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Abstract 

A single server queue with vacation has been considered. In addition, 
the admission to queue is based on a Bernoulli process and the server 
gives two types (type 1, type 2) of service and an optional service. The 
type 1 service is a two phase service and type 2 service is a single. We 
analyze single and multiple vacation models and derive the probability 
generating functions of the number of customers in the queue at 
different server’s state. Then we obtain explicit expressions for various 
performance measures such as the mean queue size, the probabilities, 
the mean waiting time and the mean queue sizes when the server is 
busy and on vacation. We present some numerical results to show the 
effects of the parameters on some performance measures. 
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1. Introduction 

In a waiting line, the customers arrive at the facility and wait in the 
queue if the server is not available. If there are many customers in the queue, 
then they may suffer long delays which cause poor system performance. 
Thus, the arrival rate or the service rate may need to be controlled to reduce 
the delays. One finds quite a few papers in earlier literature on different 
control models of queueing systems, including control of servers, control of 
service rates, control of admission of customers and control of queue 
discipline. In control and design of waiting lines and networks, the restricted 
admissibility of customers has received great attention (e.g., [4, 10, 14, 16, 
18]). However, the papers [4, 14, 16, 18] deal with control policies different 
from the one considered by [10]. For a few detailed examples of restricted 
admissibility models, refer to Madan and Choudhury [11]. Our policy is 
similar to the policy given in [3]. However, they considered bulk arrival       
and Bernoulli server vacation queue, but ours is a single arrival model but 
different types of services with vacation. In this restrictive policy, it is 
assumed that, not all arriving customers are allowed to join the system at all 
times. Such a policy may be applied in many real-life queueing situations, 
particularly in the over-crowded queues where arrivals occur faster than 
departures. One may encounter such situations in telecommunications, 
transportation, computer networks, traffic highways, dams, airports and there 
could be many more such situations. 

The queueing system when the server becomes idle for a random period 
of time is not new. Miller [13] was the first to study such a model, where the 
server is unavailable during some random length of time (referred to as 
vacation) to the 1GM  queueing system. The 1GM  queueing models of 

similar nature have also been reported by a number of authors, since Levy 
and Yechiali [9] included several types of generalizations of the classical 

1GM  queueing system. These generalizations are useful in model building 

in many real-life situations such as digital communication, computer network 
and production/inventory systems (e.g., Doshi [2, 3] and Takagi [19])        
and various vacation policies were defined on queues and analyzed by 
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researchers (e.g., Takagi [19] and Tian and Zhang [20]). Some policies are 
single vacation policy, multiple vacation policy, Bernoulli vacation policy, 
compulsory vacation policy, etc. In a queue, an active server goes on 
servicing the waiting customers till the system becomes empty. As soon as 
the system becomes empty, the server goes on vacation in order to attend to 
certain preassigned tasks (such as machine repair, preventive maintenance, 
scanning for new work, etc), refer to as a generalized vacation. At the end of 
the vacation, it inspects the main system and then goes on serving the waiting 
units, if any, otherwise it takes a vacation again. This procedure is repeated 
till it finds at least one unit waiting in the waiting line for service. This 
vacation policy is called multiple vacation policy. On the other hand, at the 
end of the first vacation, it inspects the main system and then goes on serving 
the waiting units, if any, otherwise he waits idly for the new arrival. This 
vacation policy is called single vacation policy. 

Madan and Choudhury [12] considered a batch arrival two stage 
heterogeneous service queue with a Bernoulli schedule server vacation based 
on a single vacation model under the restricted admissibility policy. Further, 
they assumed that at the end of each busy period, when a new customer or a 
batch of customers joins the system, the server enters into a random setup 
time process before actually starting service of the first customer of the 
renewed busy period. Madan and Choudhury [11] studied a batch arrival 

queue ( ) 1, 21 GGM X  with restricted admissibility of arriving batches and 

modified server vacations under a single vacation policy. 

In fact, various aspects of Bernoulli vacation models for single server 
queueing systems without restricted admissibility have been studied by a 
good number of authors. Considerable efforts have been devoted to study 
these types of models by Keilson and Servi [7, 8], Servi [17], Ramaswamy 
and Servi [15], Doshi [2, 3] and Takagi [19], among several others. 

Kalyanaraman and Suvitha [5, 6] studied an 1GM  queue with restricted 

admissibility, two general types of services and general vacation. In these 
two articles, Kalyanaraman and Suvitha [5, 6] dealt with compulsory 
vacation in one article and Bernoulli vacation in the other. In this article, we 
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propose to study such a two-type and an optional service queue with 
vacations based on a single vacation model and multiple vacation model 
under the restricted admissibility policy. Such models with restricted 
admissibility and vacation have a good number of applications. For example, 
in computer communication systems, messages to be transmitted arrive in a 
random manner. Further, if the administrator of such a communication 
system feels that the massages are arriving faster than they can be 
transmitted, then she/he may adopt our policy of restricted admissibility of 
the arriving messages. This will help to prevent the system from becoming 
over-loaded. Moreover, the system may undergo routine maintenance from 
time to time. This is analogous to vacations considered in our model. 

1.1. Model description 

Consider a single server queue with the customers arrival follows, 
according to a Poisson process of intensity λ and the server provides two 
types of services, respectively, called type 1 service and type 2 service. At   
the beginning of a service, it is assumed that the customer has the choice          
of selecting type 1 service with probability 1p  and type 2 service with 

probability ( ).1212 =+ ppp  The type 1 service is a two phase service and 

type 2 service is single. After completion of type 1 service, the customer 
leaves the system, whereas after completion of type 2 service, the customer 
leaves the system with probability 31 p−  or chooses an optional service with 

probability .3p  After completion of optional service, the customer leaves the 

system. The service discipline is assumed to be first come, first served 
(FCFS). The service time distributions are general, the distribution functions 
are ( )xB j,1  for type 1 and jth ( )2,1=j  phase of service, ( )xB2  for type 2 

service, ( )xB3  for an optional service. The Laplace-Stieltjes transform (LST) 

for ( ),,1 xB j  ( ),2 xB  ( )xB3  are ( ),,1 θ∗
jB  ( ),2 θ∗B  ( )θ∗

3B  and finite moments 

are ( ),,1
k

jBE  ( ),2
kBE  ( ),3

kBE  .1≥k  It may be noted that ( ),,1 xB j  ( ),2 xB  

( )xB3  and ( )xV  ( ( ) ,1,1 =∞jB  ( ) ,00,1 =jB  ( ) ,12 =∞B  ( ) ,002 =B  

( ) ,13 =∞B  ( )03B ( ) ( ) )00,1,0 ==∞= VV  are continuous. 



