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Abstract 

We study the asymptotic behavior of solutions of the following 
perturbed differential system: 

( ) ( ) ( )( ) ( ) ( )( ).,,,,,
0

21∫ ++=′
t

t
tyTtythdssyTsysgytfy  

We impose the conditions on the perturbed part 

( ) ( )( ) ( ) ( )( )∫
t

t
tyTtythdssyTsysg

0
21 ,,,,,  

and on the fundamental matrix of the unperturbed system ( )., ytfy =′  
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1. Introduction and Preliminaries 

Elaydi and Farran [8] introduced the notion of exponential asymptotic 
stability (EAS) which is a stronger notion than that of uniformly Lipschitz 
stable. They investigated some analytic criteria for an autonomous 
differential system and its perturbed systems to be EAS. In Pachpatte        
[16, 17], the stability and asymptotic behavior of the solutions of perturbed 
nonlinear systems under some suitable conditions on the perturbation term is 
studied. In Gonzalez and Pinto [9], the asymptotic behavior and boundedness 
of the solutions of nonlinear differential systems is investigated. In Choi et 
al. [6], Lipschitz and exponential asymptotic stability for nonlinear functional 
systems is proved. Also, in Goo [10-12] and Goo et al. [13, 14], Lipschitz 
and asymptotic stability for perturbed differential systems is studied. 

In this paper, we investigate asymptotic behavior for solutions of 
perturbed nonlinear systems using integral inequalities. The method 
incorporating integral inequalities takes an important place among the 
methods developed for the qualitative analysis of solutions to linear and 
nonlinear system of differential equations. 

Consider the unperturbed nonlinear system 

 ( ) ( )( ) ( ) ,,, 00 xtxtxtftx ==′  (1.1) 

where ( ),, nnCf RRR ×∈ +  [ )∞=+ ,0R  and nR  is the Euclidean             

n-space. We assume that the Jacobian matrix xff x ∂∂=  exists and is 

continuous on nRR ×+  and ( ) .00, =tf  Also, consider the perturbed 

functional differential system of (1.1) 

( ) ( ) ( )( ) ( ) ( )( ) ( )∫ =++=′
t

t
ytytyTtythdssyTsysgytfy

0
,,,,,,, 0021  (1.2) 

where ( ),,, nnnChg RRRR ××∈ +  ( ) ( ) ,00,0,0,0, == thtg  and 

( ) ( )nn CCTT RRRR ,,:, 21
++ →  are continuous operators. The symbol 
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⋅  will be used to denote any convenient vector norm in .+R  For an nn ×  

matrix A, define the norm A  of A by .sup 1 AxA x ≤=  

Let ( )00,, xttx  denote the unique solution of (1.1) with ( ) =000 ,, xttx  

,0x  existing on [ ).,0 ∞t  Then we can consider the associated variational 

systems around the zero solution of (1.1) and around ( ),tx  respectively, 

 ( ) ( ) ( ) ( ) 00,0, vtvtvtftv x ==′  (1.3) 

and 

 ( ) ( )( ) ( ) ( ) .,,,, 0000 ztztzxttxtftz x ==′  (1.4) 

The fundamental matrix ( )00,, xttΦ  of (1.4) is given by 

( ) ( ),,,,, 00
0

00 xttxxxtt
∂
∂=Φ  

and ( )0,, 0ttΦ  is the fundamental matrix of (1.3). 

The following definitions are standard, we state them here for convenient 
[8]. 

