ISSN: 0972-0871

ON THE FORM AND PROPERTIES OF AN
 INTEGRAL TRANSFORM WITH STRENGTH IN INTEGRAL TRANSFORMS

Hwajoon Kim
Department of General Education
Kyungdong University
Yangju 482-010, Korea

Abstract

We propose and study the properties of an integral transform that has strengths in transforms of integrals. This result is from the intrinsic structure and properties of Laplace-typed integral transforms. Also, this form is well adapted to solving Volterra integral equation and semi-infinite string.

1. Introduction

The method of integral transforms has been developed because of the easy accessibility and the high application. The form is defined by

$$
\int_{0}^{\infty} K(s, t) f(t) d t
$$

where the kernel $K(s, t)$ is doing the role which transforms one space to the other space in order to solve the solution. In the previous researches, the

2010 Mathematics Subject Classification: Primary 35A22, 44A05.
Keywords and phrases: integral transform, integral equation.
nature of integral transform is mentioned well in [2-4]. The shifted data problem [14], the Laplace transform of derivative expressed by Heaviside functions [15], and the solution of Volterra integral equation of the second kind by using the Elzaki transform [18] were proposed. As a study of comprehensive forms, we have proposed the intrinsic structure and properties of Laplace-typed integral transforms in [13] as

$$
\begin{equation*}
F(u)=G(f)=u^{\alpha} \int_{0}^{\infty} e^{-\frac{t}{u}} f(t) d t \tag{1}
\end{equation*}
$$

for an integer α and for a generalized integral transform G. In general, Laplace transform has a strong point in the transforms of derivatives, that is, the differentiation of a function $f(t)$ corresponds to multiplication of its transform $£(f)$ by s. While, if we choose $G_{-2}(f)$ as

$$
\begin{equation*}
G_{-2}(f)=\frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{t}{u}} f(t) d t \tag{2}
\end{equation*}
$$

then this transform is giving a simple tool for transforms of integrals. That is, the integration of a function $f(t)$ corresponds to multiplication of $G_{-2}(f)$ by u, whereas the differentiation of $f(t)$ corresponds to division of $G_{-2}(f)$ by u. This means that the integer α is applicable to -2 in (1).

The form of Laplace transform is a well-known fact, and it is defined by

$$
£(f)=\int_{0}^{\infty} e^{-s t} f(t) d t .
$$

Since the Laplace transform $£(f)$ can be rewritten as

$$
\int_{0}^{\infty} e^{-\frac{t}{u}} f(t) d t
$$

for $s=1 / u$, the value of α is applicable to 0 in (1). Similarly, Sumudu transform $[7,8,19]$ has the value of $\alpha=-1$ and Elzaki $[9-11,16]$ has the value of $\alpha=1$.

In this article, we investigate the properties of the integral transform which is $\alpha=-2$ in a generalized integral transform G and we apply it to semi-infinite string.

2. The Properties of an Integral Transform that has Strengths in Transforms of Integrals

Theorem 1. The following properties are valid:
(A) (u-shifting) If $f(t)$ has the transform $F(u)$, then $e^{a t} f(t)$ has the transform

$$
F\left(\frac{u}{1-a u}\right) .
$$

That is,

$$
G_{-2}\left[e^{a t} f(t)\right]=F\left(\frac{u}{1-a u}\right) .
$$

(B) (t-shifting) If $f(t)$ has the transform $F(u)$, then the shifted function $f(t-a) h(t-a)$ has the transform $e^{-a / u} F(u)$. In formulas,

$$
G_{-2}[f(t-a) h(t-a)]=e^{-a / u} F(u)
$$

where $h(t-a)$ is a Heaviside function (we write h since we need u to denote u-space.)
(Ca)

$$
G_{-2}\left(f^{\prime}\right)=\frac{1}{u} Y-\frac{1}{u^{2}} f(0) .
$$

(Cb)

$$
G_{-2}\left(f^{\prime \prime}\right)=\frac{1}{u^{2}} Y-\frac{1}{u^{3}} f(0)-\frac{1}{u^{2}} f^{\prime}(0)
$$

for $Y=G_{-2}(f)$ and where f is differentiable n-times.
(Cc)

$$
\begin{aligned}
G_{-2}\left(f^{(n)}\right)= & \frac{1}{u^{n}} Y-\frac{1}{u^{n+1}} f(0)-\frac{1}{u^{n}} f^{\prime}(0)-\frac{1}{u^{n-1}} f^{\prime \prime}(0) \\
& -\cdots-\frac{1}{u^{2}} f^{(n-1)}(0)
\end{aligned}
$$

