for current status data in van der Vaart [15]. It is of theoretical interest

to investigate the convergence rates and asymptotic behaviors of the

regression parameters for linear regression models. Secondly, since the

objective function is not the likelihood, estimation and inference results

in Huang [5], van der Vaart [15] and Murphy and van der Vaart [11] do

not apply. Thirdly, a computationally efficient algorithm is needed to

estimate F under the constraint that F is a distribution function.

The rest of the article is organized as follows. The SLS estimator is

proposed in Section 2, followed by the pseudo-information calculation,

consistency and convergence rates results. We also discuss asymptotic

distribution and inference for the estimator of β in the same section. In

Section 3, computational strategy is discussed and a small simulation

study is employed to evaluate the efficacy of the proposed estimator. We

apply the proposed approach to the analysis of the California Partner

Study (CPS) data in Section 4. Concluding remarks are in Section 4.

Proofs are provided in the Appendix.
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2. Semiparametric Least Squares Estimator

2.1. Estimation

Assume that there are n i.i.d. observations ( ) nXZTX ...,,,, 1111 δ=

( )nnn ZT ,, δ=  generated from model (1). Denote the true value of ( )F,β

as ( )., 00 Fβ  Since ( ),TYI ≤=∆  we have the identity ( ) ( ) =≤=∆ TYE Pr

( ) ( )( ).Pr 000 ZTFEZT β′−=β′−≤ε  Inspired by this, we consider the

following semiparametric least squares estimator ( )F
~

,β̂  of ( )00 , Fβ

defined by

( ) ( )( ) ,minarg
~

,ˆ

1

2
,













β′−−δ=β ∑
=

β

n

i
iiiF ZTFF (2)

under the constraint that F is a distribution function. Note that F
~

 is not

well defined out of [ { } { }].ˆmax,ˆmin iiii ZTZT β′−β′−  So in the downstream

analysis, we consider the modified SLS estimator ( )F̂,β̂  defined by

( )
( { }) { }
( { }) { }
( )








β′−<β′−
β′−>β′−

≡
otherwise.,

~
ˆmin,ˆmin

~
ˆmax,ˆmax

~

ˆ

uF

ZTuZTF

ZTuZTF

uF iiii

iiii

Other tail definitions can also be adopted. See Klein and Moeschberger

[8] for relevant discussions. The following data and model assumptions

are needed:

(A1) 10 B∈β  and ,2B∈Z  where 21, BB  are known compact subsets

of .dR  All components of 0β  are not equal to zero and 0β  is an interior

point of .1B

(A2) The censoring time T and event time Y are conditionally

independent given Z.

(A3) [ ],, ulT ττ∈  where .∞<τ<τ<∞− ul

(A4) ( ) 0=εE  and ( ) .var0 ∞<ε<  ε is independent of ( )., TZ
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(A5) (i) There exists a fixed ,0>M  such that

( ) .1 0 MZTFM <β′−<  (ii) F has first order derivative f bounded away

from 0.

Conditions A1-A4 are standard model assumptions for regression
models with current status data, as discussed in Huang [5] and Jewell
and van der Laan [7]. Condition A5 (i) is a crucial assumption for
properly controlling the size of the nonparametric estimator set. It also
guarantees that the partial derivatives are bounded away from 0. This
can be seen in the proof of Lemma 2 (in the Appendix). For most
distribution functions F with support on ,R  this can be achieved under

the boundedness assumptions A1 and A3. For theoretical proof and
computational purpose, the exact value of M is not needed. We only need
to assume 0F  is bounded away from 0 and 1. Condition A5 (ii) is a

technical assumption needed for the asymptotic consistency of our
estimators, as will be discussed in Section 2.3. Intuitively, this condition
assumes that the distribution of ZT 0β′−  is not too sparse for any finite

interval in the range of { }.ZT β′−  We allow negative T to incorporate

certain situations arising in liability analysis and transformation of
survival times.

