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Abstract 

We aim to establish certain image formulas of the generalized 
Lommel-Wright function for the fractional differentiation operators 
having Appell’s function ( )⋅3F  as a kernel. Also, we present some 

image formulas of the resulting identities for some integral transforms. 
The results presented here, being very general, are pointed out to be 
specialized to yield a number of results involving relatively simple 
fractional differentiation operators and simpler extensions of the 
Bessel function and the Struve function, including their numerous 
limiting cases. 
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1. Introduction and Preliminaries 

During the last four decades or so, the fractional calculus has found 
many applications in diverse research areas (see, e.g., [2, 3, 18, 19, 21, 26, 
27]). The fractional differential operators involving various special functions 
have found significant importance and applications in diverse research       
fields of applicable mathematical analysis. Beginning with [15], a number        
of fractional differentiation operators involving various extensions of the 
hypergeometric function have been introduced and investigated (see, e.g., [4, 
14, 16, 19, 21, 27]). A useful generalization of the hypergeometric fractional 
differentiation, including the Saigo operators [15, 16], has been introduced 
by Marichev [9] (for details, see [18, p. 194, eq. (10.47) and Section 10.3]) 
and later extended and studied by Saigo and Maeda [17, p. 393, Eq. (4.12) 
and Eq. (4.13)] in terms of any complex order whose kernel is the following 
Appell function ( )⋅3F  of two variables (see, e.g., [5] and [24, p. 23]): 
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Let C∈γβ′βα′α ,,,,  with ( ) 0>γR  and .+∈ Rx  Then the generalized 

fractional integral operators involving the Appell hypergeometric function 

3F  as a kernel are defined as follows (see [17]): 
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Here and in the following, let ,C  ,R  ,+R  N  and −
0Z  denote the sets of 

complex numbers, real numbers, positive real numbers, positive integers and 
non-positive integers, respectively. Also, the generalized fractional derivative 
operators of a function ( )xf  are defined as follows (see [17]): 
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where ( ) 0>γR  and ( )[ ] .1: +γ= Rk  The Appell function (1.1) in (1.4) and 

(1.5) satisfies a system of two partial differential equations of the second 
order and reduces to the Gauss hypergeometric function 12 F  as follows (see, 

e.g., [5] and [24]): 

( ) ( ).;;,;;;,,, 123 xyyxFyxF −+γβα=γβ−γβα−γα  (1.6) 

Further, we have 

 ( ) ( )xFyxF ;;,;;;,,0, 123 γβα=γβ′βα  (1.7) 

and 

 ( ) ( ).;;,;;;,,,0 123 yFyxF γβ′α′=γβ′βα′  (1.8) 

In view of (1.7), the general operators (1.2) and (1.3) reduce to the Saigo 
operators 
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and 
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Also, the left- and right-sided Saigo fractional derivative operators can be 
defined as (see, e.g., [15] and [25]): 
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where ( ) 0≥αR  and ( )[ ] .1+α= Rn  Taking ,0=α  the operators (1.4) 

and (1.5) reduce to the Saigo fractional derivative operators (1.11) and 
(1.12), respectively. 

Setting ,α−=β  the operators (1.11) and (1.12) reduce to the Riemann-

Liouville fractional derivative operator and the Weyl fractional derivative 
operator as follows (see, e.g., [6]): 
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where ( ) 0, ≥α∈ + RRx  and ( )[ ] .1: +α= Rn  
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Taking ,0=β  the operators (1.11) and (1.12) reduce to left- and right-

sided Erdélyi-Kober fractional differential operators, respectively (see, e.g., 
[6]) 
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where ( ) 0, ≥α∈ + RRx  and ( )[ ] .1: +α= Rn  

The generalized fractional integral operators (1.2) and (1.3) of a power 
function are given, respectively, as follows (see, e.g., [17, 19]): 
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The Beta transform of complex valued function ( )zf  of real variable z is 

defined as follows (see, e.g., [20]): 

( ){ } ( ) ( ) ( ) ( ){ }( )∫ >−= −−1

0
11 ,0,min1,: badzzfzzbazfB ba RR  (1.19) 

whose particular case when ( ) 1=zf  reduces to the familiar Beta function 

(see, e.g., [23, p. 8, equation (43)]) 
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Then Beta transform of power function 1−ρz  is given as 
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The δP -transform of a complex valued function ( )zf  of a real variable  

z denoted by ( )[ ]szfP ;δ  is a function ( )sF  of a complex variable s, valid 

under certain conditions on ( )zf  (see Lemma 1.1 below), is defined as 

follows (see [8]): 
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Lemma 1.1. Let ( )zf  be integrable over any finite interval ( )ba,  with 
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The δP -transform of 1−ρz  is given by 
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Recently, Agarwal et al. [1] have found the solution of fractional 
Volterra integral equation and non-homogeneous time fractional heat 
equation using integral transform of pathway type and δP -transform. Also, 

Srivastava et al. [22] have presented some results involving generalized 
hypergeometric function by using δP -transform. 

