http://www.pphmj.com http://dx.doi.org/10.17654/MS103020299 Volume 103, Number 2, 2018, Pages 299-310

ISSN: 0972-0871

WEAKLY p-RADICAL SUBMODULES OVER NON-COMMUTATIVE RINGS

Lamis J. M. Abu Lebda

Abu Dhabi University Abu Dhabi, U. A. E.

Abstract

Some important results were found on weakly prime submodules over non-commutative rings. In this paper, we generalize these results on weakly primary submodules over non-commutative rings. We also introduce the concept of weakly *p*-radical submodule and study some properties of primary radical of a submodule and show that for an *R*-module *M* that satisfies the ACC on weakly *p*-radical submodules, every weakly *p*-radical submodule is the weakly *p*-radical of a finitely generated submodule.

1. Introduction

Throughout this paper, all rings are associative rings with identity and are not necessarily commutative and all modules are unitary right *R*-modules. Some work has previously been conducted related to concepts of prime submodules, including the concept of weakly prime submodules over non- commutative rings introduced and studied primarily by Callialp and Farzalipour in [7].

Received: July 23, 2017; Revised: September 24, 2017; Accepted: October 21, 2017 2010 Mathematics Subject Classification: 13C05, 13C13.

Keywords and phrases: primary submodule over non-commutative rings, weakly primary radical submodule over non-commutative rings, primary radical of a submodule over non-commutative ring.

In particular, we refer to a number of papers concerning prime submodules which have been studied by various authors, see, for example [9, 11, 12]. Moreover, weakly prime ideals in a commutative ring with nonzero identity have been introduced and studied by Anderson and Smith in [2]. The structure of weakly primary ideals in a commutative ring has been studied by Atani and Farzalipour in [5]. The structure of weakly prime ideals over non-commutative rings has been studied by Hirano et al. [10].

The study of prime submodules is extended in many ways, such as weakly prime submodules, primary submodules, graded prime submodules, and *n*-absorbing submodules, see [5, 8, 13, 14]. The motivation of this paper is to continue the study of the family of primary submodules, and also to extend the results of Atani and Farzalipour [5] and Smith [14] to the weakly primary submodules over non-commutative rings. In fact, a number of results concerning weakly primary submodules over non-commutative rings are also mentioned.

In Section 2, we introduce the definition of the weakly primary submodule. A proper submodule N of an R-module M is called a *weakly primary submodule* of M if whenever $r \in R$ and $m \in M$ with $rRm \subseteq N$, then either $m \in M$ or $r \in \sqrt{(N:M)}$.

We give some results about the weakly primary submodule and provide a characterization of weakly primary submodule as: a proper submodule N of an K-module M is weakly primary submodule of M if and only if for any ideal K of K and for any submodule K of K with K if K either K is a weakly primary submodule K of K with K is a weakly primary submodule of K of K is a weakly primary submo

The concepts of primary radical of a submodule and the p-radical submodule over commutative rings have been introduced and studied by

Abulebda in [3]. In Section 3, we introduce the concept of weakly p-radical submodule over non-commutative rings as follows: let N be a submodule of an R-module M. If there exist weakly primary submodules containing N, then the intersection of all weakly primary submodules containing N is the weakly primary radical submodule of N, denoted by wprad(N). If there is no weakly primary submodule containing N, then wprad(N) = M. In particular, wprad(M) = M. We say that a submodule N is weakly p-radical submodule if wprad(N) = N. We study some properties of primary radical of a submodule and show that for an R-module M that satisfies the ACC on weakly p-radical submodules, then every weakly p-radical submodule is the weakly p-radical of a finitely generated submodule.

Some results in this paper which will be identified by placing (*) sign at them are quite similar to some in [1].

2. Weakly Primary Submodule over Non-commutative Ring

The weakly prime submodules over non-commutative ring have been studied by Callialp and Farzalipour in [7].

Definition 2.1. Let M be a left R-module. A proper submodule N of M is called a *weakly prime submodule* of M if whenever $r \in R$ and $m \in M$ with $0 \neq rRm \subseteq N$, then either $m \in M$ or $r \in (N; M)$.

Definition 2.2. Let R be an associative ring with identity and M be a unitary right R-module, and N be a submodule of M. Then $\sqrt{(N:M)} = \{r \in R \mid r^n M \subseteq N \text{ for some positive integer } n\}$ is called the *radical* of N over R.

Definition 2.3. Let M be a left R-module. A proper submodule N of M is called a *primary submodule* of M if whenever $r \in R$ and $m \in M$ with $rRm \subseteq N$, then either $m \in M$ or $r \in \sqrt{(N:M)}$.