A Single Server Vacation Queue with Type of Services … 129 

As soon as the system becomes empty, the server leaves the service area 
for a random period of time, called vacation period. This vacation period V is 
independently and identically distributed with distribution function ( ),yV  

Laplace-Stieltjes transform (LST) ( )θ∗V  and finite moments ( ) .1, ≥kVE k  

Further, it is assumed that not all the arriving customers are allowed to join 
the system at all times. Let ( )10 << rr  be the probability that an arriving 

customer will be allowed to join the system while the server is busy with a 
customer, idle and let ( )10 << pp  be the probability that an arriving 

customer will be allowed to join the system while the server is on vacation. 

For the analysis, the supplementary variable (the variable is elapsed 
service (vacation) time) technique has been used. 

Let ( )tN  be the queue size excluding one customer receiving service at 

time ( )tt j,1, μ  be the elapsed type 1 service and jth phase of service time at 

( )tt 2, μ  be the elapsed type 2 service time at ( )tt 3, μ  be the elapsed optional 

service time at ( )tt γ,  be the elapsed vacation time at t, and ( )tX  be the state 

of the server at time t. Then ( ) ( )( ){ }0:, ≥ttNtE  is a bivariate Markov 

process, where ( )tE  is the elapsed (service or vacation) time at time t. For 

the mathematical definition of the models, we introduce the following 
notations: 

( )( ) {at,,1 PrtxP j
n =  time t, there are n customers in the queue excluding 

one receiving the type 1 service and in the jth phase of 
service and the elapsed service time is },x  ,2,1=j  

,0≥n  

( )( ) {at,2 PrtxPn =  time t, there are n customers in the queue excluding 

one receiving the type 2 service and the elapsed service 
time is } ,0, ≥nx  
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( )( ) {at,3 PrtxPn =  time t, there are n customers in the queue excluding 

one receiving the optional service and the elapsed 
service time is } ,0, ≥nx  

( ) {at, PrtxVn =  time t, the server is on vacation with elapsed vacation 

time x and the number of customers in the queue is },n  

0≥n  and 

( ) {atPrtQ =  time t, there are no customers in the system and the server 

is }.idle  

Let ( )( ),,1 xP j
n  ( )( ),2 xPn  ( )( ),3 xPn  ( )xVn  and Q denote the corresponding 

steady state probabilities. 

The probability generating functions for the probabilities { ( )( )},,1 xP j
n  

{ ( )( )} { ( )( )}xPxP nn
32 ,  and ( ){ }xVn  are, respectively, defined as 

( )( ) ( )( )∑
∞

=

==
0

,1,1 ,2,1,,
n

j
n

nj jxPzzxP  

( )( ) ( )( ) ( )( ) ( )( )∑ ∑
∞

=

∞

=

==
0 0

3322 ,,,
n n

n
n

n
n xPzzxPxPzzxP  

and ( ) ( )∑
∞

=

=
0

.,
n

n
n xVzzxV  

Further, it may be noted that ( )dxxj,1μ  is the conditional probability of 

completion of the jth phase of type 1 service during the interval ( ]dxxx +,  

given that the elapsed service time is x, ( )dxx2μ  is the conditional 

probability of completion of the type 2 of service during the interval 
( ]dxxx +,  given that the elapsed service time is x, ( )dxx3μ  is the 

conditional probability of completion of the optional service during the 
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interval ( ]dxxx +,  given that the elapsed service time is x and ( )dxxγ  is 

the conditional probability of completion of the vacation during the interval 
( ]dxxx +,  given that the elapsed vacation time is x so that 

( )
( )
( ) ( ) ( )

( ) ,1,1 2
2

2
,1

,1
,1 xB

xbdxxxB
xb

dxx
j

j
j −

=μ
−

=μ  

( ) ( )
( )xB

xbdxx
3

3
3 1 −=μ    and   ( ) ( )

( )xV
xvdxx

−
=γ 1  

are the first order differential functions (hazard rates) of ( )3,2,,1 =iBB ij  

and V, respectively. 

We study two models. In the first one, upon termination of a single 
vacation, the server returns to the main queue and begins to serve those 
customers, if any, that have arrived during the vacation. If no customers have 
arrived, then the server waits for the first one to arrive when an ordinary 

1GM  busy period is initiated. In the second model, if the server finds        

the system empty at the end of a vacation, it immediately takes another 
vacation, and continues in this manner until finds at least one waiting unit 
upon return from a vacation. The diagram of our model is shown in Figure 1. 
In Section 2, Model 1 is analyzed and in Section 3, Model 2 is studied and in 
the last section, a numerical study is given. 

 

Figure 1. Our model. 
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2. Model 1: Single Vacation Model 

The model analyzed in this section is, as defined earlier, a single server 
Poisson arrival queue with two types and an optional of generalized services, 
restricted admissibility and single vacation. For this model, at time t, we 
define the random variable ( )tX  takes the value 0, when the server is idle, 

( )tX  takes the value 1, when the server is serving phase one of type 1 

service, ( )tX  takes the value 2, when the server is serving phase two of type 

1 service, ( )tX  takes the value 3, when the server is serving type 2 service, 

( )tX  takes the value 4, when the server is serving an optional service, ( )tX  

takes the value 5, when the server is on vacation. 

Next, at time t, we define the random variable 

( )

( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=γ

=μ

=μ

=μ

=μ

=

=

.5if;
,4if;
,3if;
,2if;
,1if;
,0if;0

3

2

2,1

1,1

tXt
tXt
tXt
tXt
tXt
tX

tE  

We utilize the argument of Cox [1] and obtain the following 
Kolmogorov forward equations for our model under the steady state 
conditions: 

( )( ) ( ( )) ( )( ) ( ) ( )( ),1 1,1
0

1,1
01,1

1,1
0 xPrxPxxPdx

d −λ=μ+λ+  (1) 

( )( ) ( ( )) ( )( ) ( ) ( )( ) ( )( ),1 1,1
1

1,11,1
1,1

1,1 xrPxPrxPxxPdx
d

nnnn −λ+−λ=μ+λ+  

                                                                                                      ,1≥n  (2) 

( )( ) ( ( )) ( )( ) ( ) ( )( ),1 2,1
0

2,1
02,1

2,1
0 xPrxPxxPdx

d −λ=μ+λ+  (3) 
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( )( ) ( ( )) ( )( ) ( ) ( )( ) ( )( ),1 2,1
1

2,12,1
2,1

2,1 xrPxPrxPxxPdx
d

nnnn −λ+−λ=μ+λ+  

                                                                                                         ,1≥n  (4) 