for n is an arbitrary natural number.
(D) Let $F(u)$ denote the transform of an integrable function $f(t)$, i.e., $F(u)=G_{-2}[f(t)]$. Then

$$
G_{-2}\left[\int_{0}^{t} f(\tau) d \tau\right]=u F(u)
$$

holds for $t>0$.
(E)

$$
G_{-2}(f * g)=u^{2} G_{-2}(f) G_{-2}(g),
$$

where $*$ is the convolution of f and g.
(Fa)

$$
G_{-2}(f)^{\prime}(u)=\frac{d G}{d u}=-\frac{2}{u} Y+\frac{1}{u^{2}} G_{-2}(t f(t)) .
$$

(Fb)

$$
G_{-2}(f)^{\prime \prime}(u)=\frac{6}{u^{2}} Y-\frac{2}{u} G_{-2}(t f(t))\left(1+\frac{1}{u^{2}}\right)+\frac{1}{u^{2}} G_{-2}\left(t^{2} f(t)\right) .
$$

(Fc)

$$
\int_{u}^{\infty} G_{-2}(f)(s) d s=a-u^{2} G_{-2}\left(\frac{f(t)}{t}\right)
$$

for a constant $a=\int_{0}^{\infty} f(t) / t d t$ and for $Y=G_{-2}(f)(u)$ under the condition of the limit of $f(t) / t$, as t approaches 0 from the right, exists.
(Fd) $G_{-2}\left(t y^{\prime}\right)=Y+u(d Y / d u)$ and $G_{-2}\left(t y^{\prime \prime}\right)=d Y / d u+\left(1 / u^{2}\right) y(0)$ for $Y=G_{-2}(f)(u)$.

Proof. Since these can be obtained by modifying the results of a generalized integral transform G, we would just like to check a few and skip the rest.

The proof of (D). Using (C) and putting $g(t)=\int_{0}^{t} f(\tau) d \tau$,

$$
G_{-2}(f(t))=G_{-2}\left(g^{\prime}(t)\right)=\frac{1}{u} G_{-2}(g)-\frac{1}{u^{2}} g(0)=\frac{1}{u} G_{-2}(g) .
$$

The proof of (E). Let us put

$$
G_{-2}(f)=\frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{\tau}{u}} f(\tau) d \tau
$$

and

$$
G_{-2}(g)=\frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{v}{u}} g(v) d v .
$$

Then

$$
G_{-2}(f) G_{-2}(g)=\frac{1}{u^{4}} \int_{0}^{\infty} e^{-\frac{\tau}{u}} f(\tau) d \tau \cdot \int_{0}^{\infty} e^{-\frac{v}{u}} g(v) d v
$$

As let us put $t=v+\tau$, where τ is at first constant. Then $v=t-\tau$ and so, we get

$$
G_{-2}(g)=\frac{1}{u^{2}} \int_{\tau}^{\infty} e^{-\frac{t-\tau}{u}} g(t-\tau) d t=\frac{1}{u^{2}} e^{\frac{\tau}{u}} \int_{\tau}^{\infty} e^{-\frac{t}{u}} g(t-\tau) d t .
$$

Since we can change the order of integration by using dominated convergence theorem [5, 12],

$$
G_{-2}(f) G_{-2}(g)=\frac{1}{u^{4}} \int_{0}^{\infty} f(\tau) \int_{\tau}^{\infty} e^{-\frac{t}{u}} g(t-\tau) d t d \tau
$$

and when t varies τ to ∞, τ varies 0 to t. Hence,

$$
\begin{aligned}
G_{-2}(f) G_{-2}(g) & =\frac{1}{u^{4}} \int_{0}^{\infty} e^{-\frac{t}{u}} \int_{0}^{t} f(\tau) g(t-\tau) d \tau d t \\
& =\frac{1}{u^{4}} \int_{0}^{\infty} e^{-\frac{t}{u}}(f * g)(t) d t \\
& =\frac{1}{u^{2}} G_{-2}(f * g) .
\end{aligned}
$$

As we have seen above, for G_{-2}-integral transform, the integration of a function $f(t)$ corresponds to multiplication of $G_{-2}(f)$ by u, whereas the differentiation of $f(t)$ corresponds to division of $G_{-2}(f)$ by u. Using $G_{-2}(f)=\frac{1}{u^{2}} \cdot F\left(\frac{1}{u}\right)$ for Laplace transform $£(f)=F(s)$, we can obtain the table of G_{-2}-integral transforms as follows.