Taking the limit in (1.22) as ,1+→δ  we find that the δP -transform 

reduces to the Laplace transform (see, e.g., [20]): 
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The following relationship holds true between the δP -transform in (1.22) 

and the Laplace transform in (1.24): 
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The relations (1.25) and (1.26) can be applied to convert the table of Laplace 
transforms into the corresponding table of δP -transforms and vice versa. 

We need to recall the following integral formula involving the Whittaker 
function (see, e.g., [10, p. 56]): 
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Here ( )zW ησ,  is the Whittaker function defined by (see, e.g., [10, p. 22]) 
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Oteiza et al. [11] introduced and investigated the generalized Lommel-

Wright function ( ),,
, zJ mμ
λν  as a further (4-indices) generalization of the 

Bessel and Bessel-Maitland (Wright) functions, as follows: 
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where qpΨ  denotes the Fox-Wright generalized hypergeometric function 

defined by (see, e.g., [24, p. 21]; see also [6, p. 56 et seq.]) 
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where the coefficients +∈ RpAA ...,,1  and +∈ RqBB ...,,1  such that 
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The special case 1=m  of the generalized Lommel-Wright function 
(1.30) reduces to the generalization of the Bessel function introduced by 
Pathak [13] (see also [7, p. 353]): 
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Setting 1,1 =μ=m  and 2
1=λ  in (1.30), we obtain the Struve function 

( )⋅νH  (see, e.g., [10, p. 28, eq. (1.170)]) 

( )
( )

∑
∞

=

+ν

ν
⎟
⎠
⎞⎜

⎝
⎛ +ν+Γ⎟

⎠
⎞⎜

⎝
⎛ +Γ

⎟
⎠
⎞⎜

⎝
⎛−

⎟
⎠
⎞⎜

⎝
⎛==

0

2
1

1,1
21,

2
3

2
3

21

2
k

k
k

v
kk

z
zJzH  

( ( ] ).,0,\ CC ∈ν∞−∈z  (1.34) 

Taking ,1=m  1=μ  and 0=λ  in (1.30), we get the Bessel function 

(see, e.g., [10, p. 27, eq. (1.161)]) 
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The generalized Lommel-Wright function ( )zJ m,
,
μ
λν  and their special 

cases ( ),zJμν  ( ),, zJμ λν  depending on the arbitrary fractional parameter 

,+∈μ R  present fractional order extensions of the Bessel function ( )zJν  

and as such, are closely related to fractional order analogues of the Bessel 
operators and fractional order equations and systems modeling numerous real 
world phenomena arising in applied science (see, e.g., [12, 14]). 



Sonal Jain and Junesang Choi 262 

In this paper, we aim to present certain image formulas of the generalized 
Lommel-Wright function for the fractional differentiation operators having 
Appell’s function ( )⋅3F  as a kernel. Also, we give some image formulas of 

the resulting identities for some integral transforms. 

2. Image Formulas Associated with Fractional Derivative Operators 

Here, we establish image formulas of the generalized Lommel-Wright 
function for the Saigo-Meada fractional derivative operators (1.4) and (1.5), 
which are expressed in terms of the Fox-Wright function. 

Theorem 2.1. Let ,, +∈μ Rx  ,N∈m  and ( ].0,\ ∞−∈ Cz  Also, let 
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Proof. Applying the fractional derivative (1.4) to the function (1.30) and 
changing the order of integration and summation, which is justified under the 
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conditions here, we get 
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where A is given in (2.3). Expressing the summation in the right side of (2.5) 
in view of (1.31), we obtain the result (2.2). 

Theorem 2.2. Let ,, +∈μ Rx  ,N∈m  and ( ].0,\ ∞−∈ Cz  Also, let 
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Then 
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Proof. Here, by applying (1.5), as in the proof of Theorem 2.1, we can 

get the result (2.7). We omit the details.  