Now we introduce the definition of the weakly primary submodule:

Definition 2.4. Let M be a left R-module. A proper submodule N of M is called a *weakly primary submodule* of M if whenever $r \in R$ and $m \in M$ with $0 \neq rRm \subseteq N$, then either $m \in M$ or $r \in \sqrt{(N:M)}$.

Remark 2.5. (a) Every weakly prime submodule is a weakly primary submodule. The converse is not true as in the following example:

Let $R = Z_8 \oplus Z_8$ and M be an R-module as $M = (Z_8 \oplus Z_8) \oplus (Z_8 \oplus Z_8)$ with addition and multiplication defined as:

$$((a_1, b_1), (a_2, b_2)) + ((x_1, y_1), (x_2, y_2))$$

$$= ((a_1 + x_1, b_1 + y_1), (a_2 + x_2, b_2 + y_2)),$$

$$((a_1, b_1), (a_2, b_2)) \cdot (x, y) = ((a_1x, b_1y), (a_2x, b_2y)).$$

The submodule $L = \{(0, 0), (0, 0), (0, 4), (0, 0)\}$ is a weakly primary submodule but not a weakly prime submodule because $((0, 2), (0, 0)) \cdot (0, 2)$ $\in L$ and neither $(0, 2) \in (L : M)$ nor $((0, 2), (0, 0)) \in L$.

(b) Every primary submodule is a weakly primary submodule over R. The converse is not true as in the following example:

Let $R = Z_4 \oplus Z_4$ and M be an R-module as $M = (Z_4 \oplus Z_4) \oplus (Z_4 \oplus Z_4)$ with addition and multiplication defined as:

$$((a_1, b_1), (a_2, b_2)) + ((x_1, y_1), (x_2, y_2))$$

$$= ((a_1 + x_1, b_1 + y_1), (a_2 + x_2, b_2 + y_2)),$$

$$((a_1, b_1), (a_2, b_2)) \cdot (x, y) = ((a_1x, b_1y), (a_2x, b_2y)).$$

The submodule $L = \{(0, 0), (0, 0), (0, 2), (0, 0)\}$ is a weakly primary submodule but not a primary submodule because $((0, 1), (0, 0)) \cdot (1, 0) = 0 \in L$ and neither $(1, 0) \in \sqrt{(L : M)}$ nor $((0, 1), (0, 0)) \in L$.

The following theorem gives the condition that makes the weakly primary submodule primary:

Theorem 2.6*. Let M be an R-module. Let N be a weakly primary submodule of M. If $\sqrt{(N:M)} \cdot N \neq 0$, then N is a primary submodule of M.

Proof. Let $r \in R$ and $m \in M$ with $eRm \subseteq N$. If $rRm \neq 0$, then N is a weakly primary submodule giving $m \in N$ or $r \in \sqrt{(N:M)}$. So assume that rRm = 0. If $0 \neq rN$, then $\exists x \in N$ such that $rx \neq 0$. Now, $0 \neq rRx = rR(m+x) \subseteq N$, so N is a weakly primary submodule giving $(m+x) \in N$ or $r \in \sqrt{(N:M)}$, thus $m \in N$ or $r \in \sqrt{(N:M)}$.

Now we assume that rN = 0.

Case 1. If $\sqrt{(N:M)} m \neq 0$, then $\exists k \in \sqrt{(N:M)}$ such that $km \neq 0$. So $0 \neq kRm = (r+k)Rm \subseteq N$. Also, $m \in N$ or $(r+k) \in \sqrt{(N:M)}$. Since $k \in \sqrt{(N:M)}$, we have $m \in N$ or $r \in \sqrt{(N:M)}$.

Case 2. $\sqrt{(N:M)} m = 0$. Since $\sqrt{(N:M)} \cdot N \neq 0$, $\exists s \in \sqrt{(N:M)}$ and $t \in N$ such that $st \neq 0$. Then $0 \neq sRt = (r+s)R(m+t) \subseteq N$ so $(m+t) \in N$ or $(r+s) \in \sqrt{(N:M)}$, thus $m \in N$ or $(r+s) \in \sqrt{(N:M)}$, thus $m \in N$ or $r \in \sqrt{(N:M)}$.

Corollary 2.7. Let M be an R-module. Let N be a weakly primary submodule of M. If N is not primary submodule, then for any ideal I of R such that $I \subseteq \sqrt{(N:M)}$, we have IN = 0. In particular, $\sqrt{(N:M)} \cdot N = 0$.