It can be seen from the equation (2) that for any fixed β, the value F̂
is determined by the relative rank of the set { },ii ZT β′−  instead of the

actual values. So as for the rank estimators (Abrevaya [1]), for any finite

sample cases, the least squares estimator β̂  will usually be a finite

interval of unions of finite intervals instead of a single value. However, it
is expected that if the length of the intervals shrink at least at the rate of

( ),21 a
p nO −−  for a constant ,0>a  then asymptotic properties of β̂  will

not be affected. This can be achieved under the assumption A5 (ii). The

estimators F̂  are step functions with jumps at the observed ii ZT β′− ˆ

only. This is also observed in Huang [5].

2.2. Pseudo-information calculation

It is well known that for semiparametric models, it is not trivial to

estimate the regression parameters at the n  rate. For semiparametric

maximum likelihood estimators, van der Vaart [15] and van der Vaart
and Wellner [16] show that a necessary condition is to have non-singular



w
w

w
.p

ph
m

j.c
om

SHUANGGE MA58

information, which corresponds to inverse of the asymptotic variance
matrix. For semiparametric maximum likelihood estimators, the
information matrix is expressed in an efficient score function. The
efficient score functions are equal to the score functions of the regression
parameters minus the score functions of the nonparametric parameters,
evaluated at the least favorable directions. See van der Vaart [15] for
more discussions.

However, the results in van der Vaart [15] are not applicable here,

since the target function is not a likelihood. For the SLS estimator, proof

of Lemma 3 (in the Appendix) shows that we need to assume non-

singular “pseudo-information”, which still corresponds to the inverse of

the asymptotic variance matrix. However, the information explanation no

longer holds. Generally speaking, the pseudo-information cannot be

constructed with the projection approach. The pseudo-information can be

obtained as follows.

Consider a functional set A  composed of real valued differentiable

functions defined on ,R  where for any ,A∈a  ∫ = 0a  and for R∈t

small enough taF +0  is a distribution function. A  is the functional set

composed of “proper perturbations”. The properties of the sets of proper

to perturbations for maximum likelihood estimators have been discussed

in van der Vaart and Wellner [16]. Similar results hold for the

perturbation direction for the SLS estimator.

Denote ( )( ) .2ZTFm β′−−∆=  Then the first order partial

derivatives of m are ( )( ) ( )ZZTfZTFm β′−β′−−∆= 21  and ( ) =12 am

( ( )) ( ),2 1 ZTaZTF β′−β′−−∆−  evaluated at the direction .1 A∈a  The

second order partial derivatives are

( )( ) ( ( ) ( )( )),2 122
11 ZTfZTfZZTFm β′−−β′−β′−−∆=

( ) ( )( ) ( ( )( ) ( ) ( )),2 1
1

1112 ZTfZTaZTaZZTFam β′−β′−−β′−β′−−∆=

and

( ) ( )( ) ( )( ) ( )( ),2, 1
2

1
12122 ZTaZTaZTFaam β′−β′−β′−−∆=
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where in the above equations A∈21, aa  and the superscript “(1)”

denotes the first order derivatives of smooth functions.

Denote nP  and P as the empirical measure and the expectation,

respectively. Following the scheme for semiparametric maximum

likelihood estimators, we assume the special perturbation direction ∗a

for our SLS estimator satisfies [ ( ) ( )] 0,P 2212 =− ∗ aamam  for any ,A∈a

which is equivalent to ( ( )( ) ( ( ( ) ) )) .0P 1 =−−β′−−∆ ∗aaafaZZTF  ∗a

corresponds to the least favorable direction for the maximum likelihood
estimators. The pseudo-information is defined as

{ ( ( ))} 1
1211P −∗∗ −= ammI  [ ( )] { ( ( ))} .PP 1

1211
2

21
−∗∗ −−⋅ ammamm  As for the

maximum likelihood estimators, we need to assume

(I1) There exists ,A∈∗a  such that for any ,A∈a  (( ( −−∆ TFP

)) ( ( ( ) ) )) .01 =−−β′ ∗aaafaZZ

(I2) (Finite variance) ( ) ,det0 ∞<< ∗I  where det denotes the

determinant of a matrix.