Definition 1.1. The system (1.1) (the zero solution 0=x  of (1.1)) is 
called: 

(S) stable if for any 0>ε  and ,00 ≥t  there exists ( ) 0,0 >εδ=δ t  

such that if ,0 δ<x  then ( ) ε<tx  for all ,00 ≥≥ tt  

(AS) asymptotically stable if it is stable and if there exists 
( ) 00 >δ=δ t  such that if ,0 δ<x  then ( ) 0→tx  as ,∞→t  

(ULS) uniformly Lipschitz stable if there exist 0>M  and 0>δ  such 

that ( ) 0xMtx ≤  whenever δ≤0x  and ,00 ≥≥ tt  

(EAS) exponentially asymptotically stable if there exist constants 
,0>K  ,0>c  and 0>δ  such that 
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( ) ( ) ttexKtx ttc ≤≤≤ −−
00 0,0  

provided that ,0 δ<x  

(EASV) exponentially asymptotically stable in variation if there exist 
constants 0>K  and 0>c  such that 

( ) ( ) ttKextt ttc ≤≤≤Φ −−
000 0,,, 0  

provided that .0 ∞<x  

Remark 1.2 [9]. The last definition implies that for ,0 δ≤x  

( ) ( ) .0, 00 0 ttexKtx ttc ≤≤≤ −−  

Before proceeding to the statement of main results, we set forth some 
known results. We need Alekseev formula to compare between the solutions 
of (1.1) and the solutions of perturbed nonlinear system 

 ( ) ( ) ( ) ,,,, 00 ytyytgytfy =+=′  (1.5) 

where ( )nnCg RRR ,×∈ +  and ( ) .00, =tg  Let ( ) ( )00,, yttyty =  denote 

the solution of (1.5) passing through the point ( )00, yt  in .nRR ×+  

The following is a generalization to nonlinear system of the variation of 
constants formula due to Alekseev [1]. 

Lemma 1.3 [2]. Let x and y be solutions of (1.1) and (1.5),    

respectively. If ,0
ny R∈  then for all 0tt ≥  such that ( ) ,,, 00

nyttx R∈  

( ) ,,, 00
nytty R∈  

( ) ( ) ( )( ) ( )( )∫ Φ+=
t

t
dssysgsystyttxytty

0
.,,,,,,, 0000  



Asymptotic Behavior of Perturbed Nonlinear … 2745 

Lemma 1.4 (Bihari-type inequality). Let  ( ) ( )( )∞∈∈λ + ,0,, CwCu R  

and ( )uw  be nondecreasing in u. Suppose that, for some ,0>c  

( ) ( ) ( )( )∫ ≥≥λ+≤
t

t
ttdssuwsctu

0
.0, 0  

Then 

( ) ( ) ( ) ,
0

1
⎥⎦
⎤

⎢⎣
⎡ λ+≤ ∫− t

t
dsscWWtu  

where ( ) ( ) ( )∫ −=<≤
u
u

uWsw
dsuWbtt

0

1
10 ,,  is the inverse of ( ),uW  and 

( ) ( ) .dom:sup
0

1
01

⎭
⎬
⎫

⎩
⎨
⎧ ∈λ+≥= ∫ −t

t
WdsscWttb  

Lemma 1.5 [3]. Let ( ),,,,,,,,,,, 10987654321
+∈λλλλλλλλλλ RCu  

( )( ),,0 ∞∈ Cw  and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that 

for some 0>c  and ,0 0 tt ≤≤  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ⎜
⎝
⎛ ττλλ+λ+λ+≤

t

t

t

t

t

t

s

t
usdssuwsdssusctu

0 0 0 0
4321  

( ) ( ) ( ) ( ) ( ) ( )( ) dsddrruwrdrrur
t t

τ⎟
⎠
⎞λτλ+λτλ+ ∫ ∫

τ τ

0 0
8765  

( ) ( ) ( )( )∫ ∫ τττλλ+
t

t

s

t
dsduws

0 0
.109  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ λτλ+τλλ+λ+λ+≤ ∫ ∫ ∫

τ− t

t

s

t t
drrssscWWtu

0 0 0
654321

1  

( ) ( ) ( ) ( ) ,
00

10987 ⎥⎦
⎤

⎟
⎠
⎞ττλλ+τ⎟

⎠
⎞λτλ+ ∫∫

ττ
dsdsddrr

tt
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where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 1.4, and 

( ) ( ) ( ) ( )
⎩
⎨
⎧

⎜⎜
⎝

⎛
λ+λ+λ+≥= ∫

t

t
ssscWttb

0
32101 :sup  

( ) ( ) ( ) ( ) ( )∫ ∫ ∫ τ⎟
⎠
⎞

⎜
⎝
⎛ λτλ+λτλ+τλ⋅

τ τs

t t t
ddrrdrr

0 0 0
87654  

( ) ( ) .dom 1
109

0 ⎭
⎬
⎫

∈⎟⎟
⎠

⎞
ττλλ+ −∫ Wdsds

s

t
 

We need the following corollary for the proof. 

