Far East Journal of Mathematical Sciences (FJMS)
© 2018 Pushpa Publishing House, Allahabad, India

WEAKLY p-RADICAL SUBMODULES OVER NON-COMMUTATIVE RINGS

Lamis J. M. Abu Lebda

Abu Dhabi University
Abu Dhabi, U. A. E.

Abstract

Some important results were found on weakly prime submodules over non-commutative rings. In this paper, we generalize these results on weakly primary submodules over non-commutative rings. We also introduce the concept of weakly p-radical submodule and study some properties of primary radical of a submodule and show that for an R-module M that satisfies the ACC on weakly p-radical submodules, every weakly p-radical submodule is the weakly p-radical of a finitely generated submodule.

1. Introduction

Throughout this paper, all rings are associative rings with identity and are not necessarily commutative and all modules are unitary right R-modules. Some work has previously been conducted related to concepts of prime submodules, including the concept of weakly prime submodules over non- commutative rings introduced and studied primarily by Callialp and Farzalipour in [7].

[^0]In particular, we refer to a number of papers concerning prime submodules which have been studied by various authors, see, for example [$9,11,12$]. Moreover, weakly prime ideals in a commutative ring with nonzero identity have been introduced and studied by Anderson and Smith in [2]. The structure of weakly primary ideals in a commutative ring has been studied by Atani and Farzalipour in [5]. The structure of weakly prime ideals over non-commutative rings has been studied by Hirano et al. [10].

The study of prime submodules is extended in many ways, such as weakly prime submodules, primary submodules, graded prime submodules, and n-absorbing submodules, see $[5,8,13,14]$. The motivation of this paper is to continue the study of the family of primary submodules, and also to extend the results of Atani and Farzalipour [5] and Smith [14] to the weakly primary submodules over non-commutative rings. In fact, a number of results concerning weakly primary submodules over non-commutative rings are also mentioned.

In Section 2, we introduce the definition of the weakly primary submodule. A proper submodule N of an R-module M is called a weakly primary submodule of M if whenever $r \in R$ and $m \in M$ with $r R m \subseteq N$, then either $m \in M$ or $r \in \sqrt{(N: M)}$.

We give some results about the weakly primary submodule and provide a characterization of weakly primary submodule as: a proper submodule N of an R-module M is weakly primary submodule of M if and only if for any ideal I of R and for any submodule K of M with $0 \neq I K \subset N$ either $I \subseteq \sqrt{(N: M)}$ or $K \subseteq N$. Also, it is shown in Theorem 2.9 that M_{1} and M_{2} are R-modules, with $M=M_{1} \oplus M_{2}$ and $N \subseteq M_{1} \oplus M_{2}$. Then if $N=K \oplus M_{2}$ (or $N=M_{1} \oplus K$) is a weakly primary submodule of M for some submodule K of M_{1}, then K is a weakly primary submodule of M_{1} (resp. K is a weakly primary submodule of M_{2}).

The concepts of primary radical of a submodule and the p-radical submodule over commutative rings have been introduced and studied by

Abulebda in [3]. In Section 3, we introduce the concept of weakly p-radical submodule over non-commutative rings as follows: let N be a submodule of an R-module M. If there exist weakly primary submodules containing N, then the intersection of all weakly primary submodules containing N is the weakly primary radical submodule of N, denoted by $\operatorname{wprad}(N)$. If there is no weakly primary submodule containing N, then $\operatorname{wprad}(N)=M$. In particular, $\operatorname{wprad}(M)=M$. We say that a submodule N is weakly p-radical submodule if $\operatorname{wprad}(N)=N$. We study some properties of primary radical of a submodule and show that for an R-module M that satisfies the ACC on weakly p-radical submodules, then every weakly p-radical submodule is the weakly p-radical of a finitely generated submodule.

Some results in this paper which will be identified by placing (*) sign at them are quite similar to some in [1].

2. Weakly Primary Submodule over Non-commutative Ring

The weakly prime submodules over non-commutative ring have been studied by Callialp and Farzalipour in [7].

Definition 2.1. Let M be a left R-module. A proper submodule N of M is called a weakly prime submodule of M if whenever $r \in R$ and $m \in M$ with $0 \neq r R m \subseteq N$, then either $m \in M$ or $r \in(N ; M)$.