In conditions I1 and I2, all the functions are evaluated at ( )., 00 Fβ

Similar information assumptions are made in Huang [5] and van der
Vaart and Wellner [16] for maximum likelihood estimators. Although

generally speaking checking the non-singularity of ∗I  is not trivial, it is
expected that for most encountered statistical models, the non-
singularity can be achieved under mild assumptions (see van der Vaart
and Wellner, [15] for reference).

2.3. Asymptotic results

Identifiability of the SLS estimators ( )F̂,β̂  can be proved in a similar

manner as in Shen [12]. The proof is omitted here. Regularity conditions
as those in Shen [12] are also needed for our estimators. We demonstrate
the uniqueness of our estimator schematically in Section 3 with a
simulation study. The asymptotic properties of the estimator in (2) can be
summarized into the following two lemmas. Denote LU  and UU  as the

maximum and minimum of the set { },0ZT β′−  respectively.
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Lemma 1 (Consistency and convergence rate). Under assumptions

A1-A5, it can be shown that ( ) ( ) ( ) =−+β−β=β−β 212
20

2
0200

ˆˆ,ˆ,ˆ FFFF

( ),31−nOp  where ⋅  is the usual 2L  norm in dR  and 2
20

ˆ FF −  is

defined as ( ( ) ( ))∫ εε−εU

L

U

U
dFF .ˆ 2

0

Note the 2L  norm on the subspace of F is only defined on the interval

where F is observable.

Lemma 1 shows that with the SLS estimator, we are able to estimate

( )00 , Fβ  consistently. As discussed in Huang [5], the best possible

convergence rate for estimating 0F  is ,31n  which can be achieved with

the SLS estimator. Ma [10] shows that uniform consistency of F̂  cannot

be achieved, unless stronger assumptions are made. The proof is

postponed to the Appendix. The key of the proof is that the asymptotic

behaviors of the M-estimators depend on the size of the parameter sets,

which can be measured with the entropy integrals. See van der Vaart and

Wellner [16] for more discussions on convergence rate results of

M-estimators. We now investigate the asymptotic distribution of .β̂

Lemma 2 (Asymptotic normality). Under assumptions A1-A5 and

I1-I2, it can be shown that ( ) ( ).,0ˆ 1
0

−∗→β−β INn d

Although F̂  only converges at the 31n  rate, Lemma 2 says β̂  is still

n  consistent and asymptotically normally distributed. The proof is

shown in the Appendix. The key is the Donsker properties of the partial

derivatives of the object function, in a neighborhood of the true values.

Inference for β̂  can be built based on the asymptotic normality result

given in Lemma 2. However, it can be seen that the asymptotic variance
1−∗I  takes a very complicated form. Plug-in estimators as in Huang [5]

will involve estimations of complicated nonparametric functionals, which

is computationally and theoretically difficult. As an alternative, we

consider the following weighted bootstrap.
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2.4. Inference

Denote nww ...,,1  as n i.i.d. random variables, satisfying ( ) 0,1=WE

( ) ∞<=< 0var vW  and ∞<<< Lw0  for known positive constants 0v

and L. Denote ( )∗∗β F
~

,ˆ  as the minimizer of the weighted sum of squared

errors, i.e.,

( ) ( )( ) .minarg
~

,ˆ

1

2













β′−−δ=β ∑
=

∗∗
n

i
iiii ZTFwF

∗F̂  can be defined accordingly, following the definition of .F̂

Lemma 3 (Validity of the weighted bootstrap). Under assumptions

A1-A5 and I1-I2, for the weighted least squares estimator ( ),ˆ,ˆ ∗∗β F  we

have:

( ) ( ).ˆ...,,ˆˆ
010 β−β→|β−β∗ nXXvn dn

This justifies the validity of the following weighted bootstrap

inference scheme. n i.i.d positive random weights are first generated.

