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Abstract 

This paper focuses on the model of dengue fever transmission and 
stability analysis with vector classification on aquatic and adult stages. 
The mathematical model is classified into the host (human) and vector 
(mosquito) population class. The host population splits into three 
subclasses: susceptible, infected and recovered. The vector population 
is divided into aquatic, susceptible and infected. Stability analysis is 
performed for the disease-free equilibrium and endemic equilibrium 
points. Basic reproduction number is used as a reference for 
determining the stability of disease-free. The numerical simulation 
based on Runge-Kutta is used to solve the problem. 
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1. Introduction 

Dengue is the most rapidly spreading mosquito-borne viral disease in the 
world [1]. In recent years, more than 55% of the world population live in 
areas at risk of dengue fever transmission, with over 50 million people 
infected and 20,000 deaths annually [2]. Dengue hemorrhagic fever (DHF) is 
one of health problems in the area of Southeast Asia and the Western Pacific. 
Asian continent obtained the first rank in the patient number of dengue         
fever annually [1]. Since 1968-2009, World Health Organization (WHO) 
considered that Indonesia is the country with the highest dengue cases in 
Southeast Asia. According to the Indonesian health profile in 2014, the 
number of dengue patients reported as many as 100,347 people with 907 
deaths [3]. 

The mathematical model of vector borne disease has been discussed in 
many researches such as Okosun et al. [4], Lashari et al. [5] and Kar and Jana 
[6]. Thome et al. discussed the optimal control of Aedes Aegypti mosquitoes 
by the male sterilization as a biological control and insecticide application 
[7]. Thome proposed a mathematical model which focused on the vector 
population only. Furthermore, Rodrigues et al. [8] proposed on the 
vaccination models and optimal control strategies to dengue. This research 
proposed two scenarios of vaccination: as a new compartment and a control 
variable. The mathematical model considered the vector population and 
human/host populations. Abdelrazec et al. [2] focused the optimal control on 
the limited space of dengue patients in the hospital. The mathematical model 
also considered the vector and human populations. The difference with 
Rodrigues et al. [8] was in the classification of vector population which was 
classified into the infectious and susceptible larvae. The other researches that 
concern in dengue issue are available in Feng and Velasco-Hernández [9], 
Esteva and Vargas [10], Pandey et al. [11], Aldila et al. [12] and Götz et al. 
[13]. 

This paper focuses on modeling and stability analysis of dengue 
spreading with vector classification on aquatic and adult stages. The 
reconstruction of dynamics system for dengue disease transmission is 
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discussed in Section 2. Subsequently the stability analysis of dengue disease 
models will be discussed in Section 3. The numerical simulation results using 
Runge-Kutta will be explained in Section 4. 

2. Mathematical Modeling 

The dynamics system is developed based on the host and the vector 
populations. The host population is composed of three subpopulations: ( )tSh  

is the susceptible host population at time t, ( )tIh  is the infected host 

population at time t, and ( )tRh  is recovered host population and is assumed 

to be resistant to dengue disease at time t. Furthermore, the vector population 
is classified into three subpopulations which include ( )tAv  for the aquatic 

vector population comprising eggs, larvae, and pupae at time ( )tSt v,  for the 

susceptible vector population at time t, and ( )tIv  for the infected vector 

population, vector who is infected with dengue virus at time t, thus it can 
transmit the disease to the host population. The dynamics model is given by 
the following system of ordinary differential equations: 

,111 hhv
h SSIbdt

dS
μ−α−=  (1a) 

,11 hhhv
h IISIdt

dI
γ−β−α=  (1b) 

,21 hh
h RIdt

dR
μ−β=  (1c) 

,32 vv
v AAbdt

dA
μ−η−=  (1d) 

 ,42 vhvv
v SISAdt

dS
μ−α−η=  (1e) 

.52 vhv
v IISdt

dI
μ−α=  (1f) 
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Equation (1a) denotes the dynamics of susceptible host. The susceptible 
host increased due to the birth rate 1b  and decreased by the natural death rate 

.1μ  If the population of susceptible host interacted with the infected vector, 

then there was an outbreak of dengue virus that caused infection in 
susceptible host. The decreasing of susceptible host due to the interaction 
with infected vector would cause the increasing of the infected host by 