Definition 2.2. Let R be an associative ring with identity and M be a unitary right R-module, and N be a submodule of M. Then $\sqrt{(N: M)}=\{r \in$ $R \mid r^{n} M \subseteq N$ for some positive integer $\left.n\right\}$ is called the radical of N over R.

Definition 2.3. Let M be a left R-module. A proper submodule N of M is called a primary submodule of M if whenever $r \in R$ and $m \in M$ with $r R m \subseteq N$, then either $m \in M$ or $r \in \sqrt{(N: M)}$.

Now we introduce the definition of the weakly primary submodule:

Definition 2.4. Let M be a left R-module. A proper submodule N of M is called a weakly primary submodule of M if whenever $r \in R$ and $m \in M$ with $0 \neq r R m \subseteq N$, then either $m \in M$ or $r \in \sqrt{(N: M)}$.

Remark 2.5. (a) Every weakly prime submodule is a weakly primary submodule. The converse is not true as in the following example:

Let $R=Z_{8} \oplus Z_{8}$ and M be an R-module as $M=\left(Z_{8} \oplus Z_{8}\right) \oplus$ $\left(Z_{8} \oplus Z_{8}\right)$ with addition and multiplication defined as:

$$
\begin{aligned}
& \left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)+\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \\
= & \left(\left(a_{1}+x_{1}, b_{1}+y_{1}\right),\left(a_{2}+x_{2}, b_{2}+y_{2}\right)\right), \\
& \left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \cdot(x, y)=\left(\left(a_{1} x, b_{1} y\right),\left(a_{2} x, b_{2} y\right)\right) .
\end{aligned}
$$

The submodule $L=\{(0,0),(0,0),(0,4),(0,0)\}$ is a weakly primary submodule but not a weakly prime submodule because $((0,2),(0,0)) \cdot(0,2)$ $\in L$ and neither $(0,2) \in(L: M)$ nor $((0,2),(0,0)) \in L$.
(b) Every primary submodule is a weakly primary submodule over R. The converse is not true as in the following example:

Let $R=Z_{4} \oplus Z_{4}$ and M be an R-module as $M=\left(Z_{4} \oplus Z_{4}\right) \oplus\left(Z_{4} \oplus Z_{4}\right)$ with addition and multiplication defined as:

$$
\begin{aligned}
& \left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)+\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \\
= & \left(\left(a_{1}+x_{1}, b_{1}+y_{1}\right),\left(a_{2}+x_{2}, b_{2}+y_{2}\right)\right), \\
& \left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \cdot(x, y)=\left(\left(a_{1} x, b_{1} y\right),\left(a_{2} x, b_{2} y\right)\right) .
\end{aligned}
$$

The submodule $L=\{(0,0),(0,0),(0,2),(0,0)\}$ is a weakly primary submodule but not a primary submodule because $((0,1),(0,0)) \cdot(1,0)=$ $0 \in L$ and neither $(1,0) \in \sqrt{(L: M)}$ nor $((0,1),(0,0)) \in L$.

The following theorem gives the condition that makes the weakly primary submodule primary:

Theorem 2.6*. Let M be an R-module. Let N be a weakly primary submodule of M. If $\sqrt{(N: M)} \cdot N \neq 0$, then N is a primary submodule of M.

Proof. Let $r \in R$ and $m \in M$ with $e R m \subseteq N$. If $r R m \neq 0$, then N is a weakly primary submodule giving $m \in N$ or $r \in \sqrt{(N: M)}$. So assume that $r R m=0$. If $0 \neq r N$, then $\exists x \in N$ such that $r x \neq 0$. Now, $0 \neq r R x=$ $r R(m+x) \subseteq N$, so N is a weakly primary submodule giving $(m+x) \in N$ or $r \in \sqrt{(N: M)}$, thus $m \in N$ or $r \in \sqrt{(N: M)}$.

Now we assume that $r N=0$.
Case 1. If $\sqrt{(N: M)} m \neq 0$, then $\exists k \in \sqrt{(N: M)}$ such that $k m \neq 0$. So $0 \neq k R m=(r+k) R m \subseteq N$. Also, $m \in N$ or $(r+k) \in \sqrt{(N: M)}$. Since $k \in \sqrt{(N: M)}$, we have $m \in N$ or $r \in \sqrt{(N: M)}$.

