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Abstract

Simultaneous equation models describe a two-way flow of influence
among variables. Simultaneous equation models using panel data,
especially for fixed effect where there are spatial errors with exact
solutions, still require to be developed. This paper proposes feasible
generalized least squares - three-stage least squares (FGLS-3SLS) to
find all of the estimators with exact solution. The proposed estimators
are proved to be consistent.

1. Introduction

There are two methods to find parameter estimators in simultancous
equation models, namely, single-equation methods and system methods. The
former the methods which are applied to one equation of the system at a time
and the latter the methods which are applied to all equations of the system
simultaneously as described in [1]. The latter are the methods which are
much more efficient than the former because they use much more
information [1].

Solution techniques of system methods consist of two methods, namely,
three-stage least squares (3SLS) and full information maximum likelihood
(FIML). The estimators of the former are more robust than that of the latter
[2]. Consequently, solution technique by means of 3SLS is much more
advantageous than the one by FIML because it is both time saving and cost
saving.

But sometimes, we have an obstacle to obtain the parameter estimators
of simultaneous equation models because of the limitation of observations.
However, these problems can be overcome by means of panel data. One
advantage of panel data is their ability to increase the degree of freedom or
the sample size [3-5].

If the model contains spatial influence and the spatial influence comes
only through the error terms, we can use spatial error model. We refer to [14]
for the use of first-order queen contiguity to find row-standardized spatial
weight matrix and refer to [15-17] for examining spatial influence by means
of Moran index.
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There are some papers about estimation of parameters in simultaneous
panel spatial regression models. However, they are limited only to random
effects [6, 7, 11]. They used methods of spatial error component three-stage
least squares (SEC-3SLS) [6] and five-step new estimation strategy [7, 11].

Based on above statements, we are motivated to develop simultaneous
equation models for fixed effect panel data with one-way error component by
means of 3SLS solutions. In this model, there are spatial influences and they
come only through the error terms. At this time, we use fixed effect models
with one-way error component. There are no lags for both endogenous
explanatory variables and exogenous explanatory variables for this model.
The objective of this paper is to obtain the closed-form and numerical
approximation estimators of parameter models and to prove their

consistency, especially for closed-form estimators.
2. Models Development

We refer to [5] with m simultaneous equations model in m endogenous

variables, namely
Yh = Inp + Xpan + Y_pB_p +up, 2.1

for h =1, 2, 3, ..., m, where y}, denotes the hth endogenous variable vector,
X}, denotes the hth matrix of observations including (for example kpy)
exogenous explanatory variables, Y_p denotes the —hth matrix of

observations including endogenous explanatory variables except the hth

endogenous explanatory variables, py, denotes the hth mean parameter, ay,
denotes the hth parameter vector of exogenous explanatory variables, P_p
denotes the —hth parameter vector of endogenous explanatory variables, up,
denotes the hth random error vector assuming mean vector 0 and covariance
matrix cﬁln (homoscedasticity) in which O'% denotes the unknown hth error
variance and I, denotes the n x n identity matrix, and 1 denotes the unit

vector.
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We suppose that (2.1) is over identified. Solution of (2.1) by 3SLS is
premultiplying (2.1) by the matrix of observations on all the exogenous
explanatory variables in the system. This shows that among all the
exogenous explanatory variables and all the random errors are uncorrelated

in the system, and we obtain
XLy = XLGp+ XL Xo + XL Y B+ XL,u, (2.2)

m
where X, denotes n x Z kp, matrix including all the exogenous explanatory
h=1

m
variables in the system, X,, denotes mn x mz Ky diagonal matrix whose
h=1

submain diagonal is X,, y denotes mnx1 vector including all of nx1
vectors, Y, G denotes mn x m diagonal matrix whose submain diagonal is

m
1, p denotes mx1 vector including all of pp, X denotes mnx Y ky
h=1

diagonal matrix whose submain diagonal is n x k;, matrix, X}, o denotes

m
Zkh x1 vector including all of kn x1 vectors, an, PB_ denotes
h=1

m(m —1) x 1 vector including all of (m—1)x1 vectors, B_, Y_ denotes
mn x m(m —1) diagonal matrix whose submain diagonal is nx(m —1)
matrix, Y_p, u denotes mn x1 vector including all of nx1 vectors, uy,

and n denotes the sample size of observations.