Now, we give a characterization of the weakly primary submodule:

Theorem 2.8*. Let M be an R-module. A proper submodule N of M is weakly primary submodule of M if and only if for any ideal I of R and for any submodule K of M with $0 \neq IK \subset N$ either $I \subseteq \sqrt{(N:M)}$ or $K \subseteq N$.

Proof. Suppose that N is a weakly primary submodule of M. If N is primary, then for any ideal I of R and for any submodule K of M with

 $0 \neq IK \subset N$ either $I \subseteq \sqrt{(N:M)}$ or $K \subseteq N$ is trivial. So assume N is not primary submodule of M. Let $0 \neq IK \subset N$ with $x \in K - N$. Now let $r \in I$. If $0 \neq rRx$, since $rRx \subseteq N$ and N is a weakly primary submodule, so $r \in \sqrt{(N:M)}$, thus $I \subseteq \sqrt{(N:M)}$. Now, if 0 = rRx, assume that $rK \neq 0$, say $rk \neq 0$ for some $k \in K$. Now $0 \neq rRk \subseteq N$, then $r \in \sqrt{(N:M)}$. If $k \notin N$, then $r \in \sqrt{(N:M)}$. If $k \in N$, then $0 \neq rRk = rR(k + x) \subseteq N$, so $k + x \in N$ or $r \in \sqrt{(N:M)}$. Since $x \notin N$, $r \in \sqrt{(N:M)}$. So we can assume that rK = 0. Suppose that $Ix \neq 0$, and let $ix \neq 0$, where $i \in I$. Now, $0 \neq iRx \subseteq N$, then N is a weakly primary submodule giving that $i \in \sqrt{(N:M)}$. As $0 \neq iRx = (r+i)Rx \subseteq N$, so $r \in \sqrt{(N:M)}$. Thus, we can assume Ix = 0 since $IK \neq 0$, $\exists i \in I$ and $k \in K$ such that $ik \neq 0$, now $0 \neq iRk \subseteq N$.

By Corollary 2.7, we have $\sqrt{(N:M)} \cdot N = 0$ and $0 \neq iRk = iR(k+x)$ $\subseteq N$. If $i \in \sqrt{(N:M)}$ and $k+x \notin N$, since $0 \neq (r+i)R(k+x) = iRk \subseteq N$ we have $(r+i) \in \sqrt{(N:M)}$, and so $r \in \sqrt{(N:M)}$. Now if $i \notin \sqrt{(N:M)}$ and $k+x \in N$, since $0 \neq iRk \subseteq N$, we have $k \in N$, so $x \in N$, which is a contradiction. Therefore, $r \in \sqrt{(N:M)}$ thus $I \subseteq \sqrt{(N:M)}$.

Now, suppose for any ideal I of R and for any submodule K of M with $0 \neq IK \subset N$ either $I \in \sqrt{(N:M)}$ or $K \subseteq N$. To prove that N is a weakly primary submodule, assume that $sRm \subseteq N$, where $s \in R$ and $m \in M$. Let I = Rs and K = Rm. So $0 \neq IK = RsRm \subseteq N$, so either $I \subseteq \sqrt{(N:M)}$ or $K \subseteq N$. Thus, $s \in \sqrt{(N:M)}$ or $m \in N$.

Theorem 2.9*. Let M_1 and M_2 be R-modules, $M = M_1 \oplus M_2$ and let $N \subseteq M_1 \oplus M_2$. Then if $N = K \oplus M_2$ (or $N = M_1 \oplus K$) is a weakly primary submodule of M for some submodule K of M_1 , then K is a weakly primary submodule of M_1 (resp. K is a weakly primary submodule of M_2).

Proof. Let $N = K \oplus M_2$ be a weakly primary submodule of $M = M_1 \oplus M_2$, let $0 \neq rRm_1 \subseteq K$, where $r \in R$ and $m_1 \in M$ such that $m_1 \notin K$, then $(m_1, 0) \notin K \oplus M_2$, $0 \neq rR(m_1, 0) \subseteq K \oplus M_2$. Since $N = K \oplus M_2$ is a weakly primary submodule, there exists a positive integer n such that $r^n(M_1 \oplus M_2) \subseteq K \oplus M_2$, hence $r^nM_1 \subseteq K$ for some positive integer n. Thus, $r \in \sqrt{(K : M_1)}$. Thus, K is a weakly primary submodule of M_1 . \square

3. Weakly p-radical Submodule over Non-commutative Ring

The weakly prime radical submodules over non-commutative ring have been introduced by Behboodi [6].

Definition 3.1. Let N be a submodule of an R-module M. If there exist weakly prime submodules containing N, then the intersection of all weakly prime submodules containing N is the weakly prime radical submodule of N, denoted by wrad(N). If there is no weakly prime submodule containing N, then wrad(N) = M. In particular, wrad(M) = M. We say that a submodule N is $weakly \ radical \ submodule$ if wrad(N) = N.