( )( ) ( )( ) ( )( ) ( ) ( )( ),1 2
0

2
02

2
0 xPrxPxxPdx

d −λ=μ+λ+  (5) 

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( ),1 2
1

22
2

2 xrPxPrxPxxPdx
d

nnnn −λ+−λ=μ+λ+   ,1≥n  (6) 

( )( ) ( )( ) ( )( ) ( ) ( )( ),1 3
0

3
03

3
0 xPrxPxxPdx

d −λ=μ+λ+  (7) 

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ,1,1 3
1

33
3

3 ≥λ+−λ=μ+λ+ − nxrPxPrxPxxPdx
d

nnnn  (8) 

( ) ( )( ) ( ) ( ) ( ),1 000 xVpxVxxVdx
d −λ=γ+λ+  (9) 

( ) ( )( ) ( ) ( ) ( ) ( ) ,1,1 1 ≥λ+−λ=γ+λ+ − nxpVxVpxVxxVdx
d

nnnn  (10) 

( ) ( ) ( )∫
∞

γ+−λ=λ
0 0 .1 dxxxVQrQ  (11) 

The above set of equations is to be solved under the following boundary 
conditions at :0=x  

( )( ) ( )( ) ( )∫
∞

μ+λ=
0 2,1

2,1
111

1,1
0 0 dxxxPpQrpP  

( ) ( )( ) ( )∫
∞

μ−+
0 2

2
131 1 dxxxPpp  

( )( ) ( ) ( ) ( ) ,
0 0 113

3
11∫ ∫

∞ ∞
γ+μ+ dxxxVpdxxxPp  (12) 
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( )( ) ( )( ) ( )∫
∞

+ μ=
0 2,1

2,1
11

1,1 0 dxxxPpP nn  

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

++ μ+μ−+
0 0 3

3
112

2
131 1 dxxxPpdxxxPpp nn  

( ) ( ) ,1,
0 11∫
∞

+ ≥γ+ ndxxxVp n  (13) 

( )( ) ( )( ) ( ) ,0,0
0 1,1

1,12,1 ∫
∞

≥μ= ndxxxPP nn  (14) 

( )( ) ( )( ) ( )∫
∞

μ+λ=
0 2,1

2,1
122

2
0 0 dxxxPpQrpP  

( ) ( )( ) ( )∫
∞

μ−+
0 2

2
132 1 dxxxPpp  

( )( ) ( ) ( ) ( ) ,
0 0 123

3
12∫ ∫

∞ ∞
γ+μ+ dxxxVpdxxxPp  (15) 

( )( ) ( )( ) ( )∫
∞

+ μ=
0 2,1

2,1
12

2 0 dxxxPpP nn  

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

++ μ+μ−+
0 0 3

3
122

2
132 1 dxxxPpdxxxPpp nn  

( ) ( ) ,1,
0 12∫
∞

+ ≥γ+ ndxxxVp n  (16) 

( )( ) ( )( ) ( ) ,0,0
0 2

2
3

3 ∫
∞

≥μ= ndxxxPpP nn  (17) 

( ) ( )( ) ( )∫
∞

μ=
0 2,1

2,1
00 0 dxxxPV  

( ) ( )( ) ( ) ( )( ) ( ) ,1
0 0 3

3
02

2
03 ∫ ∫

∞ ∞
μ+μ−+ dxxxPdxxxPp  (18) 

( ) 1,00 ≥= nVn  (19) 
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and the normalization condition 

[ ( )( ) ( )( ) ( )( ) ( )( ) ( )]∑∫
∞

=

∞
=+++++

0
0

322,11,1 .1
n

nnnnn dxxVxPxPxPxPQ  (20) 

Proceeding in the usual manner with equations (1)-(10), we obtain, for 
,0>x  

( )( ) ( )( ) ( ( )) ,1,0, 1,1
1,11,1 TxexBzPzxP −−=  (21) 

 ( )( ) ( )( ) ( ( )) ,1,0, 2,1
2,12,1 TxexBzPzxP −−=  (22) 

( )( ) ( )( ) ( )( ) ,1,0, 2
22 TxexBzPzxP −−=  (23) 

( )( ) ( )( ) ( )( ) ,1,0, 3
33 TxexBzPzxP −−=  (24) 

( ) ( ) ( )( ) ,1,0, RxexVzVzxV −−=  (25) 

where ( )zrT −λ= 1  and ( ).1 zpR −λ=  

Next, we multiply equations (12)-(19) by appropriate powers of z and 
then take the summation over all possible values of n and use (11), (18), 
(21)-(25), respectively. Thus 

( )( ) ( ) ( ) ( )( )zPTBpQzrpzzP ,01,0 2,1
2,111

1,1 ∗+−λ=  

( ) ( ) ( )( ) ( ) ( )( )zPTBpzPTBpp ,0,01 3
31

2
231

∗∗ +−+  

( ) ( ) ( ),0,0 011 VpzVRVp −+ ∗  (26) 

( )( ) ( ) ( )( ),,0,0 1,1
1,1

2,1 zPTBzp ∗=  (27) 

[ ( ) ( )] ( )( )zPTBppz ,01 2
232
∗−−  

( ) ( ) ( )( ) ( ) ( )( )zPTBpzPTBpQzrp ,0,01 3
32

2,1
2,122

∗∗ ++−λ=  

( ) ( ) ( ),0,0 022 VpzVRVp −+ ∗  (28) 
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( )( ) ( ) ( )( ),,0,0 2
23

3 zPTBpzP ∗=  (29) 

( ) ( ).0,0 0VzV =  (30) 

Using equations (27), (29) and (30) in (26) and (28), we get 

[ ( ) ( )] ( )( )zPTBTBpz ,01,1
2,11,11

∗∗−  

( ) ( ) ( ( )) ( )( )zPTBppTBpQzrp ,011 2
333211
∗∗ +−+−λ=  

( ( ) ) ( ),01 01 VRVp −+ ∗  (31) 

[ ( ) ( ( ))] ( )( )zPTBppTBpz ,01 2
33322
∗∗ +−−  

( ) ( ) ( ) ( )( )zPTBTBpQzrp ,01 1,1
2,11,122

∗∗+−λ=  

( ( ) ) ( ).01 02 VRVp −+ ∗  (32) 

From (31) and (32), we get 

 ( )( ) ( ) ( ( ) ) ( )
( ) ,011,0 0111,1
zD

VRVpQzrpzP −+−λ
=

∗
 (33) 