The next model is fixed effect panel data regression model with one way
error component [3, 4], namely

yj=1u+Xja+1yj+uj, (2.3)

for j=1,2,3,..,T, where y j denotes the endogenous variables vector of
jth time period, X denotes the matrix of jth time period including (for

example, K) exogenous explanatory variables, u denotes the mean parameter,
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a denotes the parameters vector of exogenous explanatory variables, v j
denotes the jth time period time specific effect parameter, u j denotes the jth
time period random error vector assuming mean vector 0 and covariance

matrix Gzln, o2 denotes the unknown error variance. There is one

T
restriction of (2.3), namely Zy i =0.
j=1
We refer to [8] for the properties of Kronecker products, [9] for
reparametrization, [1, 10, 2] for 3SLS estimation, and [12] for GLS and
FGLS. By (2.1), using panel data and then adopting models in (2.3), we
obtain new form of equations:

Yhj = 1up + Xpjap + YopiB_p +1vpj + up (2.4)

for h=12,3..,m j=12,3,.., T, where Yhij denotes the jth time
period hth endogenous variables vector, Xp; denotes the jth time period hth
matrix including (for example, ky,) exogenous explanatory variables, Y_p

denotes the jth time period —hth matrix including endogenous explanatory
variables except the jth time period hth endogenous explanatory variables,
Yhj denotes the jth time period hth time specific effect parameter, Upj

denotes the jth time period hth random error vector assuming mean vector 0

T
and covariance matrix G%In. There is one restriction, namely Z vj=0.
j=1

We refer to [13] for spatial error model, namely:
y =1y + Xa + u,
u = AWu + g, (2.5)

where y denotes the endogenous variables vector, X denotes the matrix of
observations including (for example, K) exogenous explanatory variables,
u denotes the spatial autocorrelation of random error vector, A denotes the

spatial autocorrelation parameter, W denotes the row-standardized spatial
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weight matrix, and ¢ denotes the random error vector assuming normal
distribution with mean vector 0 and covariance matrix Gzln.
If (2.4) contains spatial influence and the spatial influence comes only

through the error terms, then we can adopt model in (2.5) and we obtain new

form of equations:
Yhj = lup + Xpjop + YopiBop + lyp) + uy;,

for h=12,3..,m j=12,3,.., T, where up; denotes the jth time
period hth spatial autocorrelation of random error vector, A, denotes the hth

spatial autocorrelation parameter, and &p; denotes the jth time period hth

random error vector assuming normal distribution with mean vector 0 and
5 T
covariance matrix ojI,. There is one restriction, namely Z vj =0.
j=1
We refer to [14] for the use of first-order queen contiguity to find the
row-standardized spatial weight matrix and to [15-17] for examining spatial
influence by means of Moran index. Equation (2.6) can be rewritten as:

Vhj = Iup + Xpjon + YopiBp + Iy + Apep. 2.7)
Since Apupj = &pj, Upj = Aﬁlshj, where Ap =1, — A W.
For the solution of (2.7) by 3SLS, we obtain the following equation:
X iypj = X + X4 Xpjen + X5 Y piBop + XL 1yh; + X5 AR ehj, (2.8)

but the restriction iy j =0 will not be achieved. This is due to X, j
j=1

having in general, different values of the matrix of observations in every jth

time period. This paper overcomes the restrictive problem by means of

average value approach of the matrix of observations. We use this approach
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because the estimator of the mean is unbiased, consistent, and efficient as
revealed by [1, 2, 5, 10].

As a consequence of this approach, we can write (2.8) as
Xiyp = Xidup + XiXpjap + XoY_pBp + Xilyy + XiAp ey, (2.9)

which can be rewritten to obtain new forms of vectors and matrices as
follows:

XLy = XuGp + XLZ 0 + XL,Gyj + XLA.zj, (2.10)

where Z; =[X;:Y_;] and 0' = [0} pL] having dimensions mn x
m m

> Ky +m(m—1)| and Ky, + m(m —1) | x I, respectively. A, denotes
h=1 h=1

mn x mn diagonal matrix whose submain diagonal is Aﬁl, &) denotes

mn x 1 vector including all of nx1 vectors, ;. All others of the vectors

and matrices are denoted like the ones in equation (2.2), we just add index j
T

except for matrix of X,.. We change X, for X, with X, = Tl le*j
J:

m
and X,, denotes mn x mz ky, diagonal matrix whose submain diagonal is
h=1
o T
X,. For j=1,2,3,.., T, the restriction Zth =0 is changed to
j=1

M-
<
I
=

—
Il
—_

3. Estimating the Parameters

Now, we estimate all of the parameter models from equation (2.10) and

their estimators [, é, and ¥ j- Estimation of (2.10) is done in three stages.