Corollary 1.6. Let ( ) ( )( )∞∈∈λλλλλλ + ,0,,,,,,, 654321 CwCu R  

and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that for some ,0>c  

( ) ( ) ( ) ( ) ( )( )∫ ∫ λ+λ+≤
t

t

t

t
dssuwsdssusctu

0 0
21  

( ) ( ) ( )∫ ∫ τττλλ+
t

t

s

t
dsdus

0 0
43  

( ) ( ) ( )( )∫ ∫ ≤≤τττλλ+
t

t

s

t
ttdsduws

0 0
.0, 065  

Then 

( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
λ+λ+≤ ∫− t

t
sscWWtu

0
21

1  

( ) ( ) ( ) ( ) ,
0 0

6543 ⎥
⎦

⎤
⎟⎟
⎠

⎞
⎟
⎠
⎞

⎜
⎝
⎛ ττλτλ+ττλλ+ ∫ ∫

s

t

s

t
dsdds  

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 1.4, and 

( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧

⎜
⎝
⎛ ττλλ+λ+λ+≥= ∫ ∫

t

t

s

t
dssscWttb

0 0
432101 :sup  

( ) ( ) .dom 1
65

0 ⎭
⎬
⎫∈⎟

⎠
⎞ττλλ+ −∫ Wdsds

s

t
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2. Main Results 

In this section, we study the asymptotic behavior for solutions of the 
perturbed functional differential systems. 

To obtain the asymptotic behavior, the following assumptions are 
needed: 

(H1) The solution 0=x  of (1.1) is EASV. 

(H2) ( )uw  is nondecreasing in u such that ( )uwu ≤  and ( ) ≤uwv
1  

⎟
⎠
⎞⎜

⎝
⎛

v
uw  for some .0>v  

Theorem 2.1. Assume that (H1), (H2), and that the perturbing term 
( )yTytg 1,,  satisfies 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ),,, 11 tyTtywtbtytaetyTtytg t ++≤ α−  (2.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptddssysktbtyT

0 0
,1  (2.2) 

( ) ( )( ) ( ) ( )( ) ( ) ,,, 22 tyTtywtcetyTtyth t +≤ α−  (2.3) 

and 

 ( ) ( ) ( ) ( ) ( )∫ α−α− +≤
t

t
st dssysqetytmetyT

0
,2  (2.4) 

where ,0>α  ( ) ,RCwqpmkdcba +∈,,,,,,,,  ∈qpmkdcba ,,,,,,,  

( ),1 +RL  and ( ) ( )nn CCTT RRRR ,,:, 21
++ →  are continuous operators. 

If 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
τ+τ+++= ∫ ∫

∞ α−

0 0

1
0 t

s

t
s baesmscMcWWtM  

( ) ( ) ( ) ( ) ( ) ,
0 0

∞<⎥
⎦

⎤
⎟⎟
⎠

⎞
τ⎟⎟

⎠

⎞
τ+τ+τ+ ∫ ∫

τ τ
dsddrrpddrrkbq

t t
 (2.5) 
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where ,0tt ≤  ,00
tMeyc α=  and W, 1−W  are the same functions as in 

Lemma 1.4, then all solutions of (1.2) approach zero as .∞→t  

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By the assumption (H1), it is EAS by Remark 
1.2. Using Lemma 1.3, together with (2.1)-(2.4), we obtain 