Proper random weights distributions include, but are not limited to, the

truncated exponential distribution, the uniform distribution, and the

truncated Normal distribution. Then for each set of weights, the weighted

least squares estimator ∗β̂  can be computed. This procedure is repeated a

number of times, until the variance estimators become stable. After

proper scale adjust, the sample variance of ∗β̂  is a consistent estimator of

the variance of .β̂

The advantage of the weighted bootstrap is that estimation of

complicated functionals are not needed. Software used to maximize (2)

can be used to maximize the weighted sum, with only minor

modifications. One drawback of the weighted bootstrap is that multiple

computations are involved. The computational cost may be considerable

for large sample size cases.
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3. Numerical Study

3.1. Computational strategy

For simplicity, we consider the one dimensional case, where [ ]ul,∈β

with ∞<<<∞− ul  for known l and u. For any fixed [ ],,1 ul∈β  we

assume the order of { }ii ZT 1β−  is

( ) ( ) ( ) ( ) ( ) ( ),1212111 nn ZTZTZT β−<<β−<β− (3)

where ( ( ) ( ) )ii ZT ,  for ni ...,,1=  are paired observations from {( ),, ii ZT

}....,,1 ni =  As we increase (or decrease) the value of ,1β  there is a point

,1∗β  such that the order (3) no longer holds. We call points as ∗β1  the

switching points, where the order switches. Asymptotically under

assumption A5 (ii), the number of switching points is of order ,αn  where

.21 ≤α≤  The target function ( )( )∑ =
β′−−δn

i iii ZTF
1

2  is a constant

between any two adjacent switching points.

Computationally, we can search equally spaced over the interval

[ ]., ul  As long as the search scale is ( ),21−nop  the convergence rate of β

will not be affected. For each fixed β, the estimator for F can be computed
with the PAV (pooled-adjacent-violator) algorithm (Stout [13]). For

d-dimensional cases, we search over small rectangles of .dR  Since the

convergence rate for β cannot exceed 21n  in our case, as long as the

volume of the rectangles are of order ( ),21−nop  the asymptotic properties

of β̂  will not be affected. As can be seen from the proof of Lemma 2, we

can release the maximization condition to the nearly maximization
condition. This also justifies the searching procedure.

When the dimension of covariates increases, the computational
complexity increases at a rate much slower than that of Shen [12]. The
computational complexity of searching for β is of the same order as the
rank estimator. For simulated data with one dimensional covariates and
sample size equal to 500, it takes less than 30 seconds to compute the
SLS estimator.
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3.2. Simulation study

A small simulation study is employed to evaluate the finite sample
performance of the proposed estimator. We compare our estimator with
the rank based estimator in Abrevaya [1] numerically. Two censoring
scenarios as suggested in Abrevaya [1] are considered: continuously
distributed censoring and discretely distributed censoring. Again we
allow negative event and censoring “times” to incorporate liability data.

Continuous censoring. Consider the following Monte Carlo study

with continuously distributed censoring times. Assume ε is ( )1,0N

distributed, Z is ( )1,0N  the censoring is uniform [ ]5.3,5.3−  and .10 =β

The continuous outcome of interests is generated from model (1) and
independent of the censoring. We first show a plot of the empirical

minimums of the SLS target function for each fixed β (minimizer over F)

versus β under this scenario, based on sample size 500 and 200

realizations. The convexity of the empirical SLS target function, as
shown in Figure 1, justifies the uniqueness of the least square estimator
and our “search” approach.

Discrete censoring. Another case we investigate is the discrete

censoring. We consider an extreme case, where it is assumed 1−=T  or

1, each with probability .21  Other conditions are the same as for the

continuous censoring case.