During the first-stage, we estimate all the endogenous explanatory variables
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in the system in every time period as follows:

Yhj = Xj@hj + Vhj, 3.1

where X’} denotes the matrix of observations including intercept and all the
exogenous explanatory variables in the system in every jth time period, ap;

denotes the hth parameter vector of the exogenous explanatory variables in

the system in every jth time period, and Vpj denotes the hth error random
vector in every jth time period assuming mean vector 0 and covariance

matrix G\QIhIn in which G\Z/h denotes the unknown vjth error variance.

To obtain yp;, we must find the estimator of ap;. Estimator for ay; is

obtained by minimizing residual sum of squares (vthjvhj) in least squares

method. To minimize this residual sum of squares, we first differentiate with

respect to apj, then by setting this derivative equal to zero, we obtain the

estimator of ap; which is given by
ap = (XX Xty (3.2)
We estimate yp; by
Yhj = Xﬂ}&hj, (3.3)
and obtain
Yoy =[92) 93j Faj--Fmj) Yoo =[51j 93 F4j - Imj )
Y3 =[91j ¥2j J4j---Imil Yomj = [31j 92j 93 Im-1j )

During the second-stage, we first estimate parameter Ap because this
parameter is unknown. We assume that there is no spatial influence in (2.6).

We substitute Y_p; by \A(_hj in (2.6), where Y_pj = SA{_hj + V_hj and obtain
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new equations as follow:
yhj = lj,lh + Zhjeh + l'yhj + u;j, (34)

where  Zp; = [Xp; ff{_hj] and 0}, =[a}, 1 p'] having dimensions
nx(ky, + m—1) and 1x(k, + m—1), respectively, and u;j denotes the

composite random error with u’ﬁj = \A]—hjﬁ—h + upj. By using the results of

(3.3), we apply least squares method to find the parameter estimators of

Hh, Op, and vpj. Because the matrix in the right-hand side is less than full

rank, to get the estimator of @y, we use N xn dimensional transformation

1

matrix Q in which Q1 = 0. We note in passing that Q =1 —ﬁllt is

symmetrical and idempotent. Premultiplying (3.4) by Q, we have

Qyhj = QZy;0y + Qu;j and by means of least squares method the estimator

of 0y, is as follows:
A T -Irr
0 = {Z(sz )tQZhj] {Z(thj )tQth]
j=1 j=1

-1
T T
=| > ZhQZyi | | D ZQyn | (3.5)
=1 =1
By (3.4), the estimators of p, and yy; are
lt T T .
Ah =3 Zym‘ - ZZhj 0 |, (3.6)
j=1 j=1
i = (ttyy - i — 11Z40 3
Thj = (Uypj = Nip hjOn ) (3.7

respectively.
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From (3.5)-(3.7), we can estimate u;j as follows:
thj = Yhj — 1(fn +7nj) = ZnjOn = Yhj — Ihj- (3.8)
We use ﬁﬁj to estimate parameter A;, by means of concentrated log-
likelihood.
The likelihood function of Ehjs i=12..,n,j=1,23,..,T, denoted

T n
by Ly, is as follows: Ly, = H (2ot ) 2 exp[—ﬁ s%]jshj J, and by Jacobian
j=1

transformation, we obtain the natural logarithm of Ly as Inly =

T
_%ln@ncﬁ)—z%_z‘utththAhuhj +TlIn|Ap |, where |Ap|l is the
Gh j=1

absolute of the determinant of Ajp,.
We take derivative of O'% . Setting this derivative equal to zero, we obtain

the estimator of G%, namely

T
52 = Syt AL AU
Oh = nT ;thAhAhth. (3.9)

By (3.9), we obtain the concentrated log-likelihood as follows:

.
In 15" — ¢ _%1{%211}1]1;}]%%} £ T | Ap |, (3.10)
=l

where C = —%log(Zn) - %

Let W have eigenvalues ®;, ®,, ..., ®,. The acceptable spatial

. . 1 .
autocorrelation parameter is ——— < A, <1 [18]. We use numerical
Ominimum
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method for InL{>" to find estimator of A}, namely method of forming

sequence of A}, by means of R program. Its procedure is as follows:

(1) We make sequence values of A, where A = seq(start value, end

value, increasing).
(2) For every Upj, h=1,2, .., m we insert values of Ay in (3.10) and
find the largest InL{”". Because the values of upj are unknown, we use

residual error from (3.8).

(3) Finding the value of A, we obtain the largest In Lf>".