 ( )( ) ( ) ( ( ) ) ( )
( ) ,011,0 0222
zD

VRVpQzrpzP −+−λ
=

∗
 (34) 

where ( ) ( ) ( ) ( ) ( ( )).1 333222,11,11 TBppTBpTBTBpzzD ∗∗∗∗ +−−−=  

The unknowns ( )( ) ( )( )xPxP 2
0

2,1
0 ,  and ( )( )xP 3

0  are obtained by using the 

probability generating functions, we get 

( )( )
( ) [ ( ( )) ( )][ ( )]
( ) ( ) ( ) ( ( ))

,
1

101

333222,11,11

2,101,112,1
0 rBpprBprBrBp

exBVpVrQrBp
xP

rx

λ+−λ+λλ

−λ−+λλ
= ∗∗∗∗

λ−∗∗
 (35) 

( )( ) [ ( ( )) ( )][ ( )]
( ) ( ) ( ) ( ( ))

,
1
101

333222,11,11

2022
0 rBpprBprBrBp

exBVpVrQpxP
rx

λ+−λ+λλ

−λ−+λ
= ∗∗∗∗

λ−∗
 (36) 
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( )( ) ( ) [ ( ( )) ( )][ ( )]
( ) ( ) ( ) ( ( ))

.
1

101

333222,11,11

302323
0 rBpprBprBrBp

exBVpVrQrBppxP
rx

λ+−λ+λλ

−λ−+λλ
= ∗∗∗∗

λ−∗∗
 (37) 

Using equations (35)-(37) in (18), we get 

 ( ) ( ) .00 rQVpV λ=λ∗  (38) 

Next, using equation (38) on (30), (33) and (34), we get 

( )
( )

,,0
pV

rQzV
λ

λ= ∗  (39) 

 ( )( ) [( ) ( ) ( ) ]
( ) ( )

,11,0 11,1

zDpV
QRVpVzrpzP

λ

−+λ−λ= ∗

∗∗
 (40) 

( )( ) [( ) ( ) ( ) ]
( ) ( )

.11,0 22

zDpV
QRVpVzrpzP

λ

−+λ−λ= ∗

∗∗
 (41) 

Using equations (40), (41) in (27), (29), we get 

( )( )
( ) [( ) ( ) ( ) ]

( ) ( )
,

11
,0 1,112,1

zDpV

QRVpVzTBrp
zP

λ

−+λ−λ
= ∗

∗∗∗
 (42) 

( )( ) ( ) [( ) ( ) ( ) ]
( ) ( )

.11,0 2323

zDpV
QRVpVzTBprpzP

λ

−+λ−λ
= ∗

∗∗∗
 (43) 

Integrating (21)-(25) with respect to x and using (39)-(43), we get 

( )( )
[( ) ( ) ( ) ]( ( ))

( ) ( )
,

111 1,111,1

zDpTV

QTBRVpVzrp
zP

λ

−−+λ−λ
= ∗

∗∗∗
 (44) 

( )( )
( ) [( ) ( ) ( ) ]( ( ))

( ) ( )
,

111 2,11,112,1

zDpTV

QTBRVpVzTBrp
zP

λ

−−+λ−λ
= ∗

∗∗∗∗
 (45) 

( )( ) [( ) ( ) ( ) ] ( ( ))
( ) ( )

,111 222

zDpTV
QTBRVpVzrpzP

λ

−−+λ−λ= ∗

∗∗∗
 (46) 
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( )( ) ( ) [( ) ( ) ( ) ] ( ( ))
( ) ( )

,111 32323

zDpTV
QTBRVpVzTBprpzP

λ

−−+λ−λ
= ∗

∗∗∗∗
 (47) 

( ) ( ( ))
( )

.1
pRV

QRVrzV
λ

−λ= ∗

∗
 (48) 

The unknown idle probability Q is obtained using the normalizing 
condition (equation (20)) as 

 ( ) ( )
( ) ( ) ( )[ ]

.1
rrpVEpV

pVQ
+−ρλ+λ

ρ−λ= ∗

∗
 (49) 

Equations (44)-(48) together with equation (49) are the probability 
generating functions of the number of customers in the queue when the 
server is serving type 1 service and is in the jth ( )2,1=j  phase of service, 

serving type 2 service and an optional service, respectively, when the server 
is on vacation. 

Here 0>Q  guarantees the existence of the probability generating 

functions in equations (44)-(48) and therefore the stability condition for the 
system is ,1<ρ  where 

[ ( ( ) ( )) ( ) ( )].332222,11,11 BEppBEpBEBEpr +++λ=ρ  

The probability generating function that the number of customers in the 
queue irrespective of the server state is 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )zVzPzPzPzPQzU +++++= 322,11,1  

( )
( ) [ ( ) ( ) ( )( )]rrpVEpVzRD +−ρλ+λ

ρ−= ∗
1  

{ ( ) ( ) ( ) ( ( ) )11 −−λ−λ−× ∗∗ RVrppVzR  

[ ( ) ( ) ( ) ( ( ))]TBppTBpTBTBp ∗∗∗∗ +−+× 333222,11,11 1  

( ) ( ( ) )}.1−−λ+ ∗ RVzrp  (50) 
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2.1. The performance measures 

Using straightforward calculations, the following performance measures 
have been obtained. 

 (i) The mean number of customers in the queue is 

( )
dz

zdUL
z

s
q

1
lim
→

=  

( ) ( )[ ]
[ ( ) ( ) ( )( )]rrpVEpV

rrpVpE
+−ρλ+λ

+−ρλ
=

∗2

22
 

[ ( ) ( )]
( ) [ ( ) ( ) ( )( )]rrpVEpV

VpEpVr
+−ρλ+λρ−

λ+λλ+ ∗

∗

12

22
 

{ [ ( ) ( ) ( ) ( )]2
2,12,11,1

2
1,11 2 BEBEBEBEp ++×  

[ ( ) ( ) ( ) ( )]},2 2
33323

2
22 BEpBEBEpBEp +++  

where ( )zU  is given in equation (50). 

