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Abstract 

We propose and study the properties of an integral transform that has 
strengths in transforms of integrals. This result is from the intrinsic 
structure and properties of Laplace-typed integral transforms. Also, 
this form is well adapted to solving Volterra integral equation and 
semi-infinite string. 

1. Introduction 

The method of integral transforms has been developed because of the 
easy accessibility and the high application. The form is defined by 

( ) ( )∫
∞

0
,, dttftsK  

where the kernel ( )tsK ,  is doing the role which transforms one space to the 

other space in order to solve the solution. In the previous researches, the 
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nature of integral transform is mentioned well in [2-4]. The shifted data 
problem [14], the Laplace transform of derivative expressed by Heaviside 
functions [15], and the solution of Volterra integral equation of the second 
kind by using the Elzaki transform [18] were proposed. As a study of 
comprehensive forms, we have proposed the intrinsic structure and properties 
of Laplace-typed integral transforms in [13] as 

 ( ) ( ) ( )∫
∞ −α==
0

dttfeufGuF u
t

 (1) 

for an  integer α and for a generalized integral transform G. In general, 
Laplace transform has a strong point in the transforms of derivatives, that is, 
the differentiation of a function ( )tf  corresponds to multiplication of its 

transform ( )f£  by s. While, if we choose ( )fG 2−  as 

 ( ) ( )∫
∞ −

− =
022 ,1 dttfe

u
fG u

t
 (2) 

then this transform is giving a simple tool for transforms of integrals. That is, 
the integration of a function ( )tf  corresponds to multiplication of ( )fG 2−  

by u, whereas the differentiation of ( )tf  corresponds to division of ( )fG 2−  

by u. This means that the integer α is applicable to –2 in (1). 

The form of Laplace transform is a well-known fact, and it is defined by 

( ) ( )∫
∞ −=
0

.£ dttfef st  

Since the Laplace transform ( )f£  can be rewritten as 

( )∫
∞ −

0
dttfe u

t
 

for ,1 us =  the value of α is applicable to 0 in (1). Similarly, Sumudu 

transform [7, 8, 19] has the value of 1−=α  and Elzaki [9-11, 16] has the 
value of .1=α  



On the Form and Properties of an Integral Transform … 2833 

In this article, we investigate the properties of the integral transform 
which is 2−=α  in a generalized integral transform G and we apply it to 
semi-infinite string. 

2. The Properties of an Integral Transform that has 
Strengths in Transforms of Integrals 

Theorem 1. The following properties are valid: 

(A) (u-shifting) If ( )tf  has the transform ( ),uF  then ( )tfeat  has the 

transform 

.1 ⎟
⎠
⎞⎜

⎝
⎛

− au
uF  

That is, 

[ ( )] .12 ⎟
⎠
⎞⎜

⎝
⎛

−
=− au

uFtfeG at  

(B) (t-shifting) If ( )tf  has the transform ( ),uF  then the shifted function 

( ) ( )athatf −−  has the transform ( ).uFe ua−  In formulas, 

( ) ( )[ ] ( )uFeathatfG ua−
− =−−2  

where ( )ath −  is a Heaviside function (we write h since we need u to denote         

u-space.) 

(Ca) 

( ) ( ).011
22 f

u
YufG −=′−  

(Cb) 

( ) ( ) ( )01011
2322 f

u
f

u
Y

u
fG ′−−=′′−  

for ( )fGY 2−=  and where f is differentiable n-times. 
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(Cc) 

( ( ) ) ( ) ( ) ( )0101011
112 f

u
f

u
f

u
Y

u
fG nnnn

n ′′−′−−= −+−  

( )( )01 1
2

−−− nf
u

 

for n is an arbitrary natural number. 

 (D) Let ( )uF  denote the transform of an integrable function ( ),tf  i.e., 

( ) ( )[ ].2 tfGuF −=  Then 

( ) ( )uuFdfG
t

=⎥⎦
⎤

⎢⎣
⎡ ττ∫− 02  

holds for .0>t  

 (E) 

( ) ( ) ( ),22
2

2 gGfGugfG −−− =∗  

where * is the convolution of f and g. 