By substituting Ap' = Ap' with Ap =1, -A,W and Y.y =
‘A{—hj + V—hja where \A7_hj is residual error matrix from (3.1), into (2.7), we

obtain
yhj = 1Hh + Zthh + lyhj + ll;}k, (311)

where Zp; = [Xp fi(_hj], o}, = [a}, 1 pL}] and uﬁ;‘ = {,_th_h + Aﬁlshj
having dimensions nx(ky +m—1), 1x(ky + m—1) and nx 1, respectively.
V_th_h = (Y_pj - ‘A{—hj)ﬁ—h can be absorbed into error Aﬁlshj because
Xpj and (Y_pj - SA(_hj) as well as \A{_hj and (Y_pj — \A{_hj) are independent
2, 10].

Since the error variance in equation (3.11) is not constant and the matrix
in the right-hand side is less than full rank, we overcome these problems by
means of reparametrization and generalized least squares (GLS). The

estimators are as follows:

T T

A t At A t At t

O = | > ZhjALAp[1b} —1,]Zyy ZZ jAhAn[1bl, — Iy lyhj, (3.12)
j=1 j=1
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.
N 1.t A
fp = Tbhjzf(th — Zyj0p), (3.13)

N t . A
Yhj = bh(ynj — 1 — ZpjOn), (3.14)

where b}, = 1'ALA1)711' AL A, which having 1 x n dimension. By (3.12)

to (3.14), we can estimate uﬁ: as follows:

G55 = Yhj — 1(fip + Thj) = ZnjOn. (3.15)

We then use (3.15) and (3.9) to find the estimated covariance matrix of

the estimator ﬁﬁ}‘, namely

- s A A o
O] 12 613 ' OlIm
A ) N A
G621 G) G23 Gom )
o A A A A n ~ . %k .
L=163 63 cg =+ 63y |» Oh = Opys if h=h" with
A A A ~2
LOml  Om2  Om3 Om |

A Kk

.

~ _ 1 AkE AT A

Opp* = ﬁzuhj AhApll
=1

where 6% denotes the hth estimated error variance, 6hh* denotes the h*th

and the hth estimated error covariance, and X denotes m x m estimated
covariance matrix.

From (2.10), we have error covariance matrix Var(ii*z&*sj) =

ii*[&* var(e j )Aii** This covariance shows that random errors are
heteroscedastic, where Var(sj) = E(sjstj) forh=h"=12,3,..,m, stj =

[e1j 25 &mj ], sthj = [eh1j &n2j - &nnj], in which we assumed that
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S if1=1

0 ifi=i

E(Shijgh*i*j) = {

I,. We obtain var(gj) = Z®1, with mnxmn as

- t _—
so that E(shjah*j) =0

its dimension. Consequently, var(X%,A & j)= XLAL(Z®I,)ALX,, = 4

m m
whichis m) k, x m)_ky symmetrical matrix.
h=1 h=1

We use the estimator of X4 because X is unknown. The estimator of Xy

1s as follows:

s R R R _
Cl# C12# O13# "t Olm#
~ ) ~ ~
Gl Goy Go3#  ° Oom# 5
2, A~ A~ A A A A . _ * .
Xy =634 O3 G%# o Gymy |» O =G ey if h = h” with
n n n A2
LOmi# Omo# Om3# OSm# |
n - S P N

In the above results, we see that the error variance in equation (2.10) is
not constant and the matrix in the right-hand side is less than full rank. For
the last-stage, we overcome those problems again by means of

reparametrization and GLS. The estimators are as follows:

-1
T T
n t."*"* . t_"*"*_
9_{Z;ZJH M ZJ] Z;ZJH My, (3.16)
= j=

.
i =[TG'H'GI'G'H Y (vj - 2;90), (3.17)
j=1

7; = [G'H'GI'G'H"(y; - Gji - Z6), (3.18)
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where H* = X,,25'X!, and M* = G[G'H*G]"'G'H* - 1,,,. H*, M",

and I, have dimension mn x mn.

In this paper, the estimators of 6, a and y j are called the estimators of

feasible generalized least squares-multivariate spatial error three-stage least
squares fixed effect panel simultaneous (FGLS-MSE3SLSFEPS).

4. Properties of Estimators

Theorem (Consistency). If ii*yj = ii*Gu + ii*ZjB + ii*Gyj +
ii*A*sj as defined in (2.10), then é, p and ?J— are consistent estimators.

