Far East Journal of Mathematical Sciences (FJMS)

ISSN: 0972-0871

ON $\mathcal N$ -NORMAL SUBSETS OF BN-ALGEBRAS

S. Y. Kim and E. H. Roh*

Department of Mathematics Education Institute of Mathematical Education Chinju National University of Education Jinju 660-756, Korea

Abstract

We introduce and investigate the notions of an $\mathcal N$ -subalgebra and an $\mathcal N$ -normal subset in BN-algebras.

1. Introduction

The study of BCK-algebras was initiated by Iseki [3] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. BCK-algebra has been applied to many branches of mathematics, such as group theory, functional analysis and topology. Recently, Kim and Kim [6] introduced the notions of BN-algebras which is a generalization of BCK-algebras (see [2, 7]). Also, Jun et al. [5] and Jun and Kang [4] discussed about \mathcal{N} -structures in BCK-algebras. Fuzzy set theory in BN-algebras is discussed by some researchers (see [1, 8]). In this paper, we

Received: October 30, 2017; Accepted: November 7, 2017 2010 Mathematics Subject Classification: 06F35, 03G25.

Keywords and phrases: BN-algebra, $\,\mathcal{N}\,$ -normal subset, $\,\mathcal{N}\,$ - subalgebra.

*Corresponding author

investigate an $\mathcal N$ -subalgebra and an $\mathcal N$ -normal subset in BN-algebras, and establish some of their related properties.

2. Preliminaries

Let us review some definitions and properties. The notion of a BN-algebra was introduced by Kim and Kim ([6]). An algebra $(X; *, \theta)$ of type (2, 0) is said to be a *BN-algebra* if it satisfies: for all $x, y, z \in X$,

(K1)
$$x * x = \theta$$
,

(K2)
$$x * \theta = x$$
,

(K3)
$$(x * y) * z = (\theta * z) * (y * x)$$
.

Define a binary relation \leq on a BN-algebra X by letting $x \leq y$ if and only if $x * y = \theta$. It is easy to see that, for any $x \in X$, if $x \leq \theta$, then $x = \theta$.

A non-empty subset S of a BN-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. S is said to be *normal* of X if (x * a) * (y * b) $\in S$, whenever x * y, $a * b \in S$.

Example 2.1 (See [1, 6]). Consider a BN-algebra $X = \{\theta, 1, 2, 3\}$ with the following Cayley table:

*	θ	1	2	3
θ	θ	1	2	3
* $\frac{*}{\theta}$ 1 2 3	1 2 3	θ	1	1
2	2	1	θ	1
3	3	1	1	θ

It is easy to check that $\{\theta, 1\}$ is a subalgebra of X, $\{\theta, 2, 3\}$ is not a subalgebra of X and $\{\theta, 3\}$ is a normal subset of X.

Example 2.2 (See [1, 6]). Consider a BN-algebra $X = \{\theta, 1, 2, 3\}$ with the following Cayley table:

*	θ	1	2	3
θ	θ	1	2	3
1	1	θ	3	θ
2	2	3	θ	2
3	3	θ	2	θ

It is easy to check that $\{\theta\}$ is a subalgebra and not normal of X.

3. Main Results

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a non-empty set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure, we mean an ordered pair (X, φ) of X and an \mathcal{N} -function φ on X. In what follows, let X denote a BN-algebra and φ be an \mathcal{N} -function on X unless otherwise specified.

Definition 3.1. By normal of X based on \mathcal{N} -function φ (briefly, \mathcal{N} -subalgebra of X), we mean an \mathcal{N} -structure (X, φ) in which φ satisfies the following assertion:

$$(\forall x, y \in X)(\varphi(x * y) \le \max\{\varphi(x), \varphi(y)\}). \tag{1}$$

Example 3.2. Consider the BN-algebra $(X, *, \theta)$ given in Example 2.1. Define an $\mathcal N$ -function ϕ by

$$\phi(\theta) = -0.7, \quad \phi(1) = -0.5, \quad \phi(2) = -0.3, \quad \phi(3) = -0.2.$$

It is easily verified that (X, φ) is an \mathcal{N} -subalgebra of X.