Now we introduce the concept of the weakly *p*-radical submodule.

Definition 3.2. Let N be a submodule of an R-module M. If there exist weakly primary submodules containing N, then the intersection of all weakly primary submodules containing N is the weakly primary radical submodule of N, denoted by wprad(N). If there is no weakly primary submodule containing N, then wprad(N) = M. In particular, wprad(M) = M.

We say that a submodule N is weakly p-radical submodule if wprad(N) = N.

Proposition 3.3. It is clear that every weakly primary submodule is a weakly p-radical submodule.

D 6 T ' ' 1		\neg
Proof Irivial		- 1
Proof. Trivial.	L	

Proposition 3.4. *Let N and L be submodules of an R-module M. Then:*

- (1) $N \subseteq wprad(N)$.
- (2) If $N \subseteq L$, then $wprad(N) \subseteq wprad(L)$.
- (3) wprad(N) is a weakly p-radical submodule, i.e., wprad(wprad(N))= wprad(N).
 - (4) $wprad(N \cap L) \subseteq wprad(N) \cap wprad(L)$.
 - (5) wprad(N + L) = wprad(wprad(N) + wprad(L)).

Proof. (1) Trivial.

- (2) Let $N \subseteq L$ and let K be weakly primary submodule containing L. Then $N \subseteq K$, hence $wprad(N) \subseteq wprad(L)$.
- (3) By (1), $N \subseteq wprad(N)$ and by (2), $wprad(N) \subseteq wprad(wprad(N))$. Let K be weakly primary submodule containing N. Then $wprad(N) \subseteq wprad(K) = K$. So every weakly primary submodule containing N also contains wprad(N). Thus, $wprad(wprad(N)) \subseteq wprad(N)$, therefore wprad(wprad(N)) = wprad(N).
- (4) Since $N \cap L \subseteq N$ and $N \cap L \subseteq L$, by (2), $wprad(N \cap L) \subseteq wprad(N)$ and $wprad(N \cap L) \subseteq wprad(L)$, therefore $wprad(N \cap L) \subseteq wprad(N) \cap wprad(L)$.
- (5) By (1), $N + L \subseteq wprad(N) + wprad(L)$ and by (2), wprad(N + L) $\subseteq wprad(wprad(N) + wprad(L))$. Now let K be a weakly primary submodule containing N + L, then $N \subseteq K$ and $L \subseteq K$. Hence, wprad(N) $\subseteq wprad(K) = K$ and $wprad(L) \subseteq wprad(K) = K$. Thus, $wprad(N) + wprad(L) \subseteq K$. So every weakly primary submodule containing N + L also contains wprad(N) + wprad(L). Therefore,

 $wprad(wprad(N) + wprad(L)) \subseteq wprad(N + L).$

So wprad(N + L) = wprad(wprad(N) + wprad(L)).

Proposition 3.5. Let N and L be submodules of an R-module M such that whenever $N \cap L \subseteq K$ we have $N \subseteq K$ or $L \subseteq K$ for any weakly primary submodule K of M. Then wprad $(N \cap L) = wprad(N) \cap wprad(L)$.

Proof. By (4) of Proposition 3.4, $wprad(N \cap L) \subseteq wprad(N) \cap wprad(L)$. Now if $wprad(N \cap L) = M$, thus wprad(N) = wrad(L) = M so $wprad(N \cap L) = wprad(N) \cap wprad(L)$. If $wprad(N \cap L) \neq M$, then there exists a weakly primary submodule K such that $N \cap L \subseteq K$. By hypotheses, $N \subseteq K$ or $L \subseteq K$ so that $wprad(N) \subseteq K$ or $wprad(L) \subseteq K$.

This is true for all weakly primary submodules containing $N \cap L$. Then $wprad(N) \cap wprad(L) \subseteq wprad(N \cap L)$. Thus, $wprad(N \cap L) = wprad(N) \cap wprad(L)$.

The following theorem gives a characterization of the weakly p-radical submodule of an R-module which satisfies the ACC on weakly p-radical submodules.

Theorem 3.6. Let M be an R-module. If M satisfies the ACC on weakly p-radical submodules, then every weakly p-radical submodule is the weakly p-radical of a finitely generated submodule.