It is a well-known fact that convolution helps in solving integral equations of certain type, mainly Volterra integral equation. Hence, we would like to explain the idea in terms of examples appearing in [17]. Next, we would like to check an example related to semi-infinite string.

Example 1. Solve the Volterra integral equation of the second kind

$$
y(t)-\int_{0}^{t} y(\tau) \sin (t-\tau) d \tau=t
$$

Solution. This is rewritten as a convolution

$$
y(t)-y * \sin t=t
$$

Taking G_{-2}-integral transform on both sides and applying (C) of Theorem 1, we have

$$
Y(u)-u^{2} Y(u) \frac{1}{1+u^{2}}=Y(u)\left(1-\frac{u^{2}}{1+u^{2}}\right)=1
$$

for $Y=G_{-2}(y)$. The solution is

$$
Y(u)=1+u^{2}
$$

and gives the answer

$$
y(t)=t+\frac{1}{6} t^{3}
$$

by Table 1.
Table 1. Table of G_{-2}-integral transforms

	$f(t)$	$G_{-2}(f)$
1	1	$1 / u$
2	t	1
3	t^{n}	$n!, u^{n-1}$
4	$e^{a t}$	$\frac{1}{u(1-a u)}$
5	$\sin a t$	$\frac{a}{1+u^{2} a^{2}}$
6	$\cos a t$	$\frac{1}{u\left(1+u^{2} a^{2}\right)}$
7	$\sinh a t$	$\frac{a}{1-u^{2} a^{2}}$
8	$\cosh a t$	$\frac{1}{u\left(1-u^{2} a^{2}\right)}$
9	$e^{a t} \cos a t$	$\frac{1-a u}{u^{3}\left[\left(\frac{1}{u}-a\right)^{2}+a^{2}\right]}$
10	$e^{a t} \sin a t$	$\frac{a}{u^{2}\left[\left(\frac{1}{u}-a\right)^{2}+a^{2}\right]}$

Example 2. Solve the Volterra integral equation of the second kind:

$$
y(t)-\int_{0}^{t}(1+\tau) y(t-\tau) d \tau=1-\sinh t .
$$

Solution. In a similar way as in Example 1, the given equation is same to $y-(1+t) * y=1-\sinh t$. Taking G_{-2}-transform, we have

$$
Y(u)-u^{2}\left(\frac{1}{u}+1\right) Y(u)=\frac{1}{u}-\frac{1}{1-u^{2}},
$$

hence

$$
Y(u)\left[1-u-u^{2}\right]=\frac{1-u^{2}-u}{u\left(1-u^{2}\right)} .
$$

Simplification gives

$$
Y(u)=\frac{1}{u\left(1-u^{2}\right)}
$$

and so we obtain the answer

$$
y(t)=\cosh t
$$

by Table 1.
Example 3. Find the solution of

$$
y(t)+\int_{0}^{t}(t-\tau) y(\tau) d \tau=1 .
$$

Solution. Taking G_{-2}-transform on both sides, we have

$$
Y+u^{2}(Y \cdot 1)=\frac{1}{u}
$$

for $Y=G_{-2}(y)$. Thus,

$$
Y=\frac{1}{u\left(1+u^{2}\right)}
$$

and so, we obtain the solution $y=\cos t$.
Let us check this by the direct calculation. Expanding the given equation, we have

$$
y(t)+t \cdot \int_{0}^{t} y(\tau) d \tau-\int_{0}^{t} \tau y(\tau) d \tau=1 .
$$

Differentiating both sides twice with respect to t, we have $y^{\prime \prime}(t)+y(t)=0$. Thus, from $y(0)=1$ and $y^{\prime}(0)=0$ obtained by calculating course, we have the solution $y=\cos t$.

Similarly, we can easily obtain the solution of integral equations by using G_{-2}-integral transform. For example, let us consider

$$
y(t)-\int_{0}^{t} y(\tau) d \tau=1 .
$$

By G_{-2}-transform, we have $Y-u Y=1 / u$ and so, we have the solution $y=e^{t}$ for $Y=G_{-2}(y)$. Of course, this result is same to the result $y-y * 1=1$ by using convolution, and the result $y^{\prime}(t)-y(t)=0$ of the direct calculation is same as well. Similarly, since

$$
G_{-2}\left(t e^{a t}\right)=\frac{1}{(1-a u)^{2}},
$$

the solution of

$$
y(t)+2 e^{t} \int_{0}^{t} e^{-\tau} y(\tau) d \tau=t e^{t}
$$

is $y=\sinh t$. Here, we note that the G_{-2}-transform of $y+2\left(y * e^{t}\right)=t e^{t}$ is

$$
Y+2 Y \cdot \frac{1}{u(1-u)}=\frac{1}{(1-u)^{2}}
$$

for $Y=G_{-2}(y)$.
Example 4. Heaviside function and Dirac's delta function, shifted data problems.