( )ty  

( ) ( ) ( ) ( )( ) ( )∫ ∫⎜⎜⎝
⎛

⎜⎜
⎝

⎛
ττ+τ+≤ ατ−−α−−α− t

t

s

t
sttt yqaeMeeyM

0 0

00  

( ) ( )( ) ( ) ( ) ( )∫
τ

τ+ττ+
0t

drryrkbywb  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) .
0

dssywscesysmeddrrywrpd ss
t

⎟
⎠
⎞++τ⎟

⎠
⎞τ+ α−α−τ

∫  

Applying the assumption (H2), we have 

( )ty  

( ) ( ) ( )( ) ( )∫ ∫⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
ττ+τ+≤ αταα−−α− t

t

s

t
sttt eyqaeMeeyM

0 0

00  

( ) ( ( ) ) ( ) ( ) ( )∫
τ αατ τ+ττ+
0t

rdreryrkbeywb  

( ) ( ) ( ( ) ) ( ) ( ) ( ) ( )( ) .
0

dsesywscesysmddrerywrpd ss
t

r ⎟
⎠
⎞++τ⎟

⎠
⎞τ+ αατ α∫  

Set ( ) ( ) .tetytu α=  An application of Lemma 1.5 and (2.5) obtains 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
τ+τ+++≤ ∫ ∫α−α− t

t

s

t
st baesmscMcWWety

0 0

1  

( ) ( ) ( ) ( ) ( ) ( ),0
0 0

tMedsddrrpddrrkbq t
t t

α−τ τ
≤⎥

⎦

⎤
⎟⎟
⎠

⎞
τ⎟⎟

⎠

⎞
τ+τ+τ+ ∫ ∫  
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where 0tt ≥  and .00
teyMc α=  Hence, all solutions of (1.2) approach 

zero as .∞→t  This completes the proof.  

Remark 2.2. Letting ( ) ( ) ( ) 0=== tqtmtc  in Theorem 2.1, we obtain 

the same result as that of Theorem 3.5 in [4]. 

Theorem 2.3. Assume that (H1), (H2), and that the perturbing term 
( )yTytg 1,,  satisfies 

 ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )∫ ++≤ α−t

t
t tyTtywtbtytaedssyTsysg

0
,,, 11  (2.6) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptddssysktbtyT

0 0
,1  (2.7) 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ,,,
0

22 ⎟
⎠
⎞

⎜
⎝
⎛ +≤ ∫α− t

t
t tyTdssysctbetyTtyth  (2.8) 

and 

 ( ) ( ) ( ) ( ) ( ) ( )( )∫+≤
t

t
dssywsqtdtytmtyT

0
,2  (2.9) 

where ,0>α  ( ),,,,,,,,, +∈ RCwqpmkdcba  ∈qpmkdcba ,,,,,,,  

( ),1 +RL  and ( ) ( )nn CCTT RRRR ,,:, 21
++ →  are continuous operators. 

If 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
++++= ∫

∞−

0

1
0 t

sbsmsbsaMcWWtM  

 ( ) ( )( ) ( ) ( ) ( )( ) ,
0 0

∞<⎥
⎦

⎤
⎟⎟
⎠

⎞
ττ+τ+ττ+τ⋅ ∫ ∫ dsdqpsddkc

s

t

s

t
 (2.10) 

where ,, 001
teyMcb α=∞=  and 1, −WW  are the same functions as in 

Lemma 1.4, then all solutions of (1.2) approach zero as .∞→t  
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Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By the assumption (H1), it is EAS. Applying 
Lemma 1.3, together with (2.6)-(2.9), we have 