Proof. Assume that there exists a weakly p-radical submodule N which is not the weakly p-radical of a finitely generated submodule. Let $n_1 \in N$ and let $N_1 = wprad(n_1R)$. Then $N_1 \subsetneq N$ so there exists $n_2 \in N - N_1$. Let $N_2 = wprad(n_1R + n_2R)$, then $N_1 \subsetneq N_2 \subsetneq N$. So there exists $n_3 \in N - N_2$ etc. This gives an ascending chain of weakly p-radical submodules $N_1 \subsetneq N_2 \subsetneq N_3 \subsetneq \cdots$, which is a contradiction.

The following theorem comes directly from Proposition 3.4.

Theorem 3.7. If every weakly p-radical submodule is the weakly p-radical of a finitely generated submodule. Then every weakly primary submodule is the weakly p-radical of a finitely generated submodule.

Theorem 3.8. Let M be an R-module. The following statements are equivalent:

- (1) For each proper submodule N of M, there exists $m \in N$ such that wprad(N) = wprad(Rm).
- (2) For each proper submodule N of M, if $N \subseteq \bigcup_{\alpha \in \lambda} N_{\alpha}$, where $\{N_{\alpha} : \alpha \in \lambda\}$ is a family of submodules of M, then $N \subseteq wprad(N_{\alpha'})$ for some $\alpha' \in \lambda$.
- (3) For each proper submodule N of M, if $N \subseteq \bigcup_{\alpha \in \lambda} N_{\alpha}$, where $\{N_{\alpha} : \alpha \in \lambda\}$ is a family of weakly primary radical submodules of M, then $N \subseteq N_{\alpha'}$ some for $\alpha' \in \lambda$.

Proof. (1) \Rightarrow (2) Let N be a proper submodule of M. If $N \subseteq \bigcup_{\alpha \in \lambda} N_{\alpha}$, where $\{N_{\alpha} : \alpha \in \lambda\}$ is a family of submodules of M. By (1), there exists $m \in N$ such that wprad(N) = wprad(Rm). So $m \in \bigcup_{\alpha \in \lambda} N_{\alpha}$ and hence $m \in N_{\alpha'}$ some for $\alpha' \in \lambda$. Therefore, $N \subseteq wprad(N) = wprad(Rm) \subseteq wprad(N_{\alpha'})$ for some $\alpha' \in \lambda$.

 $(2)\Rightarrow (3)$ Let N be a proper submodule of M. If $N\subseteq \bigcup_{\alpha\in\lambda}N_{\alpha}$, where $\{N_{\alpha}:\alpha\in\lambda\}$ is a family of weakly primary radical submodules of M. By $(2),\ N\subseteq wprad(N_{\alpha'})$ for some $\alpha'\in\lambda$. Since $N_{\alpha'}$ is weakly primary radical submodule, $N\subseteq N_{\alpha'}$ some for $\alpha'\in\lambda$.

(3) \Rightarrow (1) Let N be a proper submodule of M. It is clear that for each $m \in N$, $wprad(Rm) \subseteq wprad(N)$. Now suppose that $wprad(N) \nsubseteq wprad(Rm)$ for each $m \in N$. Then for each $m \in N$, there exists a weakly primary radical submodule N_m for which $Rm \subseteq N_m$ and $N \not\subset N_m$. So $N = \bigcup_{m \in N} Rm \subseteq \bigcup_{m \in N} N_m$ which is a contradiction to (3).

Acknowledgement

The author thanks the anonymous referees for their valuable suggestions and comments.

References

- [1] A. Ashour and M. Hamoda, Weakly primary submodules over non-commutative rings, Journal of Progressive Research in Mathematics 7(1) (2016), 917-927.
- [2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29(4) (2003), 831-840.
- [3] L. J. M. Abulebda, The primary radical of a submodule, Advances in Pure Mathematics 2 (2012), 344-348.
- [4] S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12(3) (2005), 423-429.
- [5] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang J. Math. 38 (2007), 247-252.
- [6] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113(3) (2003), 243-254.
- [7] F. Callialp and F. Farzalipour, On weakly prime submodules, Tamkang J. Math. 38 (2007), 247-252.
- [8] A. Y. Darani and F. Soheilnia, On *n*-absorbing submodules, Math. Commun. 17 (2012), 547-557.
- [9] J. Dauns, Prime modules, J. Reine Angew Math. 2 (1978), 156-181.
- [10] Y. Hirano, E. Poon and H. Tsutsui, On rings in which every ideal is weakly prime, Bull. Korean Math. Soc. 74(5) (2010), 1077-1087.

- [11] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), 3593-3602.
- [12] R. L. McCasland and M. E. More, Prime submodules, Comm. Algebra 20 (1992), 1803-1817.
- [13] K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turkish J. Math. 35 (2011), 159-167.
- [14] P. F. Smith, Primary modules over commutative rings, Glasgow Math. J. 43 (2001), 103-111.