3. Image Formulas Associated with Integral Transforms 

Here, we present Beta transform and δP -transform formulas of the 

fractional derivatives in Theorems 2.1 and 2.2, which are asserted in 
Theorems 3.1, 3.2, 3.3 and 3.4. We also establish certain integral formulas 
for Whittaker transforms of the fractional derivatives in Theorems 2.1 and 
2.2, which are given in Theorems 3.5 and 3.6. Similarly, as in Section 2, by 
choosing to use appropriate operators and formulas, we can prove the results 
in this section. So we omit the involved proofs. 

Theorem 3.1. Let +∈μ R,x  and .N∈m  Also, let ,,,,,,, γβ′βα′αba  

C∈λνρ z,,,  be such that ( ) ( ) ( ) ( ) ( ){ } ,0,,,min,1 >γ−>ν zba RRRRR  and 

 ( ) ( ) ( ){ }.,,0max α−ββ′−α′−α−γ>ν+ρ RRR  (3.1) 
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Then 

{[ ( )]( ) }baxztJtDB m ,:,
,

1,,,,
0

μ
λν

−ργβ′βα′α
+  

( )
λ+ν

−γ−α′+α+ Γ
= 2

1

2
bx A

 

( ) ( )
( ) ( ) ( )⎢
⎢

⎣

⎡

β′+α+γ−α′+α+γ−β−
β′+α′+α+γ−

Ψ× + ,2,,2,,2,
,2,,2,

55 AAA
AA

m  

( ) ( ) ( )
( ) ( ) ( ) ,4;1,1,2,,,1

;1,1,2,,2, 2

times
⎥
⎥

⎦

⎤
−+λμ+λ+ν

−α+β−

−

x
C

bCA

m

 (3.2) 

where A is given in (2.3) and 

 .2: λ+ν++= baC  (3.3) 

Theorem 3.2. Let +∈μ R,x  and .N∈m  Also, let ,,,,,,, γβ′βα′αba  

C∈λνρ z,,,  be such that ( ) ( ) ( ) ( ) ( ){ } ,0,,,min,1 >γ−>ν zba RRRRR  and 

 ( ) ( ) ( ) ( ){ }.,,,0min1 β−α′−γα′−α−γβ′+<ν−ρ RRRR  (3.4) 

Then 

{( ( )) ( ) }baxtzJtDB m ,:,
,

1,,,,
0

μ
λν

−ργβ′βα′α
−  

( )
λ+ν

−γ−α′+α Γ
= 22

bx B
 

( ) ( )
( ) ( ) ( )⎢
⎢

⎣

⎡

β′+α′−γ+β−α′−α−
γ+β−α′−α′−α−γ+

Ψ× + ,2,,2,,2,
,2,,2,

55 BBB
BB

m  

( ) ( ) ( )
( ) ( ) ( ) ,

4
1

;1,1,2,,,1
;1,1,2,,2,

2
times

⎥
⎥

⎦

⎤
−+λμ+λ+ν

−β′+

−
x

C
bCB

m

 (3.5) 

where B and C are given in (2.8) and (3.3), respectively. 
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Theorem 3.3. Let ,, +∈μ Rx  ,N∈m  .1>δ  Also, let ,,,,, γβ′βα′α  

C∈λνρ ,,  be such that ( ) ( ) ( ){ } ,0,min,1 >γ−>ν sRRR  and 

 ( ) ( ) ( ){ }.,,0max α−ββ′−α′−α−γ>ν+ρ RRR  (3.6) 

Then 

{ ( ( )) ( ) }sxztJtDzP ml :,
,

1,,,,
0

1 μ
λν

−ργβ′βα′α
+

−
δ  

( ){ }
λ+ν

−γ−α′+α+
λ+ν+δΛ= 2

1
2

2
,

A
l xs  

( ) ( ) ( )
( ) ( ) ( )⎢
⎢

⎣

⎡

β′+α+γ−α′+α+γ−β−
α+β−β′+α′+α+γ−

Ψ× + ,2,,2,,2,
,2,,2,,2,

45 AAA
AAA

m  

( ) ( )
( ) ( )

( ){ } ,4
,

;1,1,,1
;1,1,2,2 2

times
⎥
⎥

⎦

⎤δΛ−+λμ+λ+ν
λ+ν+

−

xs
l

m

 (3.7) 

where A is given in (2.3) and 

 ( ) ( )[ ] .11ln
1:, ss
−δ+

−δ=δΛ  (3.8) 