Case 2. $\sqrt{(N: M)} m=0$. Since $\sqrt{(N: M)} \cdot N \neq 0, \exists s \in \sqrt{(N: M)}$ and $t \in N$ such that $s t \neq 0$. Then $0 \neq s R t=(r+s) R(m+t) \subseteq N$ so $(m+t) \in N$ or $(r+s) \in \sqrt{(N: M)}$, thus $m \in N$ or $(r+s) \in \sqrt{(N: M)}$, thus $m \in N$ or $r \in \sqrt{(N: M)}$.

Corollary 2.7. Let M be an R-module. Let N be a weakly primary submodule of M. If N is not primary submodule, then for any ideal I of R such that $I \subseteq \sqrt{(N: M)}$, we have $I N=0$. In particular, $\sqrt{(N: M)} \cdot N=0$.

Now, we give a characterization of the weakly primary submodule:
Theorem 2.8*. Let M be an R-module. A proper submodule N of M is weakly primary submodule of M if and only if for any ideal I of R and for any submodule K of M with $0 \neq I K \subset N$ either $I \subseteq \sqrt{(N: M)}$ or $K \subseteq N$.

Proof. Suppose that N is a weakly primary submodule of M. If N is primary, then for any ideal I of R and for any submodule K of M with
$0 \neq I K \subset N$ either $I \subseteq \sqrt{(N: M)}$ or $K \subseteq N$ is trivial. So assume N is not primary submodule of M. Let $0 \neq I K \subset N$ with $x \in K-N$. Now let $r \in I$. If $0 \neq r R x$, since $r R x \subseteq N$ and N is a weakly primary submodule, so $r \in \sqrt{(N: M)}$, thus $I \subseteq \sqrt{(N: M)}$. Now, if $0=r R x$, assume that $r K \neq 0$, say $r k \neq 0$ for some $k \in K$. Now $0 \neq r R k \subseteq N$, then $r \in \sqrt{(N: M)}$. If $k \notin N$, then $r \in \sqrt{(N: M)}$. If $k \in N$, then $0 \neq r R k=r R(k+x) \subseteq N$, so $k+x \in N$ or $r \in \sqrt{(N: M)}$. Since $x \notin N, r \in \sqrt{(N: M)}$. So we can assume that $r K=0$. Suppose that $I x \neq 0$, and let $i x \neq 0$, where $i \in I$. Now, $0 \neq i R x \subseteq N$, then N is a weakly primary submodule giving that $i \in \sqrt{(N: M)}$. As $0 \neq i R x=(r+i) R x \subseteq N$, so $r \in \sqrt{(N: M)}$. Thus, we can assume $I x=0$ since $I K \neq 0, \exists i \in I$ and $k \in K$ such that $i k \neq 0$, now $0 \neq i R k \subseteq N$.

By Corollary 2.7, we have $\sqrt{(N: M)} \cdot N=0$ and $0 \neq i R k=i R(k+x)$ $\subseteq N$. If $i \in \sqrt{(N: M)}$ and $k+x \notin N$, since $0 \neq(r+i) R(k+x)=i R k \subseteq N$ we have $(r+i) \in \sqrt{(N: M)}$, and so $r \in \sqrt{(N: M)}$. Now if $i \notin \sqrt{(N: M)}$ and $k+x \in N$, since $0 \neq i R k \subseteq N$, we have $k \in N$, so $x \in N$, which is a contradiction. Therefore, $r \in \sqrt{(N: M)}$ thus $I \subseteq \sqrt{(N: M)}$.

Now, suppose for any ideal I of R and for any submodule K of M with $0 \neq I K \subset N$ either $I \in \sqrt{(N: M)}$ or $K \subseteq N$. To prove that N is a weakly primary submodule, assume that $s R m \subseteq N$, where $s \in R$ and $m \in M$. Let $I=R s$ and $K=R m$. So $0 \neq I K=R s R m \subseteq N$, so either $I \subseteq \sqrt{(N: M)}$ or $K \subseteq N$. Thus, $s \in \sqrt{(N: M)}$ or $m \in N$.

Theorem 2.9*. Let M_{1} and M_{2} be R-modules, $M=M_{1} \oplus M_{2}$ and let $N \subseteq M_{1} \oplus M_{2}$. Then if $N=K \oplus M_{2}\left(\right.$ or $\left.N=M_{1} \oplus K\right)$ is a weakly primary submodule of M for some submodule K of M_{1}, then K is a weakly primary submodule of M_{1} (resp. K is a weakly primary submodule of M_{2}).