.1 hvSIα  The dynamics of infected host is presented in equation (1b). The 

number of infected host decreased because of the death which is expressed 
by .1 hIγ  The death occurring in infected host is assumedly caused by 

dengue disease. Besides that, the dynamics of infected host may be reduced 
due to the healing rate, denoted in the form .1β  Furthermore, equation (1c) 

describes the dynamics of recovered host. The number of hR  increased 

because of many infected population who has experienced healing, expressed 
by .1 hIβ  In this study, recovered subpopulation is assumed resistant to 

dengue virus, thus the host’s life can only be affected by dengue disease once 
in a lifetime. Subsequently, the dynamics of aquatic vector in equation (1d) 
increased due to the birth rate of vector that is expressed in .2b  If η is the 

growth rate of the larvae becoming adult vectors, then the number of larvae 
that becomes adult vector is expressed in the form .vAη  Susceptible vector is 

the adult vector group that is susceptible to dengue virus. The interaction 
between susceptible vector and infected host causes the change rate of 
susceptible vector decreased. This interaction means that the vector 
susceptible is infected with dengue virus because vS  bites hI  that caused the 

dengue virus in the body of infected host transmit into the body of 
susceptible vector. If the transmission rate of it is denoted by ,2α  then the 

dynamics of susceptible vector is decreased by ,2 hvISα  while the dynamics 

of infected vector increased. The dynamics of susceptible and infected vector 
are shown in equations (1e)-(1f), respectively. The parameters ;1μ  ;2μ  ;3μ  

4μ  and 5μ  show the rate of natural mortality of subpopulations ;hS  ;hR  

;vA  vS  and ,vI  respectively. 
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3. Stability Analysis 

In this section, the stability analysis of dengue transmission model is 
discussed. This study focuses on the local stability around the equilibrium 
point. 

3.1. Equilibrium point 

The equilibrium point of dengue transmissions can be obtained when 

,0=dt
dSh  ,0=dt

dIh  ,0=dt
dRh  ,0=dt

dAv  ,0=dt
dSv  .0=dt

dIv  The stability 

analysis is proposed for disease-free and endemic cases. Disease-free is a 
condition that there is no spread of dengue disease in the population, which is 

.0== vh II  Thus, the disease-free equilibrium point is 
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3.2. Local stability 

It is known in advance that the disease-free equilibrium point is defined 
by .0E  The eigenvalues of the Jacobian matrix disease-free equilibrium point 
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( )0EJ  is obtained using the equation ( ) ,00 =λ− IEJ  which is 

 .065
2

4
3

3
4

2
5

1
6

0 =+λ+λ+λ+λ+λ+λ kkkkkkk  (2) 

If the roots of characteristic equation (2) have eigenvalues with        
negative real part, then the system is stable around the equilibrium             
point .0E  Furthermore, the Routh-Hurwitz criterion is used to determine   

the requirement for the system stability as follows: ;01 >k  ;3021 kkkk >  

;2131 lkkl >  ;2121 mllm >  2121 nmmn >  with 
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Asymptotic stability of 0E  also be guaranteed by 

( ) ( ) .1
13451

2211
0 <

γ+βμ+ημμμ
ηαα= bbR  

The basic reproduction number 0R  indicates the number of new infections 

which are caused by vI  and .hI  As a result, disease-free equilibrium point  

is asymptotically stable if .00 <R  Some parameters such as ,1b  ,2b  1α  

and 2α  can be used to estimate whether new infections will occur in the 

population. 

Furthermore, the stability of the endemic equilibrium point ∗
hE  is 

determined by finding the eigenvalues of the Jacobian matrix endemic 

equilibrium point ( ).∗
hEJ  The eigenvalue is obtained using the equation 

( ) 0=λ−∗ IEJ h  that is 
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For endemic case, the system will be stable around the equilibrium point 
∗
hE  if equation (3) has negative eigenvalues. Similarly, the requirement for 

the system stability is ;01 >p  ;3021 pppp >  ;2131 qppq >  ;2121 rqqr >  

2121 srrs >  with ,
1
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4. Numerical Solution 

In this section, the dynamics system is solved numerically using Runge-
Kutta method. Furthermore, the numerical simulation results are performed 
with the parameters as shown in Table 1 with initial values are (100, 25, 0, 
200, 80, 40). 

