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Abstract 

We present a new Mellin transform type integral formula involving  
the generalized Wright-Bessel (or Bessel-Maitland) function defined 
by Ghayasuddin et al. [7, 8] expressed in terms of the generalized 
(Wright) hypergeometric function. The integral formula presented 
here, being very general, can be specialized to yield numerous integral 
formulas involving extended Wright-Bessel function and extended 
Mittag-Leffler functions, only three of which are demonstrated. 

1. Introduction and Preliminaries 

Recently, numerous integral formulas involving a variety of special 
functions and their generalizations have been presented (see, e.g., [2, 7-9, 
11]). Also, many integral formulas associated with the Bessel functions of 
several kinds and their extensions have been established (see, e.g., [3-5]). 
Those integrals involving Wright-Bessel functions play important roles in 
many branches of theoretical and applied physics and engineering. Very 
recently, Abouzaid et al. [1] and Khan and Kashmin [10] have presented 
certain interesting and new classes of integral formulas involving the 
generalized Wright-Bessel function, which are expressed in terms of the 
generalized (Wright) hypergeometric function. In the present sequel to the 
aforementioned investigations, we present a Mellin transform type integral 
formula involving generalized Wright-Bessel functions and its variant, which 
are expressed in terms of the generalized (Wright) hypergeometric function 

qpΨ  and the generalized hypergeometric function ,qp F  respectively. Some 

particular cases of our main results are also considered. 

The Wright-Bessel function ( )zJμν  is defined by the following series 

(see [12, equation (8.3)]): 
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Singh et al. [19] introduced the following generalization of Wright-
Bessel function: 

 
( ) ( )
( )∑

∞

=

γμ
ν +ν+μΓ

−γ
=

0

,
, !1

n

n
qn

q nn
z

J  

   ( ) ( ) ( ) ( )( ),1,0,0,1,0 N∪∈≥γℜ−≥νℜ≥μℜ q  (1.2) 

where ( )νλ  is the Pochhammer symbol defined ( )C∈νλ,for  by (see        

[21, p. 2 and p. 5]): 
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and ( )λΓ  is the familiar Gamma function. Here and in the following, let 

NRC ,, +  and −
0Z  be the sets of complex numbers, positive real numbers, 

positive integers and non-positive integers, respectively, and let =:0N  

{ }.0∪N  

In the sequel of the above-cited works, Ghayasuddin et al. [7] introduced 
and investigated a new extension of Wright-Bessel function as follows: 
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( ( ) ( ) ( ) ( ) ,0,0,1,0 ≥δℜ≥γℜ−≥νℜ≥μℜ  

( ) ).,, pqqp +μℜ<∈ +R  (1.4) 

We consider some special cases of the extended Wright-Bessel function 

( )zJ pq,,
,,

μ
δγν  in (1.4): 
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  (i) We have 

 ( ) ( ),,,
,,

,,
,,1 zEzJ pqpq

δγμ
ν

δγμ
−ν =−  (1.5) 

where ( )zE pq
δγμ

ν
,,
,,  is the extended Mittag-Leffler function in [18]. 

 (ii) We get 

 ( ) ( ),,
,

1,,
1,,1 zEzJ qq

γμ
ν

γμ
−ν =−  (1.6) 

where ( )zE q
γμ

ν
,
,  is the extended Mittag-Leffler function in [20]. 

(iii) We find 

 ( ) ( ),,
1,,

1,1,1 zEzJ γ
νμ

γμ
−ν =−  (1.7) 

where ( )zE γ
νμ,  is the extended Mittag-Leffler function in [15]. 

(iv) We obtain 

( ) ( ),,
1,1,

1,1,1 zEzJ νμ
μ
−ν =−  (1.8) 

where ( )zE νμ,  is the Mittag-Leffler function in [23]. 

(v) We see 

 ( ) ( ),1,1,
1,1,0 zEzJ μ

μ =−  (1.9) 

where ( )zEμ  is the Mittag-Leffler function in [13]. 

An interesting generalization of the generalized hypergeometric series 

qp F  (see, e.g., [21, Section 1.5]) is due to Fox [6] and Wright [24-26] who 

studied the asymptotic expansion of the generalized (Wright) hypergeometric 
function defined by (see [22, p. 21]; see also [17]) 
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where the coefficients +∈ RpAA ...,,1  and +∈ RqBB ...,,1  such that 
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A special case of (1.10) is 
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We also need to recall the following integral formula of the Mellin 
transform type (see [14, p. 22, Entry 2.47]): 
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2. Integral Formulas 

Here, we establish a Mellin transform tpye integral formula involving the 
extended Wright-Bessel function (1.4) and its variant. 

Theorem 2.1. Let C∈νηδ ,,  with ( ) ,0>δℜ  ( ) .0>ηℜ  Also, let 

+∈μλγ R,,,,, qpa  with ,0≥−+μ qp  ( ) ,0 λ<δℜ<  and ( ) >νℜ  

.1 μ−−  Then 
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( )∫
∞ γμ

ην
λ−−δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+++
+++

0 2
,,
,,

21

2
2 dx

axxax

yJaxxaxx q
p  

( ) ( )
( )γΓ

ηΓδΓ= λ−δδ− 221 a  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

.
;,,1,1,1,,,1

;1,1,1,1,1,,,
44 ⎥⎦

⎤
⎢⎣
⎡ −

ηδ+λ+λμ+ν
+λδ−λγ

Ψ× a
y

p
q

 (2.1) 

Proof. Let L  be the left side of (2.1). Using (1.4) and changing the order 
of integral and summation, which is verified under the given conditions, we 
obtain 
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Applying the formula (1.13) to the integral in (2.2), we obtain 
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which, upon expressing in terms of the generalized (Wright) hypergeometric 

function (1.10), leads to the right side of (2.1). 
 

Under a little stronger condition, by using the following multiplication 
formula (see, e.g., [21, p. 6, equation (30)]): 
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the integral formula (2.1) can be expressed in terms of the generalized 
hypergeometric function qp F  which is asserted in the following theorem. 
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Theorem 2.2. Let C∈νηδ ,,  with ( ) ,0>δℜ  ( ) .0>ηℜ  Also, let 
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where ( )A;mΔ  abbreviates the array of m parameters 
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3. Special Cases 

Here, among numerous special cases of the results in Section 2, only 
three of which are presented. 

  (i) Using the relation (1.5) in the formula (2.1), we have 
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provided C∈νηδ ,,  with ( ) ( ){ } 0,min >ηℜδℜ  and +∈μλγ R,,,,, qpa  

with ( ) ,0,0 λ<δℜ<≥−+μ qp  and ( ) .μ−>νℜ  
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 (ii) Using the relation (1.5) in the formula (2.3), we obtain 
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provided C∈νηδ ,,  with ( ) ( ){ } 0,min >ηℜδℜ  and +∈λγ R,,a  and 

N∈μ,, qp  with ( ) ,0,0 λ<δℜ<≥−+μ qp  and ( ) .μ−>νℜ  

(iii) Setting 1,0 ===γ=η=ν qp  in (2.3) and using (1.9), we get 
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provided ( ) ,,0 +∈λ>δℜ R  and .N∈μ  

In addition to three formulas (3.1), (3.2) and (3.3), by suitably 
specializing the integral formulas in Section 2, we can present other 
numerous integral formulas associated with extended Wright-Bessel 
functions and extended Mittag-Leffler functions. 
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