ON \mathcal{N}-NORMAL SUBSETS OF BN-ALGEBRAS

S. Y. Kim and E. H. Roh ${ }^{*}$
Department of Mathematics Education
Institute of Mathematical Education
Chinju National University of Education
Jinju 660-756, Korea

Abstract

We introduce and investigate the notions of an \mathcal{N}-subalgebra and an \mathcal{N}-normal subset in BN-algebras.

1. Introduction

The study of BCK-algebras was initiated by Iseki [3] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. BCK-algebra has been applied to many branches of mathematics, such as group theory, functional analysis and topology. Recently, Kim and Kim [6] introduced the notions of BN -algebras which is a generalization of BCK-algebras (see [2, 7]). Also, Jun et al. [5] and Jun and Kang [4] discussed about \mathcal{N}-structures in BCK-algebras. Fuzzy set theory in BNalgebras is discussed by some researchers (see [1, 8]). In this paper, we

Received: October 30, 2017; Accepted: November 7, 2017
2010 Mathematics Subject Classification: 06F35, 03G25.
Keywords and phrases: BN-algebra, \mathcal{N}-normal subset, \mathcal{N} - subalgebra.
*Corresponding author
investigate an \mathcal{N}-subalgebra and an \mathcal{N}-normal subset in BN -algebras, and establish some of their related properties.

2. Preliminaries

Let us review some definitions and properties. The notion of a BNalgebra was introduced by Kim and $\operatorname{Kim}([6])$. An algebra $(X ; *, \theta)$ of type $(2,0)$ is said to be a $B N$-algebra if it satisfies: for all $x, y, z \in X$,
(K1) $x * x=\theta$,
(K2) $x * \theta=x$,
(K3) $(x * y) * z=(\theta * z) *(y * x)$.
Define a binary relation \leq on a BN-algebra X by letting $x \leq y$ if and only if $x * y=\theta$. It is easy to see that, for any $x \in X$, if $x \leq \theta$, then $x=\theta$.

A non-empty subset S of a BN-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S . S$ is said to be normal of X if $(x * a) *(y * b)$ $\in S$, whenever $x * y, a * b \in S$.

Example 2.1 (See [1, 6]). Consider a BN-algebra $X=\{\theta, 1,2,3\}$ with the following Cayley table:

$*$	θ	1	2	3
θ	θ	1	2	3
1	1	θ	1	1
2	2	1	θ	1
3	3	1	1	θ

It is easy to check that $\{\theta, 1\}$ is a subalgebra of $X,\{\theta, 2,3\}$ is not a subalgebra of X and $\{\theta, 3\}$ is a normal subset of X.

Example 2.2 (See [1, 6]). Consider a BN-algebra $X=\{\theta, 1,2,3\}$ with the following Cayley table:

$*$	θ	1	2	3
θ	θ	1	2	3
1	1	θ	3	θ
2	2	3	θ	2
3	3	θ	2	θ

It is easy to check that $\{\theta\}$ is a subalgebra and not normal of X.

3. Main Results

Denote by $\mathcal{F}(X,[-1,0])$ the collection of functions from a non-empty set X to $[-1,0]$. We say that an element of $\mathcal{F}(X,[-1,0])$ is a negativevalued function from X to $[-1,0]$ (briefly, \mathcal{N}-function on X). By an \mathcal{N} structure, we mean an ordered pair (X, φ) of X and an \mathcal{N}-function φ on X. In what follows, let X denote a BN -algebra and φ be an \mathcal{N}-function on X unless otherwise specified.

Definition 3.1. By normal of X based on \mathcal{N}-function φ (briefly, \mathcal{N} subalgebra of X), we mean an \mathcal{N}-structure (X, φ) in which φ satisfies the following assertion:

$$
\begin{equation*}
(\forall x, y \in X)(\varphi(x * y) \leq \max \{\varphi(x), \varphi(y)\}) \tag{1}
\end{equation*}
$$

Example 3.2. Consider the BN-algebra ($X, *, \theta$) given in Example 2.1. Define an \mathcal{N}-function φ by

$$
\varphi(\theta)=-0.7, \quad \varphi(1)=-0.5, \quad \varphi(2)=-0.3, \quad \varphi(3)=-0.2
$$

It is easily verified that (X, φ) is an \mathcal{N}-subalgebra of X.
Lemma 3.3. Every \mathcal{N}-subalgebra (X, φ) of X satisfies the following inequality:

$$
\begin{equation*}
(\forall x, y \in X)(\varphi(\theta) \leq \varphi(x)) \tag{2}
\end{equation*}
$$

Proof. Let $x \in X$. Then we have $\varphi(\theta)=\varphi(x * x) \leq \max \{\varphi(x), \varphi(x)\}=$ $\varphi(x)$.