Table 1. Parameter values 
Parameter Value Parameter Value Parameter Value 

1b  0,2 η 0,25 γ 0,00001 

2b  0,6 3μ  0,032 2μ  0,006 

1μ  0,0003 1α  0,001 4μ  0,01 

1β  0,03 2α  0,001 5μ  0,02 

Figure 1 shows that the number of susceptible hosts decreased 
significantly since the beginning, while the number of infected hosts 
increased since the beginning until 20 days. However, between 20020 ≤≤ t  
days, the number of infected hosts decreased rapidly due to  the healing rate 

1β  greater than the transmission rate .1β  This caused the number of 

recovered increased until 90≤t  days. Furthermore, the susceptible, infected 

and recovered hosts were stable toward infinity ( ).days90≥t  In other 

words, the system was stable around the equilibrium points which were 

( ;4786;6;5940;18=∗
hE  ).3928;32  
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Figure 1 shows the dynamics of vector population. The growth rate         
of aquatic vector vA  decreased continuously since the beginning. This was 

caused by the birth rate of aquatic vector 2β  which was smaller than the 

transition rate from aquatic to susceptible vector η. Therefore, the susceptible 
vector increased since the beginning until 6<t  days. Nevertheless, for 

506 ≤≤ t  days, the susceptible vector declined continuously due to the 
high level of interaction between the susceptible vector and infected host. 
After 6≥t  days, the vector population was stable around the equilibrium 

point ( )4561,10;2792,32;1277,2=∗
hE  for the aquatic, susceptible and 

infected subpopulations, respectively. 

 
Figure 1. The dynamics of host and vector population. 

The dynamics of aquatic and susceptible vector with variation of the 
parameter η is given in Figure 2. Based on that figure, the bigger transition 
rate from aquatic vector to susceptible vector η, there is faster decrease in 
aquatic vector population. This condition caused the susceptible vector 
increased significantly. Subsequently, Figures 3 and 4 show the change rate 
of susceptible and infected population for host and vector with various 
parameters ( )., 21 αα  From this result, the greater ( )1α  will cause the 

susceptible host more rapidly decreased because many populations were 
infected by dengue disease. At the same time, when the transmission rate 1α  

is very high, the number of infected hosts increased significantly at the 
beginning time. Similarly, if the transmission rate 2α  is higher, then the 

number of susceptible vectors is more decreased, while the infected vector is 
more increased. 
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Figure 2. The dynamics of aquatic and susceptible vector with variation       
of η. 

 
Figure 3. The dynamics of susceptible and infected for host with variation  
of .1α  

 
Figure 4. The dynamics of susceptible and infected for vector with variation 
of .2α  

Figure 5 shows the illustration of basic reproduction number 0R  for 

infected host and vector population. It can be seen that, if ,10 >R  then the 

spreading of dengue disease will always exist. However, if ,10 <R  then        
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the infection of dengue disease will disappear. In other words, infected 
population for both of host and vector will be stable at zero. 

5. Conclusion 

The mathematical model of dengue spreading was classified into the host 
population and the vector population. The host population was divided into 
subpopulations that were susceptible ,hS  infected hI  and recovered .hR  

While the vector population was divided into subpopulations which were 
aquatic ,vA  susceptible vS  and infected .vI  Therefore, the mathematical 

model consisted of six ordinary differential equations that described the 
dynamics system of dengue transmission model. 

 

Figure 5. The dynamics of infected host and infected vector with .0R  

Furthermore, the model was analyzed for the stability at equilibrium 
point for disease-free and endemic cases. The stability of the system was 
determined by Routh-Hurwitz criteria. Moreover, this study also described 
the asymptotic stability of the equilibrium point using basic reproduction 
number .0R  Basic reproduction number ( )0R  increased if the parameters of 

host and vector population birth rate ( )21, bb  and transmission rate ( )21, αα  

increased. If ,10 <R  then the equilibrium point of disease-free existed        

and asymptotically stable. It means that the disease would disappear from  
the population. Whereas, if ,10 >R  then there was the equilibrium point and 

the system was asymptotically stable around it for endemic case. It means 
that every infected population could produce more than one new infected 
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population. Therefore, the infection of dengue would always spread and exist 
in the population. 
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