Proof. Let $N=K \oplus M_{2}$ be a weakly primary submodule of $M=M_{1}$ $\oplus M_{2}$, let $0 \neq r R m_{1} \subseteq K$, where $r \in R$ and $m_{1} \in M$ such that $m_{1} \notin K$, then $\left(m_{1}, 0\right) \notin K \oplus M_{2}, \quad 0 \neq r R\left(m_{1}, 0\right) \subseteq K \oplus M_{2}$. Since $N=K \oplus M_{2}$ is a weakly primary submodule, there exists a positive integer n such that $r^{n}\left(M_{1} \oplus M_{2}\right) \subseteq K \oplus M_{2}$, hence $r^{n} M_{1} \subseteq K$ for some positive integer n. Thus, $r \in \sqrt{\left(K: M_{1}\right)}$. Thus, K is a weakly primary submodule of M_{1}.

3. Weakly p-radical Submodule over Non-commutative Ring

The weakly prime radical submodules over non-commutative ring have been introduced by Behboodi [6].

Definition 3.1. Let N be a submodule of an R-module M. If there exist weakly prime submodules containing N, then the intersection of all weakly prime submodules containing N is the weakly prime radical submodule of N, denoted by $\operatorname{wrad}(N)$. If there is no weakly prime submodule containing N, then $\operatorname{wrad}(N)=M$. In particular, $\operatorname{wrad}(M)=M$. We say that a submodule N is weakly radical submodule if $\operatorname{wrad}(N)=N$.

Now we introduce the concept of the weakly p-radical submodule.
Definition 3.2. Let N be a submodule of an R-module M. If there exist weakly primary submodules containing N, then the intersection of all weakly primary submodules containing N is the weakly primary radical submodule of N, denoted by $\operatorname{wprad}(N)$. If there is no weakly primary submodule containing N, then $\operatorname{wprad}(N)=M$. In particular, $\operatorname{wprad}(M)=M$.

We say that a submodule N is weakly p-radical submodule if $\operatorname{wrad}(N)=N$.

Proposition 3.3. It is clear that every weakly primary submodule is a weakly p-radical submodule.

Proof. Trivial.

Proposition 3.4. Let N and L be submodules of an R-module M. Then:
(1) $N \subseteq \operatorname{wprad}(N)$.
(2) If $N \subseteq L$, then $\operatorname{wprad}(N) \subseteq w \operatorname{prad}(L)$.
(3) $\operatorname{wprad}(N)$ is a weakly p-radical submodule, i.e., $\operatorname{wprad}(\operatorname{wprad}(N))$ $=\operatorname{wprad}(N)$.
(4) $\operatorname{wprad}(N \cap L) \subseteq \operatorname{wprad}(N) \cap \operatorname{wprad}(L)$.
(5) $\operatorname{wprad}(N+L)=\operatorname{wprad}(\operatorname{wprad}(N)+\operatorname{wprad}(L))$.

Proof. (1) Trivial.
(2) Let $N \subseteq L$ and let K be weakly primary submodule containing L. Then $N \subseteq K$, hence $\operatorname{wprad}(N) \subseteq \operatorname{wprad}(L)$.
(3) By (1), $N \subseteq w p r a d(N)$ and by (2), $w p r a d(N) \subseteq w p r a d(w p r a d(N))$. Let K be weakly primary submodule containing N. Then $\operatorname{wprad}(N) \subseteq$ $\operatorname{wprad}(K)=K$. So every weakly primary submodule containing N also contains $\operatorname{wprad}(N)$. Thus, $\operatorname{wprad}(\operatorname{wprad}(N)) \subseteq \operatorname{wprad}(N)$, therefore $\operatorname{wprad}(\operatorname{wprad}(N))=\operatorname{wprad}(N)$.
(4) Since $N \cap L \subseteq N$ and $N \cap L \subseteq L, \quad$ by (2), $\quad \operatorname{wprad}(N \cap L) \subseteq$ $\operatorname{wprad}(N)$ and $\operatorname{wprad}(N \cap L) \subseteq \operatorname{wprad}(L)$, therefore $\operatorname{wprad}(N \cap L) \subseteq$ $\operatorname{wprad}(N) \cap \operatorname{wprad}(L)$.
(5) By (1), $N+L \subseteq \operatorname{wprad}(N)+w p r a d(L)$ and by (2), $\operatorname{wprad}(N+L)$ $\subseteq \operatorname{wprad}(\operatorname{wprad}(N)+\operatorname{wprad}(L))$. Now let K be a weakly primary submodule containing $N+L$, then $N \subseteq K$ and $L \subseteq K$. Hence, $\operatorname{wprad}(N)$ $\subseteq \operatorname{wprad}(K)=K$ and $\operatorname{wprad}(L) \subseteq \operatorname{wprad}(K)=K$. Thus, $\operatorname{wprad}(N)+$ $\operatorname{wprad}(L) \subseteq K$. So every weakly primary submodule containing $N+L$ also contains $\operatorname{wprad}(N)+\operatorname{wprad}(L)$. Therefore,