Theorem 3.4. Let .,,, NR ∈∈μδ + mx  Also, let ,,,,,, ργβ′βα′α  

C∈λν l,,  be such that ( ) ( ) ( ) ( ){ } ,0,,min,1 >γ−>ν ls RRRR  and 

( ) ( ) ( ) ( ){ }.,,,0min1 β−α′−γα′−α−γβ′+<ν−ρ RRRR  (3.9) 

Then 

{ [ ( )]( ) }sxtzJtDzP ml :,
,

1,,,,
0

1 μ
λν

−ργβ′βα′α
−

−
δ  

( ){ }
λ+ν

−γ−α+α′+λ−ν−ρ
λ+ν+δΛ= 2

12
2

2
, xs l  
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( ) ( ) ( )
( ) ( ) ( )⎢
⎢

⎣

⎡

β′+α′−γ+β−α−α′−
β′+γ+β−α′−α−α′−γ+

Ψ× + ,2,,2,,2,
,2,,2,,2,

45 BBB
BBB

m  

( ) ( )
( ) ( )

( ){ } ,
4

,
;1,1,,1

;1,1,2,2

2

2

times
⎥
⎥

⎦

⎤δΛ
−+λμ+λ+ν

λ+ν+

−
x

s
l

m

 (3.10) 

where B and ( )s,δΛ  are given in (2.8) and (3.8), respectively. 

Theorem 3.5. Let .,, NR ∈∈μ + mx  Also, let ,,,,,,,, νληγβ′βα′α  

C∈σρξ ,,  be such that ( ) ( ) ( ) ,21,0,1 −>η±ξ>γ−>ν RRR  and 

 ( ) ( ) ( ){ }.,,0max α−ββ′−α′−α−γ>ν+ρ RRR  (3.11) 

Then 

( ){( ( ))}∫
∞ μ

λν
−ργβ′βα′α

+ησ
−−σ

0
,
,

1,,,,
0,

21 dzztJtDzWez mz  

λ+ν

−γ−α′+α+
= 2

1

2

Ax  

( ) ( ) ( )
( ) ( ) ( )⎢
⎢

⎣

⎡

β′+α+γ−α′+α+γ−β−
α+β−β′+α′+α+γ−

Ψ× + ,2,,2,,2,
,2,,2,,2,

56 AAA
AAA

m  

 
( ) ( ) ( )
( ) ( ) ( ) ,4;1,1,2,,,1

;1,1,2,,2, 2

times-
⎥
⎥

⎦

⎤
−+λσ−μ+λ+ν

η−η+
x

E
EE

m

 (3.12) 

where A is given in (2.3) and 

 .212: +λ+ν+ξ=E  (3.13) 

Theorem 3.6. Let .,, NR ∈∈μ + mx  Also, let ,,,,,,,, νληγβ′βα′α  

C∈σρξ ,,  be such that ( ) ( ) ( ) ,21,0,1 −>η±ξ>ν−>ν RRR  and 
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( ) ( ) ( ) ( ){ }.,,,0min1 β−α′−γα′−α−γβ′+<ν−ρ RRRR  (3.14) 

Then 

( ){( ( ))}∫
∞ μ

λν
−ργβ′βα′α

−ησ
−−σ

0
,
,

1,,,,
0,

21 dzztJtDzWez mz  

λ+ν

−γ−α′+α+λ−ν−ρ
= 2

12

2
x  

( ) ( ) ( )
( ) ( ) ( )⎢
⎢

⎣

⎡

β′+α′−βγ+β−α′−α−
β′+βγ+β−α′−α′−α−γ+

Ψ× + ,2,,2,,2,
,2,,2,,2,

56 BB
BB

m  

( ) ( ) ( )
( ) ( ) ( ) ,

4
1

;1,2,,,1
;1,1,2,,2,

2
times

⎥
⎥

⎦

⎤
−+λσ−μ+λ+ν

η−η+

−
x

E
EE

m

 (3.15) 

where B and E are given in (2.8) and (3.13), respectively. 

4. Concluding Remarks 

The results presented here, being very general in both the generalized 
fractional differential operator and the generalized Lommel-Wright function, 
can be specialized to yield a number of identities involving relatively simple 
fractional differential operators and simpler extensions of the Bessel function 
and the Struve function. We can also consider numerous limiting cases of the 
results presented here. 
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