( ) ( )00
tteyMty −α−≤  

( ) ( ) ( )( ) ( ) ( ) ( )( )∫ ⎜⎜
⎝

⎛
+++ α−−α−t

t
sst sywsbsysmsaeMe

0
 

( ) ( ) ( )( ) ( )∫ τττ+τ+
s

t
dykcsb

0
 

( ) ( ) ( )( ) ( )( ) .
0

dsdywqpsd
s

t ⎟⎟
⎠

⎞
τττ+τ+ ∫  

It follows from (H2) that 

( ) ( ) ( ) ( )( ) ( )∫ ⎜⎜
⎝

⎛
++≤ αα−−α− t

t
sttt esysmsaMeeyMty

0

00  

( ) ( ( ) ) ( ) ( ) ( )( ) ( )∫ τττ+τ++ ατα s

t
s deykcsbesywsb

0
 

( ) ( ) ( )( ) ( ( ) ) .
0

dsdeywqpsd
s

t ⎟⎟
⎠

⎞
τττ+τ+ ∫ ατ  

Define ( ) ( ) .tetytu α=  Then, by Corollary 1.6 and (2.10), we have 

( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
+++≤ ∫−α− t

t
t smsbsaMcWWety

0

1  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ⎥
⎦

⎤
⎟⎟
⎠

⎞
ττ+τ+ττ+τ+ ∫ ∫ dsdqpsddkcsb

s

t

s

t0 0
 

( ),0tMe tα−≤  

where .00
teyMc α=  Hence, all solutions of (1.2) approach zero as 

,∞→t  and so the proof is complete. � 
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Remark 2.4. Letting ( ) ( ) ( ) ( ) 0==== tqtmtktc  in Theorem 2.3, we 

obtain the same result as that of Theorem 3.7 in [4]. 

Theorem 2.5. Assume that (H1), (H2), and that the perturbing term 
( )yTytg 1,,  satisfies 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ),,, 11 tyTtywtbtytaetyTtytg t ++≤ α−  (2.11) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptcdssysktbtyT

0 0
,1  (2.12) 

( ) ( )( ) ( ) ( ) ( ) ,,, 22 tyTtytnetyTtyth t +≤ α−  (2.13) 

and 

 ( ) ( ) ( )( ) ( ) ( )( )∫ α−α− +≤
t

t
st dssywsdetywtmetyT

0
,2  (2.14) 

where ,0>α  ( ),,,,,,,,, +∈ RCwpnmkdcba  ∈pnmkdcba ,,,,,,,  

( ),1 +RL  and ( ) ( )nn CCTT RRRR ,,:, 21
++ →  are continuous operators. If 

( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ τ+τ+++= ∫ ∫

∞ α−

0 0

1
0 t

s

t
s baesnsmMcWWtM  

( ) ( ) ( ) ( ) ( ) ,
0 0

∞<⎥⎦
⎤

⎟
⎠
⎞τ⎟

⎠
⎞τ+τ+τ+ ∫ ∫

τ τ
dsddrrpcdrrkbd

t t
 (2.15) 

where ,, 000
tMeyctt α=≥  and 1, −WW  are the same functions as in 

Lemma 1.4, then all solutions of (1.2) approach zero as .∞→t  

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By the assumption (H1), it is EAS by Remark 
1.2. Using Lemma 1.3, together with (2.11)-(2.14), we obtain 

( )ty  

( ) ( ) ( ) ( )∫ ∫⎜⎜⎝
⎛

⎜⎜
⎝

⎛
ττ+≤ ατ−−α−−α− t

t

s

t
sttt yaeMeeyM

0 0

00  
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( ) ( )( ) ( )( ) ( ) ( ) ( )∫
τ

τ+ττ+τ+
0t

drryrkbywdb  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) .
0

dssywsmesysneddrrywrpc ss
t ⎟⎟

⎠

⎞
++τ⎟⎟

⎠

⎞
τ+ α−α−τ

∫  

Applying the assumption (H2), we have 

( )ty  

( ) ( ) ( )∫ ∫⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
ττ+≤ αταα−−α− t

t

s

t
sttt eyaeMeeyM

0 0

00  

( ) ( )( ) ( ( ) ) ( ) ( ) ( )∫
τ αατ τ+ττ+τ+
0t

rdreryrkbeywdb  

( ) ( ) ( ( ) ) τ⎟⎟
⎠

⎞
τ+ ∫

τ α ddrerywrpc
t

r

0
 

( ) ( ( ) ) ( ) ( ) .dsesysnesywsm ss
⎟⎟
⎠

⎞
++ αα  

Set ( ) ( ) .tetytu α=  An application of Lemma 1.5 and (2.15) obtains 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
τ+τ+++≤ ∫ ∫α−α− t