Lemma 3.3. Every \mathcal{N} -subalgebra (X, φ) of X satisfies the following inequality:

$$(\forall x, \ y \in X)(\varphi(\theta) \le \varphi(x)). \tag{2}$$

Proof. Let $x \in X$. Then we have $\varphi(\theta) = \varphi(x * x) \le \max{\{\varphi(x), \varphi(x)\}} = \varphi(x)$.

Theorem 3.4. If every \mathcal{N} -subalgebra (X, φ) of X satisfies the following inequality:

$$(\forall x, y \in X)(\varphi(x * y) \le \varphi(y)), \tag{3}$$

then φ is a constant function.

Proof. Let $x \in X$. Then we have $\varphi(x) = \varphi(x * \theta) \le \varphi(\theta)$. It follows from Lemma 3.3 that $\varphi(x) = \varphi(\theta)$, and so φ is a constant function. \square

For any \mathcal{N} -function φ on X and $t \in [-1, 0)$, the set

$$C(\varphi; t) := \{ x \in X \mid \varphi(x) \le t \}$$

is called a *closed* (φ, t) -*cut* of φ , and the set

$$\mathcal{O}(\varphi; t) := \{ x \in X \mid \varphi(x) < t \}$$

is called an *open* (φ, t) -cut of φ .

We provide a characterization of an $\mathcal N$ -subalgebra.

Theorem 3.5. Let (X, φ) be an \mathcal{N} -structure of X and φ . Then (X, φ) is an \mathcal{N} -subalgebra of X if and only if every non-empty closed (φ, t) -cut of φ is a subalgebra of X for all $t \in [-1, 0)$.

Definition 3.6. By normal of X based on \mathcal{N} -function φ (briefly, \mathcal{N} -normal of X), we mean an \mathcal{N} -structure (X, φ) in which φ satisfies the following assertion:

$$(\forall x, y, a, b \in X)(\varphi((x*a)*(y*b)) \le \max\{\varphi(x*y), \varphi(a*b)\}).$$
 (4)

Example 3.7. Consider the \mathcal{N} -structure (X, φ) which is described in Example 3.2. Then $\{\theta, 3\}$ is \mathcal{N} -normal of X.

Theorem 3.8. Every \mathcal{N} -normal of X is an \mathcal{N} -subalgebra of X.

Proof. Let (X, φ) be an \mathcal{N} -normal subset of X and let $x, y \in X$. Then we have

$$\varphi(x * y) = \varphi((x * y) * (\theta * \theta)) \le \max\{\varphi(x * \theta), \varphi(y * \theta)\}$$
$$= \max\{\varphi(x), \varphi(y)\}.$$

Therefore, (X, φ) is an \mathcal{N} -subalgebra of X.

The converse of Theorem 3.8 is not true in general, as seen from the following.

Example 3.9. The \mathcal{N} -structure (X, φ) given in Example 3.2 shows that the converse of Theorem 3.8 does not hold since

$$\varphi((2*2)*(\theta*3)) = \varphi(\theta*3) = \varphi(3) \not\leq \varphi(1) = \max\{\varphi(2*\theta), \varphi(2*3)\}.$$

By Lemma 3.3 and Theorem 3.8, we have the following result.

Corollary 3.10. Every \mathcal{N} -normal (X, φ) of X satisfies the following inequality:

$$(\forall x, y \in X)(\varphi(\theta) \leq \varphi(x)).$$

By Lemma 3.3 and Theorem 3.8, we the have following result.

Corollary 3.11. If every N -normal (X, φ) of X satisfies the following inequality:

$$(\forall x, y \in X)(\varphi(x * y) \le \varphi(y)),$$

then φ is a constant function.

For any element w of X, we consider the set

$$X_w := \{x \in X \mid \varphi(x) \le \varphi(w)\}.$$

Obviously, X_w is a non-empty subset of X because $w \in X_w$.