We show comparison of the least squares estimators with the rank
based estimators in Table 1, under both censoring scenarios. We can see
that the proposed estimator yields satisfactory results for data sets with
sample size as small as 125. The sample standard deviations computed

from 200 realizations shrink at a reasonable rate, which supports the n

convergence rate result in Lemma 2. Since we estimate an infinite
dimensional parameter, computationally our estimator has larger sample
variances in general. In terms of bias and variance, our estimator is
comparable to the rank estimator, although an extra infinite dimensional

covariate is estimated simultaneously. The asymptotic normality of β̂

under two censoring scenarios is shown in Figure 1 with two histograms.

We also show the estimators of the unknown distribution function F in
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Figure 2, with comparisons to the true underlying distribution function.
The means of our estimators computed based on 200 realizations match
the unknown distribution function very well. Pointwise 95% confidence
intervals are also given.

4. CPS Data Analysis

One example of current status data arises naturally in the study of
infectious diseases, particularly when infection is an unobservable event,
that is one with often no or few clinical indications. The prototypical
example is infection with the Human Immunodeficiency Virus (HIV).
Consider the California Partner Study (CPS) of HIV infection (Jewell and
Shiboski [6]). The most straightforward partner study occurs when HIV
infection data is collected on both partners in a long-term sexual
relationship. These partnerships are assumed to include a primary
infected individual (called the index case) who has been infected via some
external source, and a susceptible partner who has no other means of

infection other than sexual contact with the index case. Suppose Y

denotes the time from infection of the infected case to the infection of the
susceptible partner, and that the partnership is evaluated at a single

time T after infection of the infected case. Then the infection status of the

susceptible partner provides current status data on Y at time T. A

schematic representation is available in Encyclopedia of Biostatistics.

The partial HIV partner dataset we analyze consists of 302
observations of partners with the male partners as the index cases. The
following data analysis is carried out with 295 complete records only. The
followup time for the 295 partners ranges from 0.08 year to 14.9 years. 55
partners developed HIV when monitored. The covariate effect of interest
is the average sexual contact rate. Previous study in Jewell and Shiboski

[6] suggests log transformation of the covariate.

We assume logβ=Y (sexual contact rate) ,ε+  and use the proposed

SLS estimator to estimate β and F, the distribution function of ε. The
weighted bootstrap with truncated exponential weights is used for

inference. We obtain ,6.5ˆ −=β  which is statistically significant at the

0.05 level. This result supports the common belief that sexual contacts
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increase the hazard of HIV transmission significantly. The estimated F̂
and its lowess smoother is shown in Figure 3.

5. Concluding Remarks

Current status data is studied in this article assuming the AFT
model. Empirical processes techniques are applied to prove the
convergence rates and asymptotic distribution results. An inference
procedure based on the weighted bootstrap is proposed. Simulation
studies and data analysis show the satisfactory numerical properties of
the proposed approach. We propose a new estimator for studying current
status data and show a way of adopting techniques applicable only to
maximum likelihood estimators to least squares estimators.

A natural extension of the present model is the nonlinear regression
model considered in Honda [4], where it is assumed that ( ) ,ε+= ZgY  for

an unknown function g. More generally, we can consider the partly linear
additive model, assuming ( ) .211 ε++β′= ZgZY  To avoid overfitting, we

usually make certain smoothness assumptions on g, for example ℑ∈g

{ ( ( ) ) },: 2∫ ∞<= mgg  i.e., the Sobolev space indexed by the order of

derivative m. Following the approach discussed above, we may consider

( ) ( )( )( ) .minargˆ,ˆ,ˆ

1

2
21













−β′−−δ=β ∑
=

n

i
iiii ZgZTFFg (4)

The key in investigating the estimator (4) is that the size of the
Sobolev space, which is measured with the entropy integral, is available.
Entropy calculations for the subspace ( )Fg,  can be found in van de Geer

[14]. It is expected that results similar to those in the current article can
be obtained.