Proof. Recall (2.10). This can be rewritten as yj = Gp+Z;0

+ Gy j + A,gj. Estimators of equation (2.10) are as follows:

-1
T T
no_ t_"*"* . ’[_"*“*_
0=\ > ziMz;| Y Zi™y;
j=1 j=1

-1
T T
_ LN 7 AN A . | NEFC —
-0+ ZZJHMZJ ZZJHMA*sj ,M*G =0,
j=1 j=1
. T
) U .
i =[TG'H'GI'G'H™D (vj - 2,0)

j=1
th [ ety N ety <
=p+[TGH'GI| Y G'H'Zj(0-0)+ > G'H'Azj |, Y vj =0,
j=1 j=1 j=1
~ Oy ok —1 Oy % A A
7; =[GA'GI'G'H (y; - GA - Z;0)
~ Yy~ 11~y A [ A SR el Pall o
=(n-p)+[GA'GI'G'HZ;(0-0)+v; +[G'H'G] 'G'H"A¢.

We refer to [1, 2, 10, 19-21]. Asymptotic expectation and variance of

A

0, i and 7 are as follows:
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-1
;
A 1 Al . 1 Ly *7 .
E{G}—nlﬂoE{ﬂ}—9+[nlgIgoﬁjz:;ZJHMZJ}

T—>ow T—>ow

.
. 1 t_"*"* .
nh_r)r;oﬁZZJH M*ALE{e;}
T 1=

- -1
;
~0+| lim LK} [ lim —— 3 Z{A'N"A, x 0]

- -1
=0+| lim E] x0=0+[K]'x0=0,

—
—

var{0} = asy.var ZthI:I*M*Zj ZthI:I*M*A*sj
=1 j=1

-1
T T
= {Z thﬁ*M*ZJ} { ZiH M AL(Z © 1) AL Z |

=1 =1

T -1
. Z thH*M*Zj ,
j=1

where H* and H*M™ are symmetrical. Now,
T -1

. N t s n\r*7 .

lim asy.var{0} = ZZJH M'Z;
j=1

n—o
T >

;
Y ZYEAL lim (21, ALHMZ
& ) n—oo NT )

=1 T >
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-1

.
=K' Y 25V AL x 0 x ALA'MZ; |[K]
j=1

=[K]"' x0x[K] ' = 0.
This shows that 0 is asymptotically unbiased estimator. If n — o or

T — o orboth of N — o and T —> o, then asy.var{d} — 0. Therefore, 6

1S a consistent estimator. Next,

Efii} = lim Efji}
n—oo

T oo

-1
il i LT Gt
—"{nlgrzonT[nGHG} }

T—>o

T T
{ZGtI:I*Z j[e— lim {é}} lim > G'H"A.Ele j}]
j=1 N—00 N—o0 4

T T>w J=1

n—oo NT n—o 4
T—w T J=1

-1 T T
=p+| lim L[%KI} J(Z G‘H*Zj(e ~0)+ lim Y G'H'A, x OJ
j=1

_ im K. T [x0=
=p+ nlgr;onT[Kl] x0 =p,
T >

where K; and K| are constant nonsingular matrices. We have

T
asy.var{{i} = asy.var [TthI*G]_IZthI*Zjé
i=1

T
+ asy.var [TGtI:I*G]_lZ GtI:I*A*sj ,
il
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T
asy.var [TGtI:I*G]_lz G'H'Z jﬁ
j=1

.
= [TG'H'G]"| Y G'HZ jasyvar(6}Z{H"G |[TG'H'G] ),
j=1

T
asy.var{[TGtI:I*G]1 Z GtI:I*A*sj }
j=1

= [G'H*G][G'H*A.(Z @ 1)) ALA*G][TG'H*G] !,

.
lim asy.var|[TG'H'G] Y G'H"Z ;b
Nn—o0
T oo

R T
:hm—[—GHG}
n—>oonT n

T

i=1

T -1
S GUH'Z;| lim asy.var(} |ZYH'G | lim iFG‘H*G}
n—oo n—oo nT n

j=1 T oo Tow

T
. 1 = -1 tory t . 1 = -1
= lim —|K HZ:  x0xZ-HG| lim —([K =0
nl_l;llo nT[ 1] ZG jx X ] nE)rio nT[ l] s
T o0 =1 T o

T
lim asy.var [TthI*G]_IZ GtI:I*A*Sj
n—c0 .
T oo =1

-1

= [GY*G] Y G'H*A{ lim LT(Z o1, AL'G || lim LG'R*G
N—00 N—0
T T
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-1
= [K ] [G'H*A, x 0 x ALH*G]| lim K,

nN—oo
T >

=K' xox[K;]" =0

Consequently,

T
lim asy.var{i} = lim asy.var [TGtI:I*G]_IZGtI:I*Z jé
nN—oo nN—o0

T oo T oo j=t

Nn—oo "
T—>w J=1

T
+ lim asy.var [TGtH*G]_lz GtH*A*Sj

=0.

