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Abstract 

We aim to provide a new proof of the extended Watson’s summation 
theorem for the series ( )134 F  due recently to Kim et al. [4]. Several 

interesting special cases of the extended Watson’s summation theorem 
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are also considered. We note that the method of proof used here is 
potentially useful in getting some other summation formulas for the 
series .qp F  

1. Introduction 

Throughout this paper, let qp F  denote the generalized hypergeometric 

series (see, for details, e.g., [1, 6], [7, Section 1.5]). Kim et al. [4] established 
extensions of various classical summation theorems for the series ,12 F  23 F  

and ,34 F  two of which, for our present investigation, are recalled: 
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provided ( ) 12,\ 0 >−−∈ − bacd RZC  and where 

( ) ( ) ( )141222:1 −−−−+−−+−= bacd
abcbcbacac  

and ( ) .814:2 −++= badc  

The result (1.1) is an extension of the following classical Gauss’ second 
summation theorem (see, e.g., [1, p. 11], [6, p. 69] and [7, p. 350]): 
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and the result (1.2) is an extension of the following classical Watson’s 
summation theorem (see, e.g., [1, p. 16] and [7, p. 351]): 
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( )( ).12 −>−− bacR  (1.4) 

Here and in the following, each of denominator parameters in the qp F  is 

assumed to be nonzero. 

Kim et al. [4] established the summation formula (1.2) by using some 
results contiguous to Gauss’ second summation theorem obtained by Lavoie 
et al. [5]. Here, we provide a new proof of the extended Watson’s summation 
theorem (1.2). We also consider some interesting special cases of (1.2). For 
an interesting proof of the classical Watson’s summation theorem (1.4), the 
reader may be referred to [3]. 
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2. Derivation of (1.2) 

Let L  be the left side of (1.2). Expressing 34 F  as the series, we have 
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where ( )nλ  is the Pochhammer symbol defined ( )C∈λfor  by (see [7, p. 2 

and pp. 4-6]): 
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where Γ is the familiar Gamma function. Here and in what follows, let NC,  

and −
0Z  be the sets of complex numbers, positive integers and non-positive 

integers, respectively, and let { }.0:0 ∪NN =  Applying a known identity 

(see, e.g., [6, p. 49]) 
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to (2.1), we obtain 

( ) ( ) ( )

( ) ( )
∑
∞

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+−−

⎟
⎠
⎞⎜

⎝
⎛ ++

+
=

0
12 .1

;2
1

;2
1

2
1,2

1

!232
1

1

k
k

k
k

kkk

c

kk
F

kdba

dba
L  (2.3) 

It easily follows from (2.2) that 
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Using (2.4), we get 
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Expressing 12 F  in (2.3) as the series with the aid of (2.5), we obtain 
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Applying the following formal manipulation of double series (see, e.g., [2] 
and [6, p. 57, Lemma 11]): 
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to (2.6) and using the identity 
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Expressing the inner series in (2.7) as a ,23F  we get 
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Now, we can evaluate the 23F  series in (2.8) with the help of (1.1), after 

simplification, using Gauss’ second summation theorem (1.3), we arrive at 
the right side of (1.2). 

3. Special Cases of (1.2) 

Here, we consider some interesting and potentially useful special cases of 
(1.2). 

  (i) First, setting nb 2−=  and replacing a by na 2+  and second, letting 
12 −−= nb  and substituting 12 ++ na  for ( )0N∈na  in (1.2), we see 

that, in each case, one of the two terms on the right side of the resulting 
identities (1.2) will vanish. We thus have 
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 (ii) Also, setting ( )12
1 += ad  and 12 −= cd  in (3.1), respectively, 

we obtain the following summation formulas: 
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We note that the identities (3.3)-(3.6) have been presented by Lavoie et 
al. [5] who employed other methods different from those used here. We also 
remark that the method of proof used here is potentially useful in getting 
some other summation formulas for the .qp F  
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