The estimators of the distribution function F are step functions, with

jumps at { }.ˆ
ii ZT β′−  Practically speaking, it is possible to make stronger

assumptions on F, for example, F can be assumed to belong to a known
Sobolev space, or a well defined parametric subsets. With stronger

assumptions, it is possible to improve the convergence rates of .F̂

Similar discussions can be found in van de Geer [14].
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Appendix

We provide sketches of the proofs of Lemmas 1-3. Certain irrelevant

regularity conditions are omitted. Denote the set of distribution functions

satisfying condition A5 as .F  Define the norm 2⋅  on the set FB ×1  as

( ) ( ) ( ( ) ( )( ) ).,, 2
21

2
21

2
22211 εε−ε+β−β=β−β ∫ dFFFF U

L

U

U
 This is just

a natural extension of the 2L  norm.

Definition (Bracketing number). Given two functions l and u, the

bracket [ ]ul,  is the set of all functions f with .ufl ≤≤  An ε bracket is a

bracket [ ]ul,  with .ε<− ul  The bracketing number [ ]( )⋅ε ,, FN  is

the minimum number of ε brackets needed to cover .F  The entropy with

bracketing is the logarithm of the bracketing number. For a given norm

,⋅  define a bracketing integral of a class of functions F  as

[ ]( ) [ ]( )∫
δ

ε⋅ε+=⋅δ
0

,,,log1,, dFNJ FF   or (5)

Technical tool. Under conditions A1-A6, there exists a constant C

such that, for every ,0>η  and for ,1 FB ×  we have []( )21 ,,log ⋅×η FBN

.1







η

≤ C  For a proof, see Lemma 25.84 of van der Vaart [15].

Proof of Lemma 1.

Consistency. The parameter set for β is compact by assumption A1,
and the parameter set for F is compact relative to the weak topology.
Under certain mild regularity conditions as those in Shen [12], the
maximum of the target function is “well separated” in the sense defined
in van der Vaart [15]. Consistency for the semiparametric least squares
estimator can be obtained by the Argmax theorem in van der Vaart and
Wellner [16].

Convergence rate. We apply Theorem 3.2.1 of van der Vaart and
Wellner [16] here. ( )[ ]Fm ,P β  is maximized at 0β=β  and .0FF =  So its

first order partial derivatives at ( )00 , Fβ  are equal to 0. Considering the
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identifiability results shown in Shen [12] and the special format of 1m

and ,2m  we can combine the boundedness conditions A1 and A5 and get

( ) ( )[ ] ( ) ( ) ,,,,,P 2
200100 FFkFmFm β−β−≤β−β

for a positive constant 1k  in a small neighborhood of ( )., 00 Fβ  Thus

( ) ( )
( ) ( )[ ] .

4
,,Psup 21

00
,,2 200

η−≤β−β
η≤β−β≤η

k
FmFm

FF

With the results shown in the Technical tool and Lemma 3.2.2 of van
der Vaart and Wellner [16],

( ) ( )
( ) ( ) ( )( )FmFmPn n

FF
,,supP 00

,, 200

β−β−
η≤β−β

∗ P

( ) ,11 22

21
21










η
η+η= k

n
Op

for a positive constant 2k  and here ∗P  denotes the outer expectation.

Denote ( ) .1 22

21
21










η
η+η=ηφ k

n
n  Then ( ) ηηφn  is a decreasing

function, with ( ) ( ),3132 nOnn n =φ −  as .∞→n  Hence the conditions in

Theorem 3.2.1 of van der Vaart and Wellner [16] are satisfied. This

implies that ( ) ( ) ( ).ˆ,ˆ, 322
200

−=β−β nOFF p  So Lemma 1 holds.

Proof of Lemma 2. The asymptotic behaviors of β̂  are built on the

convergence rates results and the pseudo-information calculation. The
key is to investigate the Donsker properties of the empirical target
function in a small neighborhood of ( )., 00 Fβ  The maximization condition

in (2) can be released to the following “nearly maximization” condition.