This shows that i is asymptotically unbiased estimator. If n — o or

T — o or both of N — o and T — o, then asy.var{fi} — 0. Therefore,
IU is a consistent estimator. Now,

E{?j}=n1£1305{“?j}

T—o

T—ow T—>w

- (u — lim E{@}J +[G'H*G]'G'A*Z j[e — lim E{é}J +7j
n—o n—co

+ lim [G'H'G] 'G'H"A,Efe}
5%

—1 Oy * . —1 Oy
=(n-p)+[K]'GHZ;(0-0)+7; +n1i130[1<1] G'H'A, x0=7yj,

T—>ow

asy.var{y j} = asy.var{ji} + asy.var{[G'H*G]'G'H*Z Jé}

- asy.var{[GtI:I*G]_thI:I*A*sj },
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asy.var{{G'H*G] 'G'H*Z Jé}
= [GtI:I*G]_thI:I*Zjasy.var{é}thfI*G[thI*G]_l,
asy.var{[GtI:I*G]_thI:I*A*ﬁj }
- [G'H*G] ' G AL(Z ® 1) ALA*G[GIA*G],

. t -1 ~tfy*7 A
lim asy.var{[G'H*G]"'G'H Z;6}

nN—oo
= [G'H*G]'G'A*Zj(lim asy.var{0})Z{H*G[G'H*G]"!
n—oo
—1 ~ty* t -1
= [K,]'G'H*Z; x 0 x ZYH'G[K,] " =0,

lim asy.var{[GtI:I*G]_thI:I*A*sj }

n—o0

-1
- [GtH*G]_thH*A*{ lim %(2 ® In)}ALH*G[ lim thH*G}
nN—o0

n—oo N
= [K,]'GH*A, x 0 x ALH*G[K,]! = 0.
Consequently,

lim asy.var{y;} = lim asy.var{fi} + lim asy.var{[G'H*'G] 'G'H*Z Jé}
n—oo N— 00 N—o0

T—oow Too T

+ lim asy.var{[GtI:I*G]_thI:I*A*sj}
n—o0
T—>o

=0.

This shows that ¥ is asymptotically unbiased estimator. If n — oo, then

asy.var{y j} — 0. Therefore, ¥ j is a consistent estimator.
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5. Illustration

Suppose there are three dependent variables Y, Y,

y3 and six

exogenous explanatory variables X;j, X2, X1, Xp2, X31, X3p observed for

two time periods and the number of observations being 10 locations with

equation models as follows:

Yiij = W + o Xpgij + apXpij + BraYaij + BiaYsij + v1j + Uiijs

Yaij = Hp + 01X + 2 X02ij + Ba1Viij + B23Ysij + v2j + Uaij

Y3ij = M3 + 031X3gij + 03pX30i + B31Yiij + Ba2Yaij + v3j + Usije

t 2
Uiij = Mwiugj + &5jj, €15 ~ N(0, o7),

t 2
Ugij = AoWilyj + €255, €25 ~ N(0, 63),

{ 2
Usij = Aswiusj + &5, €3 ~ N(0, 03),

(5.1)

i)

where
Wy Wi Wi, 10 wh
Wop Wy W3, 10 wh
W= wy Wy W3 10 | =] wh
[ Wi0,1 Wi0,2 Wio,3 W10,10 | _w}o_
i=123 ..10
and
(6) (10)
(5) (9)
(4)
(8)
@) ) )
(1)

Figure 5.1. Illustration of the 10 neighboring locations.
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Then from Figure 5.1, we obtain row-standardized spatial weight matrix

as follows:
o L L 9 0 0 0o 0 o o
2 2

1 1 1

3 0 3 37 0 0 0 0 0 0

1 1 1

3 3 0 3 0 0 0 0 0 0

1 1 1 1 1 1 1
o 7z 7 037 7 7 7 709
o 0 0o + o L o 0o 0o o
W= R '

00 0 5 5 0 0 0 0 0
1 1

0.0 0 5 0 0 0 > 0 0
1 1 11

00 0 7 0 0 2 0 - o

o 0 0 + o0 o o L o 1
3 3 3

1 1
0 0 0 0 0 0 0 Z 5 0]

The formulation of Moran index is as follows:

10 10

Z Z‘Nn*(yhii - yhj)(yhi*j = Vhj)

i=li*=]
10 ;
Z(yhij — Vhj)
i1

Ihj =

*t *
Bl L R A P )
Yhj¥hj

10
_ 1 _
where Yp; = EZ Yhij and Yhj = ¥hj — Yl
i—1

If there is at least one Ip; > E(l), then we conclude that there is a

spatial influence for the equation models.
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Table 5.1. Data for dependent and exogenous explanatory variables