(ii) The expected waiting time in the queue is 

( ) ( )[ ]
[ ( ) ( )] ( )ρ−

λ+
λ+λ

+−ρλ=
λ′

= ∗ 122

2 r
VpEpVr

rrpVpEL
W

s
qs

q  

{ [ ( ) ( ) ( ) ( )]2
2,12,11,1

2
1,11 2 BEBEBEBEp ++×  

[ ( ) ( ) ( ) ( )]},2 2
33323

2
22 BEpBEBEpBEp +++  

where 

=λ′  actual arrival rate 

[ ( )( ) ( )( ) ( )( ) ( )( ) ] ( )11111 322,11,1 pVQPPPPr λ+++++λ=  

[ ( ) ( )]
( ) ( ) ( )( )

.
rrpVEpV

VpEpVr
+−ρλ+λ

λ+λλ= ∗

∗
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(iii) The probability that the server is busy 

[ ( ) ( )]
( ) ( ) ( )( )

.
rrpVEpV

VpEpVPs
b

+−ρλ+λ
λ+λρ= ∗

∗
 

(iv) The probability that the server is on vacation 

( ) ( )
( ) ( ) ( )( )

.1
rrpVEpV

VrEPs
v

+−ρλ+λ
ρ−λ= ∗  

 (v) The idle probability 

( ) ( )
( ) ( ) ( )( )

.1
rrpVEpV

pVQs

+−ρλ+λ
ρ−λ= ∗

∗
 

(vi) The mean number of the customers in the queue when the server is 
busy is given by 

( )
( ) ( ) ⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛

λ

λ
=

∗→ zDpTV
QzrN

dz
dL

z
s
qb

1
lim  

( )
[ ( ) ( ) ( )( )]rrpVEpV

VEp
+−ρλ+λ

ρλ
=

∗2

222
 

[ ( ) ( )]
( ) [ ( ) ( ) ( )( )]rrpVEpV

VpEpVr
+−ρλ+λρ−

λ+λλ+ ∗

∗

12

22
 

{ [( ) ( ) ( ) ( )]2
2,12,11,1

2
1,11 2 BEBEBEBp ++×  

[ ( ) ( ) ( ) ( )]},2 2
33323

2
22 BEpBEpEpBEp +++  

where 

( ) [ ( ) ( ) ( ) ( 3222,11,11 11 pTBpTBTBpzN −−−= ∗∗∗  

( ))][ ( ) ( ) ( ) ].1133 −+−λ+ ∗∗∗ RVzpVTBp  
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(vii) The mean number of customers in the queue when the server is on 
vacation is 

[ ( )]
( )

( ) ( )
[ ( ) ( ) ( )( )]

.
2

11lim
22

1 rrpVEpV
VprE

pRV
QRVr

dz
dL

z
s
qv

+−ρλ+λ
ρ−λ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

λ
−λ= ∗∗

∗

→
 

3. Model 2: Multiple Vacation Model 

The model analyzed in this section is, as defined earlier, a single server 
Poisson arrival queue with two types and an optional of generalized services, 
restricted admissibility and multiple vacation. For this model, at time t, we 
define the random variable ( )tX  takes the value 1, when the server is serving 

phase one of type 1 service, ( )tX  takes the value 2, when the server is 

serving phase two of type 1 service, ( )tX  takes the value 3, when the server 

is serving type 2 service, ( )tX  takes the value 4, when the server is serving 

an optional service, ( )tX  takes the value 5, when the server is on vacation. 

Next, at time t, we define the random variable 

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=γ

=μ

=μ

=μ

=μ

=

.5if;
,4if;
,3if;
,2if;
,1if;

3

2

2,1

1,1

tXt
tXt
tXt
tXt
tXt

tE  

Equations (1)-(10) is to be solved under the following boundary 
conditions at :0=x  

( )( ) ( )( ) ( ) ( )∫
∞

+ −+μ=
0 312,1

2,1
11

1,1 10 ppdxxxPpP nn  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

++ μ+μ×
0 0 3

3
112

2
1 dxxxPpdxxxP nn  

( ) ( ) ,0,
0 11∫
∞

+ ≥γ+ ndxxxVp n  (51) 
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( )( ) ( )( ) ( ) ,0,0
0 1,1

1,12,1 ∫
∞

≥μ= ndxxxPP nn  (52) 

( )( ) ( )( ) ( ) ( )∫
∞

+ −+μ=
0 322,1

2,1
12

2 10 ppdxxxPpP nn  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

++ μ+μ×
0 0 3

3
122

2
1 dxxxPpdxxxP nn  

( ) ( ) ,0,
0 12∫
∞

+ ≥γ+ ndxxxVp n  (53) 

( )( ) ( )( ) ( ) ,0,0
0 2

2
3

3 ∫
∞

≥μ= ndxxxPpP nn  (54) 

( ) ( )( ) ( ) ( )∫
∞

−+μ=
0 32,1

2,1
00 10 pdxxxPV  

( )( ) ( ) ( )( ) ( )∫ ∫
∞ ∞

μ+μ×
0 0 3

3
02

2
0 dxxxPdxxxP  

( ) ( ) ,0
0 0∫
∞

γ+ dxxV  (55) 

( ) ,1,00 ≥= nVn  (56) 

and the normalization condition 

[ ( )( ) ( )( ) ( )( ) ( )( ) ( )]∑∫
∞

=

∞
=++++

0
0

322,11,1 .1
n

nnnnn dxxVxPxPxPxP  

We multiply equations (51)-(56) by appropriate powers of z and         
then take the summation over all possible values of n and use (21)-(25), 
respectively. Thus 

( )( ) ( ) ( ) ( ) ( )( )zPTBpzVRVpzzP ,0,0,0 2,1
2,111

1,1 ∗∗ +=  

( ) ( ) ( )( )zPTBpp ,01 2
231
∗−+  

( ) ( )( ) ( ),0,0 01
3

31 VpzPTBp −+ ∗  (57) 
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( )( ) ( ) ( )( ),,0,0 1,1
1,1

2,1 zPTBzP ∗=  (58) 

( )( ) ( ) ( ) ( ) ( )( )zPTBpzVRVpzzP ,0,0,0 2,1
2,122

2 ∗∗ +=  

( ) ( ) ( )( )zPTBpp ,01 2
232
∗−+  

( ) ( )( ) ( ),0,0 02
3

32 VpzPTBp −+ ∗  (59) 

( )( ) ( ) ( )( ),,0,0 2
23

3 zPTBpzP ∗=  (60) 

( ) ( ).0,0 0VzV =  (61) 

Using equations (58), (60), (61) in (57), (59),  

[ ( ) ( )] ( )( )zPTBTBpz ,01,1
2,11,11

∗∗−  

( ) ( ( )) ( )( ) ( ( ) ) ( ),01,01 01
2

33321 VRVpzPTBppTBp −++−= ∗∗∗  (62) 

[ ( ) ( ( ))] ( )( )zPTBppTBpz ,01 2
33322
∗∗ +−−  

( ) ( ) ( )( ) ( ( ) ) ( ).01,0 02
1,1

2,11,12 VRVpzPTBTBp −+= ∗∗∗  (63) 

From equations (62) and (63), 

 ( )( ) [ ( ) ] ( )
( ) ,01,0 011,1
zD

VRVpzP −
=

∗
 (64) 

( )( ) [ ( ) ] ( )
( ) .01,0 022
zD

VRVpzP −
=

∗
 (65) 

Using equations (64) and (65) in (58), (60),  

( )( )
( )[ ( ) ] ( )