(Fa) 

( ) ( ) ( )( ).12
222 ttfG

u
Yudu

dGufG −− +−==′  

(Fb) 

( ) ( ) ( )( ) ( ( )).11126 2
222222 tftG

uu
ttfGuY

u
ufG −−− +⎟

⎠
⎞

⎜
⎝
⎛ +−=″  

(Fc) 

( ) ( ) ( )∫
∞

−− ⎟
⎠
⎞⎜

⎝
⎛−=

u t
tfGuadssfG 2

2
2  

for a constant ( )∫
∞

=
0

tdttfa  and for ( ) ( )ufGY 2−=  under the condition 

of the limit of ( ) ,ttf  as t approaches 0 from the right, exists. 
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(Fd) ( ) ( )dudYuYytG +=′−2  and ( ) ( ) ( )01 2
2 yududYytG +=′′−  for 

( ) ( ).2 ufGY −=  

Proof. Since these can be obtained by modifying the results of a 
generalized integral transform G, we would just like to check a few and skip 
the rest. 

The proof of (D). Using (C) and putting ( ) ( )∫ ττ=
t

dftg
0

,  

( )( ) ( )( ) ( ) ( ) ( ).1011
22222 gGug

u
gGutgGtfG −−−− =−=′=  

The proof of (E). Let us put 

( ) ( )∫
∞ τ−

− ττ=
022

1 dfe
u

fG u  

and 

( ) ( )∫
∞ −

− =
022 .1 dvvge

u
gG u

v
 

Then 

( ) ( ) ( ) ( )∫ ∫
∞ ∞ −τ−

−− ⋅ττ=
0 0422 .1 dvvgedfe

u
gGfG u

v
u  

As let us put ,τ+= vt  where τ is at first constant. Then τ−= tv  and 
so, we get 

( ) ( ) ( )∫ ∫
∞

τ

∞

τ

−ττ−−
− τ−=τ−= .11

222 dttgee
u

dttge
u

gG u
t

uu
t

 

Since we can change the order of integration by using dominated 
convergence theorem [5, 12], 

( ) ( ) ( ) ( )∫ ∫
∞ ∞

τ

−
−− ττ−τ=

0422 ,1 dtdtgef
u

gGfG u
t
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and when t varies τ to τ∞,  varies 0 to t. Hence, 

( ) ( ) ( ) ( )∫ ∫
∞ −

−− ττ−τ=
0 0422

1 t
u
t

dtdtgfe
u

gGfG  

( ) ( )∫
∞ −

∗=
04

1 dttgfe
u

u
t

 

( ).1
22 gfG

u
∗= −   

As we have seen above, for 2−G -integral transform, the integration of           

a function ( )tf  corresponds to multiplication of ( )fG 2−  by u, whereas        

the differentiation of ( )tf  corresponds to division of ( )fG 2−  by u. Using 

( ) ⎟
⎠
⎞⎜

⎝
⎛⋅=− uF

u
fG 11

22  for Laplace transform ( ) ( ),£ sFf =  we can obtain 

the table of 2−G -integral transforms as follows. 

It is a well-known fact that convolution helps in solving integral 
equations of certain type, mainly Volterra integral equation. Hence, we 
would like to explain the idea in terms of examples appearing in [17]. Next, 
we would like to check an example related to semi-infinite string. 

Example 1. Solve the Volterra integral equation of the second kind 

( ) ( ) ( )∫ =ττ−τ−
t

tdtyty
0

.sin  

Solution. This is rewritten as a convolution 

( ) .sin ttyty =∗−  

Taking 2−G -integral transform on both sides and applying (C) of 

Theorem 1, we have 

( ) ( ) ( ) 1
1

1
1

1
2

2

2
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−=

+
−

u
uuY

u
uYuuY  
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for ( ).2 yGY −=  The solution is 

( ) 21 uuY +=  

and gives the answer 

( ) 3
6
1 ttty +=  

by Table 1. 