Variables
Time Location Dependent Exogenous explanatory

i Y293 Xt X2 X1 X2 X310 X3

1 1 15 25 20 45 51 46 49 47 48
2 17 28 23 40 55 42 56 45 53

3 4 27 21 41 56 40 58 42 51

4 12 26 24 42 58 43 57 40 55

5 18 29 22 47 57 45 58 42 51

6 19 28 26 46 54 44 55 43 54

7 20 31 29 45 56 47 54 49 57

8 13 33 31 43 57 46 59 45 52

9 14 29 28 47 59 48 60 46 59

10 16 27 25 44 52 43 53 44 52

2 1 16 24 21 50 65 51 64 53 65
2 17 29 27 51 66 52 67 54 63

3 15 27 23 59 66 58 68 57 71

4 14 26 22 58 64 59 66 54 73

5 17 30 28 57 63 60 62 56 61

6 20 29 27 61 67 61 68 60 67

7 18 32 31 63 68 62 65 61 64

8 14 32 30 62 68 64 66 59 71

9 15 29 27 64 69 65 68 53 59

10 18 26 23 58 65 57 69 58 67

Note: data illustration

yll =15.80; 721 = 28.30; 731 = 24.90; )_/12 =16.40; y22 = 28.40;

732 = 2590, |11 = —02442, |21 = 00539, |31 = 04586, |12 = —02317,
-1 -1

|22 = _00878, |32 = _01078, and E(Ihj) = E(I) = m = m =

- 0.1111.

Based on the above result, by means of R Program version 3.0.3, we obtain
that there is a spatial influence for the equation models.
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We then continue to estimate parameters by means of FGLS-3SLS. For
the first-stage, we estimate all the endogenous explanatory variables in the
system in every time period and the results are as in Table 5.2.

Table 5.2. Estimated values for endogenous explanatory variables

Endogenous explanatory variables

Time Location
Y] -estimate Yy, -estimate Y3 -estimate
1 1 16.5625 26.5828 21.7290
2 15.0373 28.5890 25.1588
3 16.1904 27.6672 20.7955
4 12.3775 26.0621 23.9145
5 16.1804 28.3403 22.0819
6 17.2918 26.9959 24.8593
7 18.7007 29.1060 26.5129
8 12.3543 31.5231 28.7592
9 16.4805 31.4345 30.8012
10 16.8246 26.6991 24.3877
2 1 15.5100 25.9073 23.1069
2 17.3247 27.0314 24.7638
3 15.8433 26.3597 22.8089
4 13.3019 25.4562 21.0773
5 17.3259 29.7492 27.8872
6 18.1930 30.2621 28.3106
7 18.0785 31.1379 29.8797
8 14.7653 32.0924 30.1569
9 14.9671 29.3371 27.3870
10 18.6902 26.6667 23.6217

For the second-stage, we estimate X.. From (3.5)-(3.8), we obtain

[Gq;] [0.1004 ] (G| [0.11047
a, Gy | |—0.3539 i, &y | |0.0870
O =| o =] o |=| o | 8y = N T O
Bl |[Bp 0.0145 B_o| [Py | |0.0280
[Biz] L 0.1207 By | 105193
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(a3 [-0.0477]

a3 b3, 0.0741

O =| o |=| o [=] |
B_sl |Bs 0.1091

| Bsp | | 1.3424 |

fiy =29.0005; fiy =3.6897; i3 = ~16.4294;
711 = -1.3963; 91, =1.3963; 9,y = 147115 75, = —1.4711;
731 = —0.2131; 7§35 = 0.2131.

Table 5.3. Estimated values for residual errors

Residual errors

Time Location
Uj -estimate U, -estimate U3 -estimate
1 1 -2.0852 -1.2510 -2.1640
2 1.3894 -0.1567 -2.1566
3 -0.8172 1.1237 -3.0398
4 -2.5630 -1.6336 2.1391
5 2.7690 1.9038 -2.9422
6 2.4922 -0.1981 2.5667
7 4.0701 1.6595 2.6443
8 -2.6813 2.3459 2.2713
9 -1.6205 -3.1377 -1.5306
10 -0.9535 -0.6557 22118
2 1 0.4177 -1.8521 -1.5421
2 1.4548 1.8653 2.9468
3 -1.1030 0.1722 -0.4396
4 -2.4882 0.2060 -0.2406
5 -0.6258 0.7948 0.5418
6 3.3293 -1.0818 -1.4951
7 1.2802 1.2572 1.6116
8 -2.6666 0.8980 -0.9222
9 -1.1394 -0.9537 0.3575
10 1.5410 -1.3061 -0.8181
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Graph of function of lambda 3

Figure 5.2. Graphs of function of lambda.