$$
\operatorname{wprad}(\operatorname{wprad}(N)+\operatorname{wprad}(L)) \subseteq \operatorname{wprad}(N+L)
$$

So $\operatorname{wprad}(N+L)=\operatorname{wprad}(\operatorname{wprad}(N)+\operatorname{wprad}(L))$.
Proposition 3.5. Let N and L be submodules of an R-module M such that whenever $N \cap L \subseteq K$ we have $N \subseteq K$ or $L \subseteq K$ for any weakly primary submodule K of M. Then $\operatorname{wprad}(N \cap L)=\operatorname{wprad}(N) \cap \operatorname{wprad}(L)$.

Proof. By (4) of Proposition 3.4, $\quad \operatorname{wprad}(N \cap L) \subseteq \operatorname{wprad}(N) \cap$ $\operatorname{wprad}(L)$. Now if $\operatorname{wprad}(N \cap L)=M$, thus $\operatorname{wprad}(N)=\operatorname{wrad}(L)=M$ so $\operatorname{wprad}(N \cap L)=\operatorname{wprad}(N) \cap \operatorname{wrad}(L)$. If $\operatorname{wprad}(N \cap L) \neq M$, then there exists a weakly primary submodule K such that $N \cap L \subseteq K$. By hypotheses, $N \subseteq K$ or $L \subseteq K$ so that $\operatorname{wprad}(N) \subseteq K$ or $\operatorname{wprad}(L) \subseteq K$.

This is true for all weakly primary submodules containing $N \cap L$. Then $\operatorname{wprad}(N) \cap \operatorname{wprad}(L) \subseteq \operatorname{wprad}(N \cap L)$. Thus, $\operatorname{wprad}(N \cap L)=\operatorname{wprad}(N)$ $\bigcap w p r a d(L)$.

The following theorem gives a characterization of the weakly p-radical submodule of an R-module which satisfies the ACC on weakly p-radical submodules.

Theorem 3.6. Let M be an R-module. If M satisfies the ACC on weakly p-radical submodules, then every weakly p-radical submodule is the weakly p-radical of a finitely generated submodule.

Proof. Assume that there exists a weakly p-radical submodule N which is not the weakly p-radical of a finitely generated submodule. Let $n_{1} \in N$ and let $N_{1}=\operatorname{wprad}\left(n_{1} R\right)$. Then $N_{1} \varsubsetneqq N$ so there exists $n_{2} \in N-N_{1}$. Let $N_{2}=\operatorname{wprad}\left(n_{1} R+n_{2} R\right)$, then $N_{1} \varsubsetneqq N_{2} \varsubsetneqq N$. So there exists $n_{3} \in N-N_{2}$ etc. This gives an ascending chain of weakly p-radical submodules $N_{1} \varsubsetneqq N_{2} \varsubsetneqq N_{3} \varsubsetneqq \cdots$, which is a contradiction.

The following theorem comes directly from Proposition 3.4.

Theorem 3.7. If every weakly p-radical submodule is the weakly p-radical of a finitely generated submodule. Then every weakly primary submodule is the weakly p-radical of a finitely generated submodule.

Theorem 3.8. Let M be an R-module. The following statements are equivalent:
(1) For each proper submodule N of M, there exists $m \in N$ such that $\operatorname{wprad}(N)=\operatorname{wprad}(R m)$.
(2) For each proper submodule N of M, if $N \subseteq \bigcup_{\alpha \in \lambda} N_{\alpha}$, where $\left\{N_{\alpha}: \alpha \in \lambda\right\}$ is a family of submodules of M, then $N \subseteq \operatorname{wprad}\left(N_{\alpha^{\prime}}\right)$ for some $\alpha^{\prime} \in \lambda$.
(3) For each proper submodule N of M, if $N \subseteq \bigcup_{\alpha \in \lambda} N_{\alpha}$, where $\left\{N_{\alpha}: \alpha \in \lambda\right\}$ is a family of weakly primary radical submodules of M, then $N \subseteq N_{\alpha^{\prime}}$ some for $\alpha^{\prime} \in \lambda$.