Theorem 3.12. Let w be an element of X. If (X, φ) is an \mathcal{N} -normal subset of X, then the set X_w is a normal subset of X.

Proof. Obviously, $\theta \in X_w$ by Corollary 3.10. Let $x, y, a, b \in X$ be such that $x * y \in X_w$ and $a * b \in X_w$. Then we have $\varphi(x * y) \le \varphi(w)$ and $\varphi(a * b) \le \varphi(w)$. Since (X, φ) is an $\mathcal N$ -normal subset of X, it follows from (4) that $\varphi((x * a) * (y * b)) \le \max\{\varphi(x * y), \varphi(a * b)\} \le \varphi(w)$ so that $(x * a) * (y * b) \in X_w$. Hence, X_w is a normal subset of X.

Theorem 3.13. For any normal subset U of X, there exists an \mathcal{N} -function φ such that (X, φ) is an \mathcal{N} -normal subset of X and $\mathcal{C}(\varphi; t) = U$ for some $t \in [-1, 0)$.

Proof. Let U be a normal subset of X and let φ be an $\mathcal N$ -function on X defined by

$$\varphi(x) = \begin{cases} 0 & \text{if } x \notin U, \\ t & \text{if } x \in U, \end{cases}$$

where t is fixed in $t \in [-1, 0)$. Then (X, φ) is an \mathcal{N} -structure of X and $\mathcal{C}(\varphi; t) = U$.

We provide a characterization of an $\mathcal N$ -normal subset.

Theorem 3.14. Let (X, φ) be an \mathcal{N} -structure of X and φ . Then (X, φ) is an \mathcal{N} -normal subset of X if and only if every non-empty closed (φ, t) -cut of φ is a normal subset of X for all $t \in [-1, 0)$.

Proof. Assume that (X, φ) is an \mathcal{N} -normal subset of X and let $t \in [-1, 0)$ be such that $\mathcal{C}(\varphi; t) \neq \emptyset$. Let x * y, $a * b \in \mathcal{C}(\varphi; t)$. Then we get $\varphi(x * y) \leq t$ and $\varphi(a * b) \leq t$. It follows from (4) that $\varphi((x * a) * (y * b)) \leq \max\{\varphi(x * y), \varphi(a * b)\} \leq t$ so that $(x * a) * (y * b) \in \mathcal{C}(\varphi; t)$. Hence, $\mathcal{C}(\varphi; t)$ is a normal subset of X.

Conversely, suppose that every non-empty closed (φ, t) -cut of φ is a normal subset of X for all $t \in [-1, 0)$. If (X, φ) is not an \mathcal{N} -normal subset of X, then $\varphi((x*a)*(y*b)) > t_0 \ge \max\{\varphi(x*y), \varphi(a*b)\}$ for some $x, y, a, b \in X$ and $t_0 \in [-1, 0)$. Hence, $x*y, a*b \in \mathcal{C}(\varphi; t_0)$ and $(x*a)*(y*b) \notin \mathcal{C}(\varphi; t_0)$. This is a contradiction. Thus, (X, φ) is an \mathcal{N} -normal subset of X.

Corollary 3.15. If (X, φ) is an \mathcal{N} -normal subset of X, then every non-empty open (φ, t) -cut of φ is a normal subset of X for all $t \in [-1, 0)$.

References

- [1] G. Dymek and A. Walendziak, (Fuzzy) ideals of BN-algebras, The Scientific World Journal 2015 (2015), Article ID 925040, 9 pp.
- [2] Y. Huang, BCI-algebras, Science Press, Beijing, 2006.
- [3] K. Iseki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
- [4] Y. B. Jun and M. S. Kang, Created $\mathcal N$ -ideals of BCK/BCI-algebras, Appl. Math. Sci. 6(103) (2012), 5119-5126.
- [5] Y. B. Jun, K. J. Lee and S. Z. Song, $\mathcal N$ -ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.
- [6] C. B. Kim and H. S. Kim, On BN-algebras, Kyungpook Math. J. 53 (2013), 175-184.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.