By W, we have the acceptable spatial autocorrelation parameter to

be -1.6242 < A <1. By the method of forming sequence of Ay with

increasing 0.01, we obtain

(1) A = seq(-1.6142, 0.99, 0.01).

(2) For every upj, h =1, 2, 3, we insert values of Ap to (3.10) and find

the largest In Ly”". We use residual error from Table 5.3.

(3) We obtain A, = —0.3342; A, = —0.5242; A3 = 0.0258. From (3.12)
to (3.15), it follows

o
o= -
B_i
a3
6y = -
B3

fi; = 30.4847;

(6,1 [0.1166 ]
Gpp | | —0.3295
B | |-0.1156

B3] [ 0.1078 |
[G31]  [-0.0379]

b3, 0.0642
B 0.1036
Bsp | | 13270

fi, =9.2146;

fiy = —15.8118;

r A

021
a2

B2

| B23 ]

[0.1255 ]
0.0083

—-0.0442

| 0.5048 |
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'?11 = —11697, ’912 =1.1697; '?21 =1.0892; ’?22 = —1.0892;
'?31 = —02252, ’?32 = 0.2252.

Table 5.4. Estimated values for residual errors

Time Location Residual errors
Uj -estimate U, -estimate U3 -estimate

1 1 -2.0276 -1.7228 -2.2548
2 1.7354 -0.0777 -2.1559

3 -0.6877 1.4103 -3.0375

4 -2.6673 -1.7008 2.1551

5 2.8813 2.1329 -2.9296

6 2.5544 -0.0697 2.5846

7 4.3957 1.7895 2.6734

8 -2.0044 2.4592 2.2926

9 -1.0423 -2.6488 -1.4288

10 -0.8548 -0.7101 2.1931

2 1 0.4360 -2.0388 -1.5636
2 1.6002 2.0544 2.9229

3 -1.1994 0.2145 -0.4320

4 -2.6595 -0.1325 -0.2117

5 -0.1104 0.5151 0.5204

6 3.7548 -0.8357 -1.4836

7 1.7832 1.2665 1.5965

8 -2.0198 0.7209 -0.8520

9 -0.9434 -1.0140 0.3263

10 1.5356 -0.9529 -0.8397

We obtain
60,331.13  71,066.58  60,705.21 - 3,943.87 |

71,066.58  83,961.02  71,569.47 - 4,690.12

Xy =|60,705.21 71,569.47 61,141.64 --- 3,960,70

| 3,943.87 4,690.12 3,983.00 - 142,414.61]
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For the last-stage, we estimate the parameters of equation models (5.1). By
(3.16) to (3.18), we obtain

o] [0.1286

ap || -0.6923

0oy 0.0440

0y | | —0.1209

o3| |—-0.0037

o3 | | -0.0974 w ] [48.1897
0=|..[=| .. || fi=|p|=]226601;

By | |-0.0335 13 4.1290

Bis 0.1649

Brr | |-0.2279

Bas 0.5671

By | |-0.1679

B3| [ 1.0580 |

vi1] [-2.9458 vi2 | [2.9458
F1=1721 | =]-02138]; 7§, =y [=]0.2138

va1l | -1.1473 Y32 | [1.1473

and the estimated equation models (5.1) are

J1i1 = 48.1897 + 0.1286X; 1i; — 0.6923x;5i; — 0.0335y,j;
+0.1649y5;, — 2.9458 + Uy,

Yai1 = 22.6601 + 0.0440X, i, — 0.1209%5i; — 0.2279yy;;
+0.5671y55; — 0.2138 + Uy,

§3i; = 4.1290 — 0.0037%31j; — 0.0974X35i; — 0.1679yi

+ 10580y2|1 —1.1473 + 03“,
Uy = —0.3342wliy,

02“ = —0.5242WEﬁ21,
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Usi; = 0.0258wliis;,
Viin = 48.1897 + 0.1286X; 1j» — 0.6923X2i> — 0.0335Y5i,
+ 0.1649Yy3j5 + 2.9458 + Uyjp,
Yoin = 22.6601 + 0.0440X%51i2 — 0.1209%95i2 — 0.2279yjio
+ 0.5671y3i5 + 0.2138 + Uyjo,
Y3ip = 4.1290 — 0.0037X31j2 — 0.0974X35i» — 0.1679Y4i»

+ 10580y2|2 +1.1473 + 03i2,
Ui, = —0.3342wliy,

—0.5242w}iiyy,

Uzin
03i2 = 00258W}ﬁ32
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