[ ( )] ( ),ˆ,ˆ 21
1 noFm pn =βP   and  [ ( ) ( )] ( ).ˆ,ˆ 21

2 noFam pn =β∗P

For the estimators exactly maximize the target function, the ( )21−nop  in

the above equations can be replaced by 0. We also notice that

( )001 ,P Fm β  0=  and ( ) ( ) .0,P 002 =β∗ Fam
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Lemma 1 shows ( )31
0

ˆ −=β−β nOp  and ( ).ˆ 31
20

−=− nOFF p

Combining the entropy results in the Technical tool with Lemma 3.2.2 of

van der Vaart and Wellner [16], we can conclude for any 0→ηn  and

,01 >C

( ) ( ) ( )( ) ( )1,,Psup 0011
, 31

1200

pn
nCFF

oFmFmn
n

=β−β−
−≤−η≤β−β

P

and

( ) ( ( ) ( ) ( ) ( )) ( ).1,,Psup 0022
, 31

1200

pn
nCFF

oFamFamn
n

=β−β− ∗∗

≤−η≤β−β −
P

Combining the above equations, we can get the following identity

[ ( ) ( )] ( )1,ˆ,ˆ 0011 pn oFmFmn =β−βP

and

[ ( ) ( ) ( ) ( )] ( ).1,ˆ,ˆ 0022 pn oFamFamn =β−β ∗∗P (6)

From Taylor expansion, we have for nη≤β−β 0  and ≤− 0FF

,31
1

−nC

( ) ( ) ( ) ( )


 β−β×β−β−β 000110011 ,,,P FmFmFm

( ) ( ) ( ),, 2
200000

20

0
12 FFOoFFF

FF
FF

m pp −+β−β=




−×β







−
−

−

and

( ) ( ) ( ) ( ) ( ) ( ) ( )


 β−β×β−β−β ∗∗∗

000210022 ,,,P FamFamFam

( ) ( )0000
20

0
22 ,, β−β=



−×β








−
−

− ∗
poFFF

FF
FF

am

( ).2
20FFOp −+ (7)
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The equations (6) and (7) give

(a) ( ) ( ) ( ) 000
20

0
1200011 ,Pˆ,P FFF

FF
FF

mFm −×β







−
−

+β−β×β

( ) ( ) ( ) ( ),, 212
200001

−=−+β−β+β− noFFOoFm pppnP

and

(b) ( )( ) ( ) ( ) 000
20

0
2200021 ,,Pˆ,P FFF

FF
FF

amFam −×β







−
−

+β−β×β ∗∗

( )( ) ( ) ( ) ( )., 212
200002

−∗ =−+β−β+β− noFFOoFam pppnP (8)

Note that from the definition of the pseudo-information, we have

[ ( ) ( )] 0,P 2212 =− ∗aamam  for any .A∈a  So (8)(a) minus (8)(b) gives

[ ( ) ( ) ( )] ( ) ( )0000210011
ˆ,P,P β−β+β−β×β−β ∗

poFamFm

[ ( ) ( ) ( )] ( ).,, 21
002001

−∗ +β−β−= noFamFm pnP

So it follows that

( ) [ ( ) ( ) ( )] [ ( )001
1

002100110 ,,P,Pˆ FmFamFmn n ββ−β−=β−β −∗ P

( ) ( )] ( ).1, 002 poFam +β− ∗

Combining this result with the pseudo-information assumptions

I1-I2, we can conclude that Lemma 2 holds.

Proof of Lemma 3. First it can be seen that the entropy results

shown in the Technical tool also hold for the subspace ,Fw  where w

denotes the positive random weights discussed in Section 2.4. Since the

weights are independent of the data and ( ),, Fβ  we can conclude ( )wmP

( ).P m=  This result also holds for other functions of ( ).,, FXi β

Careful investigation of the proof of Lemma 2 shows that, if we

replace ( )⋅P  with ( ),P ⋅×w  and ( )⋅nP  with ( ),⋅×wnP  then all the

arguments hold. This leads to the conclusion that
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( ) [ ( ) ( ) ( )] [ ( ( )001
1

002100110 ,,P,Pˆ FmwFamFmn n ββ−β−=β−β −∗∗ P

( ) ( ))] ( ).1, 002 poFam +β− ∗

Considering the independence of w and ( ) ,var 0vw =  the above

results lead to the validity of the weighted bootstrap.