t

s

t
st baesnsmMcWWety

0 0

1  

( ) ( ) ( ) ( ) ( ) ( ),0
0 0

tMedsddrrpcdrrkbd t
t t

α−τ τ
≤⎥

⎦

⎤
⎟⎟
⎠

⎞
τ⎟⎟

⎠

⎞
τ+τ+τ+ ∫ ∫  

where 0tt ≥  and .00
teyMc α=  Therefore, all solutions of (1.2) approach 

zero as .∞→t  Hence, the theorem is proved. ~ 

Remark 2.6. Letting ( ) ( ) ( ) 0=== tntmtd  in Theorem 2.5, we obtain 

the same result as that of Theorem 3.5 in [4]. 

Theorem 2.7. Assume that (H1), (H2), and that the perturbing term 
( )yTytg 1,,  satisfies 
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( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )∫ ++≤ α−t

t
t tyTtywtbtytaedssyTsysg

0
,,, 11  (2.16) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptmdssysktbtyT

0 0
,1  (2.17) 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ,,,
0

22 ⎟
⎠
⎞

⎜
⎝
⎛ +≤ ∫α− t

t
t tyTdssywsctmetyTtyth  (2.18) 

and 

 ( ) ( ) ( )( ) ( ) ( ) ( )∫+≤
t

t
dssysqtbtywtdtyT

0
,2  (2.19) 

where ,0>α  ( ),,,,,,,,, +∈ RCwqpmkdcba  ∈qpmkdcba ,,,,,,,  

( ),1 +RL  and ( ) ( )nn CCTT RRRR ,,:, 21
++ →  are continuous operators. If 

( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
+++= ∫

∞−

0

1
0 t

sdsbsaMcWWtM  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ,
0 0

∞<⎥⎦
⎤

⎟
⎠
⎞ττ+τ+ττ+τ+ ∫ ∫ dsdpcsmdqksb

s

t

s

t
 (2.20) 

where ,, 001
teyMcb α=∞=  and W, 1−W  are the same functions as in 

Lemma 1.4, then all solutions of (1.2) approach zero as .∞→t  

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By the assumption (H1), it is EAS. Applying 
Lemma 1.3, together with (2.16)-(2.19), we have 

( ) ( ) ( )∫ −α−−α− +≤
t

t
sttt MeeyMty

0

00  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )⎜
⎝
⎛

⎜
⎝
⎛ τττ+τ++⋅ ∫α− s

t
s dyqksbsywsbsysae

0
 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) .
0

dssywsddywpcsm
s

t
⎟
⎠
⎞
⎟
⎠
⎞+τττ+τ+ ∫  
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It follows from (H2) that 

( ) ( ) ( ) ( )∫ ⎜⎜
⎝

⎛
+≤ αα−−α− t

t
sttt esysaMeeyMty

0

00  

( ) ( )( ) ( ( ) ) ( ) ( ) ( )( ) ( )∫ τττ+τ+++ ατα s

t
s deyqksbesywsdsb

0
 

( ) ( ) ( )( ) ( ( ) ) .
0

dsdeywpcsm
s

t ⎟⎟
⎠

⎞
τττ+τ+ ∫ ατ  

Let ( ) ( ) .tetytu α=  Then, by Corollary 1.6 and (2.20), we obtain 

( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
+++≤ ∫−α− t

t
t sdsbsaMcWWety

0

1  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ⎥⎦
⎤

⎟
⎠
⎞ττ+τ+ττ+τ+ ∫ ∫ dsdpcsmdqksb

s

t

s

t0 0
 

( ),0tMe tα−≤  

where .00
teyMc α=  Therefore, all solutions of (1.2) approach zero as 

.∞→t  Hence, the proof is complete. ~ 

Remark 2.8. Letting ( ) ( ) ( ) ( ) 0==== tqtmtdta  in Theorem 2.7, we 

obtain the same result as that of Theorem 3.3 in [14]. 
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