Table 1. Table of 2−G -integral transforms 

 ( )tf  ( )fG 2−  

1 1 u1  

2 t 1 

3 nt  1,! −nun  

4 ate  ( )auu −1
1  

5 atsin  221 au
a

+
 

6 atcos  
( )221

1
auu +

 

7 atsinh  221 au
a

−
 

8 atcosh  ( )221
1

auu −
 

9 ateat cos  
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ −

−

2
2

3 1
1

aauu

au  

10 ateat sin  ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ − 2

2
2 1 aauu

a  

Example 2. Solve the Volterra integral equation of the second kind: 

( ) ( ) ( )∫ −=ττ−τ+−
t

tdtyty
0

.sinh11  
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Solution. In a similar way as in Example 1, the given equation is same to 
( ) .sinh11 tyty −=∗+−  Taking 2−G -transform, we have 

( ) ( ) ,
1

1111
2

2

uuuYuuuY
−

−=⎟
⎠
⎞⎜

⎝
⎛ +−  

hence 

( ) [ ]
( )

.
1

11 2

2
2

uu
uuuuuY

−
−−=−−  

Simplification gives 

( )
( )21

1
uu

uY
−

=  

and so we obtain the answer 

( ) tty cosh=  

by Table 1. 

Example 3. Find the solution of 

( ) ( ) ( )∫ =τττ−+
t

dytty
0

.1  

Solution. Taking 2−G -transform on both sides, we have 

( ) uYuY 112 =⋅+  

for ( ).2 yGY −=  Thus, 

( )21
1

uu
Y

+
=  

and so, we obtain the solution .cos ty =  

Let us check this by the direct calculation. Expanding the given equation, 
we have 
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( ) ( ) ( )∫ ∫ =τττ−ττ⋅+
t t

dydytty
0 0

.1  

Differentiating both sides twice with respect to t, we have ( ) ( )tyty +′′  .0=  

Thus, from ( ) 10 =y  and ( ) 00 =′y  obtained by calculating course, we have 

the solution .cos ty =  

Similarly, we can easily obtain the solution of integral equations by 
using 2−G -integral transform. For example, let us consider 

( ) ( )∫ =ττ−
t

dyty
0

.1  

By 2−G -transform, we have uuYY 1=−  and so, we have the solution 
tey =  for ( ).2 yGY −=  Of course, this result is same to the result 

11 =∗− yy  by using convolution, and the result ( ) ( ) 0=−′ tyty  of the 

direct calculation is same as well. Similarly, since 

( )
( )

,
1

1
22

au
teG at

−
=−  

the solution of 

( ) ( )∫ =ττ+ τ−
t

tt tedyeety
0

2  

is .sinh ty =  Here, we note that the 2−G -transform of ( ) tt teeyy =∗+ 2  

is 

( ) ( )21
1

1
12

uuuYY
−

=
−

⋅+  

for ( ).2 yGY −=  

Example 4. Heaviside function and Dirac’s delta function, shifted data 
problems. 
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Solution. First, let us check the 2−G -transform of Heaviside function 

( ):ath −  

( )[ ] ( )∫ ∫
∞ ∞ −−

− =−=−
0 222

11
a

u
t

u
t

dte
u

dtathe
u

athG  

[ ] .11 u
a

a
u
t

eueu
−∞−

=−=  

Next, we consider the function ( ) katfk 1=−  if ,kata +≤≤  and 0 

otherwise. Taking 2−G -transform, we have 

( )[ ] ( ) [ ]∫
∞ +−−

− −=−=−
022

11 ka
a

u
t

ku
t

k eukdtatfe
u

atfG  

( ) .11
uk

eeeeuk
u
k

u
a

u
a

u
ka

−⋅−=−−=
−

−−+−
 

If we denote the limit of kf  as ( ),at −δ  then 

( ) ( ) .1lim 20
u
a

k
k

e
u

atfat
−

→
=−=−δ  

Finally, let us see shifted data problems. For a given differential equation 
( ),trbyyay =+′+′′  ( ) ,0cay =  ( ) ,1cay =′  where 0≠a  and a and b are 