Solution. First, let us check the G_{-2}-transform of Heaviside function $h(t-a)$:

$$
\begin{aligned}
G_{-2}[h(t-a)] & =\frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{t}{u}} h(t-a) d t=\frac{1}{u^{2}} \int_{a}^{\infty} e^{-\frac{t}{u}} d t \\
& =-\frac{1}{u}\left[e^{-\frac{t}{u}}\right]_{a}^{\infty}=\frac{1}{u} e^{-\frac{a}{u}} .
\end{aligned}
$$

Next, we consider the function $f_{k}(t-a)=1 / k$ if $a \leq t \leq a+k$, and 0 otherwise. Taking G_{-2}-transform, we have

$$
\begin{aligned}
G_{-2}\left[f_{k}(t-a)\right] & =\frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{t}{u}} f_{k}(t-a) d t=-\frac{1}{u k}\left[e^{-\frac{t}{u}}\right]_{a}^{a+k} \\
& =-\frac{1}{u k}\left(e^{-\frac{a+k}{u}}-e^{-\frac{a}{u}}\right)=-e^{-\frac{a}{u}} \cdot \frac{e^{-\frac{k}{u}}-1}{u k} .
\end{aligned}
$$

If we denote the limit of f_{k} as $\delta(t-a)$, then

$$
\delta(t-a)=\lim _{k \rightarrow 0} f_{k}(t-a)=\frac{1}{u^{2}} e^{-\frac{a}{u}}
$$

Finally, let us see shifted data problems. For a given differential equation $y^{\prime \prime}+a y^{\prime}+b y=r(t), \quad y(a)=c_{0}, \quad y^{\prime}(a)=c_{1}$, where $a \neq 0$ and a and b are constants, we can set $t=t_{1}+a$. This gives $t_{1}=0$ and so, we have

$$
y_{1}^{\prime \prime}+a y_{1}^{\prime}+b y_{1}=r\left(t_{1}+a\right), \quad y_{1}(0)=c_{0}, \quad y_{1}^{\prime}(0)=c_{1}
$$

for input $r(t)$. Taking the transform, we can obtain the output $y(t)$.
Example 5 (Semi-infinite string). Find the displacement $w(x, t)$ of an elastic string subject to the following conditions:
(a) The string is initially at rest on the x-axis from $x=0$ to ∞.
(b) For $t>0$, the left end of the string is moved in a given manner, namely, according to a single sine wave $w(0, t)=f(t)=\sin t$ if $0 \leq t \leq 2 \pi$, and zero otherwise.
(c) Furthermore, $\lim w(x, t)=0$ as $x \rightarrow \infty$ for $t \geq 0$.

Of course, there is no infinite string, but our model describes a long string or rope (of negligible weight) with its right end fixed far out on the x-axis [17].

Solution. It is well-known fact that the equation of semi-infinite string can be expressed by

$$
\frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}
$$

subject to $w(0, t)=f(t), \quad \lim w(x, t)=0$ as $x \rightarrow \infty, w(x, 0)=0$ and $w_{t}(x, 0)=0$. Taking G_{-2}-transform with respect to t, and by (C) of Theorem 1, we have

$$
G_{-2}\left[\frac{\partial^{2} w}{\partial t^{2}}\right]=\frac{1}{u^{2}} W-\frac{1}{u^{3}} w(x, 0)-\frac{1}{u^{2}} w_{t}(x, 0)=\frac{1}{u^{2}} W
$$

for $Y=G_{-2}(f)$. Writing $W(x, u)=G_{-2}[w(x, t)]$, we have

$$
\begin{aligned}
G_{-2}\left[\frac{\partial^{2} w}{\partial x^{2}}\right] & =\frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{t}{u}} \frac{\partial^{2} w}{\partial x^{2}} d t \\
& =\frac{\partial^{2}}{\partial x^{2}} \frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{t}{u}} w(x, t) d t=\frac{\partial^{2}}{\partial x^{2}} G_{-2}[w(x, t)]=\frac{\partial^{2} W}{\partial x^{2}}
\end{aligned}
$$