( ) ,
01

,0 01,112,1
zD

VRVTBp
zP

−
=

∗∗

 (66) 

 ( )( ) ( ) [ ( ) ] ( )
( ) .01,0 02323
zD

VRVTBppzP −
=

∗∗
 (67) 
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Integrating (21)-(25) with respect to x and using (61), (64)-(67), we get 

( )( )
( ( ) ) ( ( )) ( )

( ) ,
011 01,111,1

zTD
VTBRVp

zP
∗∗ −−

=  (68) 

( )( )
( ) ( ( ) ) ( ( )) ( )

( ) ,
011 02,11,112,1

zTD
VTBRVTBp

zP
∗∗∗ −−

=  (69) 

( )( ) ( ( ) ) ( ( )) ( )
( ) ,011 0222
zTD

VTBRVpzP
∗∗ −−

=  (70) 

( )( ) ( ) ( ( ) ) ( ( )) ( )
( ) ,011 032323
zTD

VTBRVTBppzP
∗∗∗ −−

=  (71) 

( ) ( ( )) ( ) .01 0
R

VRVzV
∗−

=  (72) 

The unknown probability ( )00V  is obtained using the normalizing 

condition 

( )( ) ( )( ) ( )( ) ( )( ) ( ) ,111111 322,11,1 =++++ VPPPP  

as 

 ( ) ( )
( ) ( )[ ]

.100 rprVE
rV

−ρ+
ρ−

=  (73) 

Equations (68)-(72) together with equation (73) are, respectively, the 
probability generating functions of the number of customers in the queue 
when the server is serving type 1 service and is in the jth ( )2,1=j  phase of 

service, serving type 2 service and an optional service, respectively, when the 
server is on vacation. 

Here ( ) 000 >V  guarantees the existence of the probability generating 

functions in equations (68)-(72) and therefore the stability condition for the 
system is ,1<ρ  where 
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[ ( ( ) ( )) ( ) ( )].332222,11,11 BEppBEpBEBEpr +++λ=ρ  

The probability generating function that the number of customers in the 
queue irrespective of the server state is 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )zVzPzPzPzPzU ++++= 322,11,1  

( ( )) ( )
( ) ( ) ( )[ ] { ( )rppzrrprVEzRD

RV −+−
−ρ+
ρ−−=

∗ 11  

[ ( ) ( ) ( ) ( ( ))]}.1 333222,11,11 TBppTBpTBTBp ∗∗∗∗ +−×+×  (74) 

3.1. The performance measures 

Using straightforward calculations, the following performance measures 
have been obtained. 

 (i) Mean number of customers in the queue is 

( )
dz

zdUL
z

m
q

1
lim
→

=  

( )
( ) ( ) ( )( )rrp

pr
VE
VpE

+−ρρ−
λ+

λ
= 122

222
 

{ [ ( ) ( ) ( ) ( )]2
2,12,11,1

2
1,11 2 BEBEBEBEp ++×  

[ ( ) ( ) ( ) ( )]},2 2
33323

2
22 BEpBEBEpBEp +++  

where ( )zU  is given in equation (74). 

(ii) The expected waiting time in the queue is 

( ) ( )[ ]
( ) ( )ρ−

λ+−ρ+=
λ′

= 122

2 r
VrE

rprVEL
W

m
qm

q  

{ [ ( ) ( ) ( ) ( )]2
2,12,11,1

2
1,11 2 BEBEBEBEp ++×  

[ ( ) ( ) ( ) ( )]},2 2
33323

2
22 BEpBEBEpBEp +++  
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where 

=λ′  actual arrival rate 

[ ( )( ) ( )( ) ( )( ) ( )( )] ( )11111 322,11,1 pVPPPPr λ++++λ=  

( ) .rpr
pr
−ρ+

λ=  

(iii) The probability that the server is busy 

( ) .rpr
pPm

b −ρ+
ρ=  

(iv) The probability that the server is on vacation 

( )
( ) .1

rpr
rPm

v −ρ+
ρ−=  

 (v) The mean number of customers in the queue when the server busy is 

( ) ( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛=

→ zTD
VzN

dz
dL

z
m
qb

0lim 01
1

 

( )
( ) ( )[ ] ( ) ( )( ) { [ ( )2

1,11
2222

122 BEprrp
pr

rprVE
VEp

+−ρρ−
λ+

−ρ+
ρλ

=  

( ) ( ) ( )]2
2,12,11,12 BEBEBE ++  

[ ( ) ( ) ( ) ( )]},2 2
33323

2
22 BEpBEBEpBEp +++  

where 

( ) [ ( ) ][ ( ) ( ) ( ) ( ( ))].111 333222,11,111 TBppTBpTBTBpRVzN ∗∗∗∗∗ +−−−−=  

(vi) The mean number of customers in the queue when the server is on 
vacation is 

[ ( )] ( ) ( ) ( )
( ) ( )[ ] .2

101lim
2

0
1 rprVE

VprE
R

VRV
dz
dL

z
m
qv −ρ+

ρ−λ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

∗

→
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Special cases 

Cases Single vacation Multiple vacation 

( ) ( )[ ]332 BEpBE +λ=ρ  ( ) ( )[ ]332 BEpBE +λ=ρ  

ρ=s
bP  ρ=m

bP  

( ) ( )
( ) ( )VEV

VEPs
v

λ+λ

ρ−λ= ∗
1  ρ−= 1m

vP  

( ) ( )
( ) ( )VEV

VQ
λ+λ

ρ−λ= ∗

∗ 1  
__ 

( )
[ ( ) ( )] ( )ρ−

λ+
λ+λ

λ= ∗ 122
1

222 C
VEV

VELs
q  ( )

( ) ( )ρ−
λ+λ= 122

1
22 C

VE
VELm

q  

( )
[ ( ) ( )] ( )ρ−

λ+
λ+λ

ρλ= ∗ 122
1

222 C
VEV

VELs
qb  ( )

( ) ( )ρ−
λ+λρ= 122

1
22 C

VE
VELm

qb  

,01 =p  

12 === rpp  

( ) ( )
[ ( ) ( )]VEV

VELs
qv

λ+λ

ρ−λ= ∗2
122

 ( ) ( )
( )VE

VELm
qv 2

12 ρ−λ=  

( )2BEλ=ρ  ( )2BEλ=ρ  

ρ=s
bP  ρ=m

bP  

( ) ( )
( ) ( )VEV

VEPs
v

λ+λ

ρ−λ= ∗
1  ρ−= 1m

vP  

( ) ( )
( ) ( )VEV

VQ
λ+λ

ρ−λ= ∗

∗ 1  
__ 

( )
[ ( ) ( )]