Proof. (1) \Rightarrow (2) Let N be a proper submodule of M. If $N \subseteq \bigcup_{\alpha \in \lambda} N_{\alpha}$, where $\left\{N_{\alpha}: \alpha \in \lambda\right\}$ is a family of submodules of M. By (1), there exists $m \in N$ such that $\operatorname{wprad}(N)=\operatorname{wprad}(R m)$. So $m \in \bigcup_{\alpha \in \lambda} N_{\alpha}$ and hence $m \in N_{\alpha^{\prime}}$ some for $\alpha^{\prime} \in \lambda$. Therefore, $N \subseteq \operatorname{wprad}(N)=\operatorname{wprad}(R m) \subseteq$ $\operatorname{wprad}\left(N_{\alpha^{\prime}}\right)$ for some $\alpha^{\prime} \in \lambda$.
(2) \Rightarrow (3) Let N be a proper submodule of M. If $N \subseteq \bigcup_{\alpha \in \lambda} N_{\alpha}$, where $\left\{N_{\alpha}: \alpha \in \lambda\right\}$ is a family of weakly primary radical submodules of M. By (2), $N \subseteq \operatorname{wprad}\left(N_{\alpha^{\prime}}\right)$ for some $\alpha^{\prime} \in \lambda$. Since $N_{\alpha^{\prime}}$ is weakly primary radical submodule, $N \subseteq N_{\alpha^{\prime}}$ some for $\alpha^{\prime} \in \lambda$.
(3) \Rightarrow (1) Let N be a proper submodule of M. It is clear that for each $m \in N, \quad \operatorname{wprad}(\operatorname{Rm}) \subseteq \operatorname{wprad}(N)$. Now suppose that $\operatorname{wprad}(N) \nsubseteq$ $\operatorname{wprad}(\mathrm{Rm})$ for each $m \in N$. Then for each $m \in N$, there exists a weakly primary radical submodule N_{m} for which $R m \subseteq N_{m}$ and $N \not \subset N_{m}$. So $N=\bigcup_{m \in N} R m \subseteq \bigcup_{m \in N} N_{m}$ which is a contradiction to (3).

Acknowledgement

The author thanks the anonymous referees for their valuable suggestions and comments.

References

[1] A. Ashour and M. Hamoda, Weakly primary submodules over non-commutative rings, Journal of Progressive Research in Mathematics 7(1) (2016), 917-927.
[2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29(4) (2003), 831-840.
[3] L. J. M. Abulebda, The primary radical of a submodule, Advances in Pure Mathematics 2 (2012), 344-348.
[4] S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12(3) (2005), 423-429.
[5] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math. 38 (2007), 247-252.
[6] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113(3) (2003), 243-254.
[7] F. Callialp and F. Farzalipour, On weakly prime submodules, Tamkang J. Math. 38 (2007), 247-252.
[8] A. Y. Darani and F. Soheilnia, On n-absorbing submodules, Math. Commun. 17 (2012), 547-557.
[9] J. Dauns, Prime modules, J. Reine Angew Math. 2 (1978), 156-181.
[10] Y. Hirano, E. Poon and H. Tsutsui, On rings in which every ideal is weakly prime, Bull. Korean Math. Soc. 74(5) (2010), 1077-1087.
[11] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), 3593-3602.
[12] R. L. McCasland and M. E. More, Prime submodules, Comm. Algebra 20 (1992), 1803-1817.
[13] K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turkish J. Math. 35 (2011), 159-167.
[14] P. F. Smith, Primary modules over commutative rings, Glasgow Math. J. 43 (2001), 103-111.

[^0]: Received: July 23, 2017; Revised: September 24, 2017; Accepted: October 21, 2017
 2010 Mathematics Subject Classification: 13C05, 13C13.
 Keywords and phrases: primary submodule over non-commutative rings, weakly primary radical submodule over non-commutative rings, primary radical of a submodule over noncommutative ring.