Thus,

$$
\frac{\partial^{2} W}{\partial x^{2}}-\frac{1}{c^{2} u^{2}} W=0
$$

Since this equation contains only a derivative with respect to x, it may be regarded as an ODE, where $W(x, u)$ is considered as a function of x. This
implies that a general solution can be represented by

$$
W(x, u)=A(u) e^{x / c u}+B(u) e^{-x / c u}
$$

From the initial conditions, we have $W(0, u)=G_{-2}[w(0, t)]=G_{-2}[f(t)]$ $=F(u)$. In [5, 12], we have dealt with the validity on exchangeability of integral and limit in the solving process of PDEs by using Lebesgue dominated convergence theorem [5]. Hence, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} W(x, u) & =\lim _{x \rightarrow \infty} \frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{t}{u}} w(x, t) d t \\
& =\frac{1}{u^{2}} \int_{0}^{\infty} e^{-\frac{t}{u}} \lim _{x \rightarrow \infty} w(x, t) d t=0
\end{aligned}
$$

This implies $A(u)=0$ and so, $W(0, u)=B(u)=F(u)$. Thus,

$$
W(x, u)=F(u) e^{-x / c u}
$$

By the t-shifting theorem, we obtain the inverse transform

$$
w(x, t)=f\left(t-\frac{x}{C}\right) h\left(t-\frac{x}{C}\right)=\sin \left(t-\frac{x}{C}\right)
$$

for $\frac{X}{C}<t<\frac{X}{C}+2 \pi$ and zero otherwise, where h is a Heaviside function.

3. Conclusion

The form and the properties of an integral transform that has strengths in transforms of integrals have been proposed. This result is obtained from a generalized integral transform G and is applicable to $\alpha=-2$ in (1). This gives some help for solving integral equations by means of its simplicity for transform of integration. Additionally, some examples related to Volterra integral equation and semi-infinite string have been presented as well.

References

[1] H. A. Agwa, F. M. Ali and A. Kilicman, A new integral transform on time scales and its applications, Adv. Differential Equations 60 (2012), 1-14.
[2] F. B. Belgacem and R. Silambarasan, Theory of natural transform, International Journal of Mathematics in Engineering Science and Aerospace 25 (2012), 99-124.
[3] F. B. M. Belgacem and S. Sivasundaram, New developments in computational techniques and transform theory applications to nonlinear fractional and stochastic differential equations and systems, Nonlinear Stud. 22 (2015), 561-563.
[4] F. B. M. Belgacem and A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, J. Appl. Math. Stoch. Anal. 2006 (2006), 1-23.
[5] H. Chae and H. Kim, The validity checking on the exchange of integral and limit in the solving process of PDEs, Int. J. Math. Anal. 8 (2014), 1089-1092.
[6] D. L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
[7] H. Eltayeb, A. Kilicman and M. B. Jleli, Fractional integral transform and application, Abstr. Appl. Anal. 2015 (2015), 1-2.
[8] H. Eltayeb and A. Kilicman, On some applications of a new integral transform, Int. J. Math. Anal. 4 (2010), 123-132.
[9] T. M. Elzaki and J. Biazar, Homotopy perturbation method and Elzaki transform for solving system of nonlinear partial differential equations, Wor. Appl. Sci. J. 7 (2013), 944-948.
[10] T. M. Elzaki, S. M. Ezaki and E. M. A. Hilal, Elzaki and Sumudu transform for solving some differential equations, Glob. J. Pure Appl. Math. 8 (2012), 167-173.
[11] Tarig M. Elzaki and H. Kim, The solution of radial diffusivity and shock wave equations by Elzaki variational iteration method, Int. J. Math. Anal. 9 (2015), 1065-1071.
[12] J. Jang and H. Kim, An application of monotone convergence theorem in PDEs and Fourier analysis, Far East J. Math. Sci. (FJMS) 98(5) (2015), 665-669.
[13] H. Kim, The intrinsic structure and properties of Laplace-typed integral transforms, Math. Prob. Eng. 2017 (2017), 1-8.
[14] H. Kim, The shifted data problems by using transform of derivatives, Appl. Math. Sci. 8 (2014), 7529-7534.
[15] I. Cho and H. Kim, The Laplace transform of derivative expressed by Heaviside function, Appl. Math. Sci. 7 (2013), 4455-4460.
[16] H. Kim, The time shifting theorem and the convolution for Elzaki transform, Int. J. Pure Appl. Math. 87 (2013), 261-271.
[17] E. Kreyszig, Advanced Engineering Mathematics, Wiley, Singapore, 2013.
[18] Y. Song and H. Kim, The solution of Volterra integral equation of the second kind by using the Elzaki transform, Appl. Math. Sci. 8 (2014), 525-530.
[19] G. K. Watugula, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech. 24 (1993), 409-421.