Theorem 3.4. If every \mathcal{N}-subalgebra (X, φ) of X satisfies the following inequality:

$$
\begin{equation*}
(\forall x, y \in X)(\varphi(x * y) \leq \varphi(y)) \tag{3}
\end{equation*}
$$

then φ is a constant function.
Proof. Let $x \in X$. Then we have $\varphi(x)=\varphi(x * \theta) \leq \varphi(\theta)$. It follows from Lemma 3.3 that $\varphi(x)=\varphi(\theta)$, and so φ is a constant function.

For any \mathcal{N}-function φ on X and $t \in[-1,0)$, the set

$$
\mathcal{C}(\varphi ; t):=\{x \in X \mid \varphi(x) \leq t\}
$$

is called a closed (φ, t)-cut of φ, and the set

$$
\mathcal{O}(\varphi ; t):=\{x \in X \mid \varphi(x)<t\}
$$

is called an open (φ, t)-cut of φ.
We provide a characterization of an \mathcal{N}-subalgebra.
Theorem 3.5. Let (X, φ) be an \mathcal{N}-structure of X and φ. Then (X, φ) is an \mathcal{N}-subalgebra of X if and only if every non-empty closed (φ, t)-cut of φ is a subalgebra of X for all $t \in[-1,0)$.

Proof. The proof is straightforward.
Definition 3.6. By normal of X based on \mathcal{N}-function φ (briefly, \mathcal{N}-normal of X), we mean an \mathcal{N}-structure (X, φ) in which φ satisfies the following assertion:

$$
\begin{equation*}
(\forall x, y, a, b \in X)(\varphi((x * a) *(y * b)) \leq \max \{\varphi(x * y), \varphi(a * b)\}) . \tag{4}
\end{equation*}
$$

Example 3.7. Consider the \mathcal{N}-structure (X, φ) which is described in Example 3.2. Then $\{\theta, 3\}$ is \mathcal{N}-normal of X.

Theorem 3.8. Every \mathcal{N}-normal of X is an \mathcal{N}-subalgebra of X.
Proof. Let (X, φ) be an \mathcal{N}-normal subset of X and let $x, y \in X$. Then we have

$$
\begin{aligned}
\varphi(x * y) & =\varphi((x * y) *(\theta * \theta)) \leq \max \{\varphi(x * \theta), \varphi(y * \theta)\} \\
& =\max \{\varphi(x), \varphi(y)\} .
\end{aligned}
$$

Therefore, (X, φ) is an \mathcal{N}-subalgebra of X.
The converse of Theorem 3.8 is not true in general, as seen from the following.

Example 3.9. The \mathcal{N}-structure (X, φ) given in Example 3.2 shows that the converse of Theorem 3.8 does not hold since

$$
\varphi((2 * 2) *(\theta * 3))=\varphi(\theta * 3)=\varphi(3) \not \leq \varphi(1)=\max \{\varphi(2 * \theta), \varphi(2 * 3)\} .
$$

By Lemma 3.3 and Theorem 3.8, we have the following result.
Corollary 3.10. Every \mathcal{N}-normal (X, φ) of X satisfies the following inequality:

$$
(\forall x, y \in X)(\varphi(\theta) \leq \varphi(x)) .
$$

By Lemma 3.3 and Theorem 3.8, we the have following result.
Corollary 3.11. If every \mathcal{N}-normal (X, φ) of X satisfies the following inequality:

$$
(\forall x, y \in X)(\varphi(x * y) \leq \varphi(y))
$$

then φ is a constant function.
For any element w of X, we consider the set

$$
X_{w}:=\{x \in X \mid \varphi(x) \leq \varphi(w)\} .
$$

Obviously, X_{w} is a non-empty subset of X because $w \in X_{w}$.