( )
( )ρ−

λ
+

λ+λ

λ= ∗ 122

2
2

222 BE
VEV

VELs
q  ( )

( )
( )

( )ρ−
λ+λ= 122

2
2

22 BE
VE

VELm
q  

( )
[ ( ) ( )]

( )
( )ρ−

λ
+

λ+λ

ρλ= ∗ 122

2
2

222 BE
VEV

VELs
qb  ( )

( )
( )

( )ρ−
λ+λρ= 122

2
2

22 BE
VE
VELm

qb  

In the above case 
03 =p  

( ) ( )
[ ( ) ( )]VEV

VELs
qv

λ+λ

ρ−λ= ∗2
122

 ( ) ( )
( )VE

VELm
qv 2

12 ρ−λ=  
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[ ( ) ( )]2,11,1 BEBE +λ=ρ  [ ( ) ( )]2,11,1 BEBE +λ=ρ  

ρ=s
bP  ρ=m

bP  

( ) ( )
( ) ( )VEV

VEPs
v

λ+λ

ρ−λ= ∗
1  ρ−= 1m

vP  

( ) ( )
( ) ( )VEV

VQ
λ+λ

ρ−λ= ∗

∗ 1  
__ 

( )
[ ( ) ( )] ( )ρ−

λ
+

λ+λ

λ= ∗ 122
2

222 C
VEV

VELs
q  ( )

( ) ( )ρ−
λ+λ= 122

2
22 C

VE
VELm

q  

( )
[ ( ) ( )] ( )ρ−

λ
+

λ+λ

ρλ= ∗ 122
2

222 C
VEV

VELs
qb  ( )

( ) ( )ρ−
λ+λρ= 122

2
22 C

VE
VELm

qb  

,02 =p  

11 === rpp  

( ) ( )
[ ( ) ( )]VEV

VELs
qv

λ+λ

ρ−λ= ∗2
122

 ( ) ( )
( )VE

VELm
qv 2

12 ρ−λ=  

where 

( ) ( ) ( ) ( )2
3323

2
21 2 BEBEBEpBEC ++=  

and 

( ) ( ) ( ) ( ).2 2
2,12,11,1

2
1,12 BEBEBEBEC ++=  

4. The Numerical Study 

In this section, we present some numerical examples to show the effect 
of varying the parameters. We consider the performance measures: the mean 
number of customers in the queue ( ),qL  the mean number of customers in 

the queue when the server is busy ( ),qbL  the mean number of customers in 

the queue when the server is on vacation ( ),qvL  the expected waiting time  

in the queue ( )qW  and Q, ,bP  vP  are the probabilities of the server being 

idle, the busy and on vacation, respectively. Moreover, for the purpose of 
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numerical illustrations, we assume that the arrival process is Poisson with 
parameter varying from 0.1 to 1.0, the service times distribution function        
is negative exponential with parameters ,0.41,1 =μ  ,0.52,1 =μ  ,0.62 =μ  

,0.33 =μ  the vacation time follows an Erlang distribution with parameter 

.0.7=θ  Also, here the parameters ,8.0,4.0,6.0 321 === ppp  8=k  are 

fixed. The parametric values are chosen to satisfy the stability condition. 
Figures 2-5 represent the functions of ,qL  ,qbL  ,qvL  qW  with respect to 

the arrival rate λ and the probabilities p, r. All functions are found to be 
increasing functions. Tables 1-6 present the probability that the server is idle, 
busy and on vacation with respect to .,, rpλ  The table shows that as λ 

increases, the probability corresponding to busy vacation increases for both 
single and multiple vacation models, but the idle probability decreases. 

 

(a) Fixed 5.0=r  and varying p (b) Fixed 5.0=p  and varying r 

Figure 2. Arrival rate versus .qL  

 

(a) Fixed 5.0=r  and varying p (b) Fixed 5.0=p  and varying r 

Figure 3. Arrival rate versus .qbL  
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(a) Fixed 5.0=r  and varying p (b) Fixed 5.0=p  and varying r 

Figure 4. Arrival rate versus .qvL  

 

(a) Fixed 5.0=r  and varying p (b) Fixed 5.0=p  and varying r 

Figure 5. Arrival rate versus .qW  

Table 1. The idle probability for single vacation model 

λ 2.0=p  4.0=p  6.0=p  8.0=p  0.1=p  

0.1 0.9709 0.9708 0.9708 0.9707 0.9706 

0.2 0.9422 0.9419 0.9417 0.9415 0.9412 

0.3 0.9139 0.9133 0.9128 0.9123 0.9118 

0.4 0.8860 0.8850 0.8841 0.8832 0.8823 

0.5 0.8584 0.8570 0.8556 0.8542 0.8528 

0.6 0.8313 0.8293 0.8274 0.8254 0.8235 

0.7 0.8045 0.8019 0.7993 0.7967 0.7942 

0.8 0.7782 0.7748 0.7715 0.7683 0.7650 

0.9 0.7521 0.7480 0.7440 0.7400 0.7360 

1.0 0.7265 0.7216 0.7167 0.7120 0.7072 
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Table 2. The idle probability for single vacation model 

λ 2.0=r  4.0=r  6.0=r  8.0=r  0.1=r  

0.1 0.9882 0.9766 0.9650 0.9536 0.9423 

0.2 0.9764 0.9532 0.9305 0.9083 0.8864 

0.3 0.9644 0.9299 0.8965 0.8639 0.8322 

0.4 0.9524 0.9067 0.8628 0.8205 0.7797 

0.5 0.9403 0.8836 0.8297 0.7781 0.7286 

0.6 0.9281 0.8606 0.7970 0.7366 0.6790 

0.7 0.9158 0.8377 0.7647 0.6960 0.6308 

0.8 0.9035 0.8149 0.7329 0.6562 0.5838 

0.9 0.8911 0.7923 0.7016 0.6173 0.5381 

1.0 0.8786 0.7697 0.6707 0.5792 0.4935 

Table 3. The probability that the server is busy 
5.0=r  

λ Prob. 2.0=p  4.0=p  6.0=p  8.0=p  0.1=p  

s
bP  0.0221 0.0221 0.0222 0.0223 0.0223 

0.1 
m
bP  0.0090 0.0178 0.0265 0.0350 0.0434 

s
bP  0.0440 0.0442 0.0445 0.0447 0.0449 

0.2 
m
bP  0.0182 0.0358 0.0527 0.0691 0.0849 

s
bP  0.0657 0.0662 0.0668 0.0673 0.0679 

0.3 
m
bP  0.0277 0.0539 0.0788 0.1023 0.1247 

s
bP  0.0872 0.0882 0.0891 0.0901 0.0910 

0.4 
m
bP  0.0375 0.0722 0.1045 0.1347 0.1629 

s
bP  0.1086 0.1101 0.1116 0.1130 0.1145 

0.5 
m
bP  0.0475 0.0907 0.1301 0.1663 0.1995 
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s
bP  0.1299 0.1320 0.1340 0.1361 0.1381 