constants, we can set .1 att +=  This gives 01 =t  and so, we have 

( ) ( ) ( ) 11011111 0,0, cycyatrbyyay =′=+=+′+′′  

for input ( ).tr  Taking the transform, we can obtain the output ( ).ty  

Example 5 (Semi-infinite string). Find the displacement ( )txw ,  of an 

elastic string subject to the following conditions: 

(a) The string is initially at rest on the x-axis from 0=x  to .∞  
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(b) For ,0>t  the left end of the string is moved in a given manner, 

namely, according to a single sine wave ( ) ( ) ttftw sin,0 ==  if ,20 π≤≤ t  

and zero otherwise. 

(c) Furthermore, ( ) 0,lim =txw  as ∞→x  for .0≥t  

Of course, there is no infinite string, but our model describes a long 
string or rope (of negligible weight) with its right end fixed far out on the           
x-axis [17]. 

Solution. It is well-known fact that the equation of semi-infinite string 
can be expressed by 

2

2
2

2

2

x
wc

t
w

∂

∂=
∂

∂  

subject to ( ) ( ),,0 tftw =  ( ) 0,lim =txw  as ,∞→x  ( ) 00, =xw  and 

( ) .00, =xwt  Taking 2−G -transform with respect to t, and by (C) of 

Theorem 1, we have 

( ) ( ) W
u

xw
u

xw
u

W
ut

wG t 22322

2
2

10,10,11 =−−=⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

−  

for ( ).2 fGY −=  Writing ( ) ( )[ ],,, 2 txwGuxW −=  we have 

∫
∞ −

−
∂
∂=⎥

⎦

⎤
⎢
⎣

⎡

∂
∂

0 2

2

22

2
2

1 dt
x
we

ux
wG u

t
 

( ) ( )[ ]∫
∞

−
−

∂
∂=

∂
∂=

∂
∂=

0 2

2
22

2

22

2
.,,1

x
WtxwG

x
dttxwe

ux
u
t

 

Thus, 

.01
222

2
=−

∂
∂ W

ucx
W  

Since this equation contains only a derivative with respect to x, it may be 
regarded as an ODE, where ( )uxW ,  is considered as a function of x. This 
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implies that a general solution can be represented by 

( ) ( ) ( ) ., cuxcux euBeuAuxW −+=  

From the initial conditions, we have ( ) ( )[ ] ( )[ ]tfGtwGuW 22 ,0,0 −− ==  

( ).uF=  In [5, 12], we have dealt with the validity on exchangeability of 

integral and limit in the solving process of PDEs by using Lebesgue 
dominated convergence theorem [5]. Hence, we have 

( ) ( )∫
∞ −

∞→∞→
=

02 ,1lim,lim dttxwe
u

uxW u
t

xx
 

( )∫
∞

∞→

−
==

02 .0,lim1 dttxwe
u x

u
t

 

This implies ( ) 0=uA  and so, ( ) ( ) ( ).,0 uFuBuW ==  Thus, 

( ) ( ) ., cuxeuFuxW −=  

By the t-shifting theorem, we obtain the inverse transform 

( ) ⎟
⎠
⎞⎜

⎝
⎛ −=⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ −= c

xtc
xthc

xtftxw sin,  

for π+<< 2c
xtc

x  and zero otherwise, where h is a Heaviside function. 

3. Conclusion 

The form and the properties of an integral transform that has strengths in 
transforms of integrals have been proposed. This result is obtained from a 
generalized integral transform G and is applicable to 2−=α  in (1). This 
gives some help for solving integral equations by means of its simplicity for 
transform of integration. Additionally, some examples related to Volterra 
integral equation and semi-infinite string have been presented as well. 
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