Theorem 3.12. Let w be an element of X. If (X, φ) is an \mathcal{N}-normal subset of X, then the set X_{w} is a normal subset of X.

Proof. Obviously, $\theta \in X_{w}$ by Corollary 3.10. Let $x, y, a, b \in X$ be such that $x * y \in X_{w}$ and $a * b \in X_{w}$. Then we have $\varphi(x * y) \leq \varphi(w)$ and $\varphi(a * b) \leq \varphi(w)$. Since (X, φ) is an \mathcal{N}-normal subset of X, it follows from (4) that $\varphi((x * a) *(y * b)) \leq \max \{\varphi(x * y), \varphi(a * b)\} \leq \varphi(w)$ so that $(x * a) *(y * b) \in X_{w}$. Hence, X_{w} is a normal subset of X.

Theorem 3.13. For any normal subset U of X, there exists an \mathcal{N} function φ such that (X, φ) is an \mathcal{N}-normal subset of X and $\mathcal{C}(\varphi ; t)=U$ for some $t \in[-1,0)$.

Proof. Let U be a normal subset of X and let φ be an \mathcal{N}-function on X defined by

$$
\varphi(x)= \begin{cases}0 & \text { if } x \notin U, \\ t & \text { if } x \in U,\end{cases}
$$

where t is fixed in $t \in[-1,0)$. Then (X, φ) is an \mathcal{N}-structure of X and $\mathcal{C}(\varphi ; t)=U$.

We provide a characterization of an \mathcal{N}-normal subset.
Theorem 3.14. Let (X, φ) be an \mathcal{N}-structure of X and φ. Then (X, φ) is an \mathcal{N}-normal subset of X if and only if every non-empty closed (φ, t)-cut of φ is a normal subset of X for all $t \in[-1,0)$.

Proof. Assume that (X, φ) is an \mathcal{N}-normal subset of X and let $t \in[-1,0)$ be such that $\mathcal{C}(\varphi ; t) \neq \varnothing$. Let $x * y, a * b \in \mathcal{C}(\varphi ; t)$. Then we get $\varphi(x * y) \leq t$ and $\varphi(a * b) \leq t$. It follows from (4) that $\varphi((x * a) *(y * b)) \leq$ $\max \{\varphi(x * y), \varphi(a * b)\} \leq t$ so that $(x * a) *(y * b) \in \mathcal{C}(\varphi ; t)$. Hence, $\mathcal{C}(\varphi ; t)$ is a normal subset of X.

Conversely, suppose that every non-empty closed (φ, t)-cut of φ is a normal subset of X for all $t \in[-1,0)$. If (X, φ) is not an \mathcal{N}-normal subset of X, then $\varphi((x * a) *(y * b))>t_{0} \geq \max \{\varphi(x * y), \varphi(a * b)\}$ for some $x, y, a, b \in X$ and $t_{0} \in[-1,0)$. Hence, $x * y, a * b \in \mathcal{C}\left(\varphi ; t_{0}\right)$ and $(x * a) *(y * b) \notin \mathcal{C}\left(\varphi ; t_{0}\right)$. This is a contradiction. Thus, (X, φ) is an $\mathcal{N}-$ normal subset of X.

Corollary 3.15. If (X, φ) is an \mathcal{N}-normal subset of X, then every nonempty open (φ, t)-cut of φ is a normal subset of X for all $t \in[-1,0)$.

References

[1] G. Dymek and A. Walendziak, (Fuzzy) ideals of BN-algebras, The Scientific World Journal 2015 (2015), Article ID 925040, 9 pp.
[2] Y. Huang, BCI-algebras, Science Press, Beijing, 2006.
[3] K. Iseki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
[4] Y. B. Jun and M. S. Kang, Created \mathcal{N}-ideals of BCK/BCI-algebras, Appl. Math. Sci. 6(103) (2012), 5119-5126.
[5] Y. B. Jun, K. J. Lee and S. Z. Song, \mathcal{N}-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.
[6] C. B. Kim and H. S. Kim, On BN-algebras, Kyungpook Math. J. 53 (2013), 175-184.
[7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
[8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.