0.6 
m
bP  0.0578 0.1093 0.1555 0.1971 0.2348 

s
bP  0.1510 0.1538 0.1565 0.1593 0.1620 

0.7 
m
bP  0.0684 0.1281 0.1806 0.2271 0.2686 

s
bP  0.1720 0.1756 0.1791 0.1826 0.1860 

0.8 
m
bP  0.0794 0.1471 0.2055 0.2564 0.3012 

s
bP  0.1929 0.1973 0.2017 0.2060 0.2102 

0.9 
m
bP  0.0907 0.1662 0.2302 0.2851 0.3326 

s
bP  0.2137 0.2190 0.2243 0.2295 0.2346 

1.0 
m
bP  0.1023 0.1856 0.2547 0.3130 0.3629 

Table 4. The probability that the server is busy 
5.0=p  

λ Prob. 2.0=r  4.0=r  6.0=r  8.0=r  0.1=r  

s
bP  0.0089 0.0178 0.0266 0.0353 0.0440 

0.1 
m
bP  0.0219 0.0221 0.0223 0.0225 0.0227 

s
bP  0.0179 0.0356 0.0531 0.0704 0.0875 

0.2 
m
bP  0.0432 0.0439 0.0447 0.0455 0.0464 

s
bP  0.0269 0.0534 0.0795 0.1052 0.1305 

0.3 
m
bP  0.0639 0.0656 0.0674 0.0693 0.0712 

s
bP  0.0361 0.0713 0.1058 0.1398 0.1732 

0.4 
m
bP  0.0842 0.0871 0.0903 0.0936 0.0973 

s
bP  0.0453 0.0893 0.1322 0.1742 0.2155 

0.5 
m
bP  0.1039 0.1084 0.1133 0.1187 0.1246 
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s
bP  0.0546 0.1073 0.1584 0.2084 0.2576 

0.6 
m
bP  0.1232 0.1296 0.1366 0.1445 0.1534 

s
bP  0.0640 0.1253 0.1846 0.2425 0.2995 

0.7 
m
bP  0.1420 0.1505 0.1601 0.1711 0.1837 

s
bP  0.0734 0.1433 0.2108 0.2766 0.3414 

0.8 
m
bP  0.1603 0.1713 0.1839 0.1984 0.2156 

s
bP  0.0829 0.1614 0.2369 0.3106 0.3833 

0.9 
m
bP  0.1782 0.1918 0.2078 0.2266 0.2492 

s
bP  0.0925 0.1796 0.2631 0.3445 0.4253 

1.0 
m
bP  0.1956 0.2123 0.2319 0.2557 0.2848 

Table 5. The probability that the server is on vacation 
5.0=r  

λ Prob. 2.0=p  4.0=p  6.0=p  8.0=p  0.1=p  

s
vP  0.0070 0.0070 0.0070 0.0070 0.0070 

0.1 
m

vP  0.9910 0.9822 0.9735 0.9650 0.9566 

s
vP  0.0138 0.0138 0.0138 0.0138 0.0138 

0.2 
m

vP  0.9818 0.9642 0.9473 0.9309 0.9151 

s
vP  0.0204 0.0204 0.0204 0.0204 0.0204 

0.3 
m

vP  0.9723 0.9461 0.9212 0.8977 0.8753 

s
vP  0.0268 0.0268 0.0267 0.0267 0.0267 

0.4 
m

vP  0.9625 0.9278 0.8955 0.8653 0.8371 

s
vP  0.0329 0.0329 0.0328 0.0328 0.0327 

0.5 
m

vP  0.9525 0.9093 0.8699 0.8337 0.8005 
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s
vP  0.0388 0.0387 0.0386 0.0385 0.0384 

0.6 
m

vP  0.9422 0.8907 0.8445 0.8029 0.7652 

s
vP  0.0444 0.0443 0.0441 0.0440 0.0439 

0.7 
m

vP  0.9316 0.8719 0.8194 0.7729 0.7314 

s
vP  0.0498 0.0496 0.0494 0.0492 0.0490 

0.8 
m

vP  0.9206 0.8529 0.7945 0.7436 0.6988 

s
vP  0.0549 0.0546 0.0543 0.0540 0.0538 

0.9 
m

vP  0.9093 0.8338 0.7698 0.7149 0.6674 

s
vP  0.0598 0.0594 0.0590 0.0586 0.0582 

1.0 
m

vP  0.8977 0.8144 0.7453 0.6870 0.6371 

Table 6. The probability that the server is on vacation 
5.0=p  

λ Prob. 2.0=r  4.0=r  6.0=r  8.0=r  0.1=r  

s
vP  0.0029 0.0057 0.0084 0.0111 0.0137 

0.1 
m

vP  0.9781 0.9779 0.9777 0.9775 0.9773 

s
vP  0.0057 0.0112 0.0164 0.0214 0.0261 

0.2 
m

vP  0.9568 0.9561 0.9553 0.9545 0.9536 

s
vP  0.0086 0.0166 0.0241 0.0309 0.0372 

0.3 
m

vP  0.9361 0.9344 0.9326 0.9307 0.9288 

s
vP  0.0115 0.0219 0.0313 0.0397 0.0472 

0.4 
m

vP  0.9158 0.9129 0.9097 0.9064 0.9027 

s
vP  0.0144 0.0271 0.0382 0.0477 0.0559 

0.5 
m

vP  0.8961 0.8916 0.8867 0.8813 0.8754 
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s
vP  0.0173 0.0321 0.0446 0.0550 0.0634 

0.6 
m

vP  0.8786 0.8704 0.8634 0.8555 0.8466 

s
vP  0.0202 0.0370 0.0507 0.0615 0.0697 

0.7 
m

vP  0.8586 0.8495 0.8399 0.8289 0.8163 

s
vP  0.0231 0.0417 0.0563 0.0672 0.0747 

0.8 
m

vP  0.8397 0.8287 0.8161 0.8016 0.7844 

s
vP  0.0260 0.0463 0.0615 0.0721 0.0786 

0.9 
m

vP  0.8218 0.8082 0.7922 0.7734 0.7508 

s
vP  0.0289 0.0507 0.0662 0.0763 0.0812 

1.0 
m

vP  0.8044 0.7877 0.7681 0.7443 0.7152 
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