Acknowledgment

The author was supported in part by the MESA project funded by the
National Heart Lung and Blood Institute of the National Institutes of
Health. The author would like to thank Dr. Jason P. Fine (University of
Wisconsin) for several insightful discussions.

References

[1] J. Abrevaya, Rank regression for current status data: asymptotic normality,
Statistics and Probability Letters 43 (1999), 275-287.

[2] J. Aragon and A. J. Quiroz, Rank regression for current status data, Statistics and

Probability Letters 24 (1995), 251-256.

[3] D. G. Hoel and H. E. Walburg, Statistical analysis of survival experiments, J.

National Cancer Institute 49 (1972), 361-372.

[4] T. Honda, Nonparametric regression with current status data, Unpublished

Manuscript, 2002.

[5] J. Huang, Efficient estimation for the proportional hazard model with interval

censoring, The Annals of Statistics 24 (1996), 540-568.

[6] N. P. Jewell and S. C. Shiboski, Statistical analysis of HIV infectivity based on

partner studies, Biometrics 46 (1990), 1133-1150.

[7] N. P. Jewell and M. J. van der Laan, Current Status Data: Review, Recent

Developments and Open Problems, Technical Report, Department of Biostatistics,

University of California at Berkeley, 2002.

[8] J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques for Censored and

Truncated Data, Springer, 1997.

[9] D. Y. Lin, D. Oakes and Z. Ying, Additive hazards regression with current status

data, Biometrika 85 (1998), 289-298.

[10] S. Ma, Penalized M-estimations with Current Status Data, Ph.D. thesis, University

of Wisconsin, 2004.

[11] S. A. Murphy and A. W. van der Vaart, Semiparametric likelihood ratio inference,

Annals of Statistics 25 (1997), 1471-1509.



w
w

w
.p

ph
m

j.c
om

SEMIPARAMETRIC REGRESSION … 71

[12] X. Shen, Linear regression with current status data, JASA 95 (2000), 842-852.

[13] Q. F. Stout, Optimal algorithms for unimodal regression, Computing Science and

Statistics 32 (2000), 348-355.

[14] S. van de Geer, Empirical Processes in M-estimation, Cambridge University Press,

Cambridge, 2000.

[15] A. W. van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998.

[16] A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes:

with Applications to Statistics, Springer, New York, 1996.

Table 1. Comparison of sample mean and standard deviation (s.d.) of the
SLS (semiparametric least squares) estimator with the rank based
estimator. Based on 200 realizations

SLS Rank

Sample Size Mean (s.d.) Mean (s.d.)

Continuous Censoring 125 1.011 (0.278) 0.985 (0.219)

250 1.013 (0.189) 1.029 (0.153)

500 0.995 (0.126) 1.014 (0.099)

Discrete Censoring 125 1.033 (0.231) 1.018 (0.216)

250 1.015 (0.175) 1.002 (0.116)

500 1.002 (0.116) 0.998 (0.096)
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Figure 1. The histograms of 250β̂  for the semiparametric least squares

estimators under continuous and discrete censoring. Sample size is equal
to 250, with 200 realizations

Figure 2. The estimated distribution function of ε: the solid line is the

true (unknown) distribution function. The dashed lines are mean of
estimated distribution functions and corresponding pointwise 95%
confidence intervals. Sample size is equal to 250, based on 200
realizations. Left: continuous censoring. Right: discrete censoring
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Figure 3. Estimation of the error distribution function for the CPS data,
with its lowess smoother

g


