Far East Journal of Mathematical Sciences (FJMS)

ISSN: 0972-0871

ON REGULARITY OF TRANSFORMATION SEMIGROUPS PRESERVING EQUIVALENCE WITH RESTRICTED CROSS-SECTION

Nares Sawatraksa and Chaiwat Namnak

Department of Mathematics Faculty of Science Naresuan University Phitsanulok, 65000, Thailand

Abstract

Let X be a nonempty set and T(X) be the full transformation semigroup on a set X. For an equivalence relation E on X and a cross-section R of the partition X E induced by E, let

$$T_{E^*}(X) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in E \iff (x\alpha, y\alpha) \in E \}$$

and

$$T_E(X, R)$$

$$= \{ \alpha \in T(X) : R\alpha = R, \forall x, y \in X, (x, y) \in E \Rightarrow (x\alpha, y\alpha) \in E \}.$$

Received: July 3, 2017; Accepted: October 5, 2017

2010 Mathematics Subject Classification: 20M20.

Keywords and phrases: transformation semigroup, equivalence relation, regular element, regular semigroup.

Then $T_{E^*}(X)$ and $T_E(X,R)$ are subsemigroups of T(X). In this paper, we show that the set of all regular elements of $T_E(X,R)$ becomes a regular semigroup. Also, we give a necessary and sufficient condition when semigroups $T_{F^*}(X)$ and $T_E(X,R)$ coincide.

1. Introduction and Preliminaries

An element x of a semigroup S is called *regular* if there exists y in S such that x = xyx. A semigroup S is called a *regular semigroup* if every element of S is regular. The set of all regular elements of S is denoted by Reg(S).

The full transformation semigroup on a nonempty set X is denoted by T(X), that is, T(X) is the semigroup of all mappings $\alpha: X \to X$ under composition. The semigroup T(X) is known to be regular in [5].

Let E be an equivalence relation on X. Pei [7] has introduced a family of subsemigroups of T(X) defined by

$$T_E(X) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in E \Rightarrow (x\alpha, y\alpha) \in E \}$$

and call it the *semigroup of transformations that preserve an equivalence on* X. He has studied Green's relations and regularity on $T_E(X)$. Recently, Deng et al. [4] introduced the subsemigroup of $T_E(X)$ as follows:

$$T_{E^*}(X) = \{\alpha \in T(X) : \forall x, \ y \in X, \ (x, \ y) \in E \Leftrightarrow (x\alpha, \ y\alpha) \in E\}.$$

The authors considered regularity of elements and Green's relations for $T_{{\scriptscriptstyle F}^*}(X).$

Let R be a cross-section of the partition X/E induced by E. In [1], Araújo and Konieczny defined a subsemigroup of T(X) as follows:

$$= \{ \alpha \in T(X) : R\alpha \subseteq R \text{ and } \forall x, y \in X, (x, y) \in E \Rightarrow (x\alpha, y\alpha) \in E \}.$$

Clearly, $T(X, E, R) \subseteq T_E(X)$. They have proved that the semigroups T(X, E, R) are precisely the centralizers of idempotents of T(X). After a year, they studied the structure and regularity of the semigroups T(X, E, R). Moreover, they determined Green's relations in T(X, E, R) in [2]. In this research, we examine a related subsemigroup of T(X, E, R): namely, the transformation semigroups that preserve an equivalence with restricted cross-section on X defined by

$$T_E(X, R)$$

$$= \{ \alpha \in T(X) : R\alpha = R \text{ and } \forall x, y \in X, (x, y) \in E \Rightarrow (x\alpha, y\alpha) \in E \}.$$

The aim of this paper is to prove that $Reg(T_E(X, R))$ is a regular semigroup. Also, we show that $T_{E^*}(X) = T_E(X, R)$ if and only if R is finite and E is the identity relation.

In the remainder, let E be an equivalence relation on a set X and R be a cross-section of the partition X/E. Denote by X/E the quotient set and E_r the E-class containing r for all $r \in R$.

2. Main Results

A characterization of the regularity for elements in $T_{E^*}(X)$ as follows [4]:

Theorem 2.1 [4]. Let $\alpha \in T_{E^*}(X)$. Then $\alpha \in Reg(T_{E^*}(X))$ if and only if $A \cap X\alpha \neq \emptyset$ for all $A \in X/E$.

The nature of regular elements in $T_E(X, R)$ was considered in [6].

Theorem 2.2 [6]. Let $\alpha \in T_E(X, R)$. Then $\alpha \in Reg(T_E(X, R))$ if and only if $\alpha|_R$ is an injection.

By Theorem 2.2, we obtain the following interesting result.

Proposition 2.3. $Reg(T_E(X, R)) \subseteq Reg(T_{F^*}(X))$.

Proof. Let $\alpha \in Reg(T_E(X,R))$. Then $\alpha \in T_E(X)$. Let $x,y \in X$ be such that $(x\alpha,y\alpha) \in E$. Then there exist $r,s \in R$ such that $x \in E_r$ and $y \in E_s$. Since $(x\alpha,y\alpha) \in E$ and $\alpha \in T_E(X)$, we deduce that $r\alpha = s\alpha$. Since α is regular in $T_E(X,R)$, it follows from Theorem 2.2 that r=s. Hence, $(x,y) \in E$, so $\alpha \in T_{E^*}(X)$. Since $R\alpha = R$, we then have $E_r \cap X\alpha \neq \emptyset$ for all $r \in R$. By Theorem 2.1, $\alpha \in Reg(T_{E^*}(X))$. Hence, $Reg(T_E(X,R)) \subseteq Reg(T_{F^*}(X))$, as desired.

The following example shows that $Reg(T_E(X, R))$ may not be equal to $Reg(T_{E^*}(X))$.

Example 2.4. Let $X = \mathbb{N}$, $X/E = \{\{x, x+1\} : x \text{ is odd}\}$ and $R = \{x \in X : x \text{ is odd}\}$. Let $\alpha \in T(X)$ be defined by

$$x\alpha = \begin{cases} 2 & \text{if } x \le 2, \\ x & \text{otherwise.} \end{cases}$$

Then $\alpha \in T_{E^*}(X)$. By Theorem 2.1, we have that α is a regular element of $T_{E^*}(X)$. Since $r\alpha \neq 1$ for all $r \in R$ and $1 \in R$, we have $R\alpha \neq R$. This implies that $\alpha \notin T_E(X, R)$, hence $\alpha \notin Reg(T_E(X, R))$.

We first prove lemma needed to determine if $Reg(T_E(X, R))$ is regular.

Lemma 2.5. Let $\alpha \in Reg(T_E(X, R))$. If $r \in R$, then $E_r \cap X\alpha = E_{r'}\alpha$ for some $r' \in R$.

Proof. Assume that $r \in R$. Since $R\alpha = R$, there exists $r' \in R$ such that $r = r'\alpha$. Since $\alpha \in T_E(X)$, it then follows that $E_{r'}\alpha \subseteq E_r \cap X\alpha$. For the reverse inclusion, if $y \in E_r \cap X\alpha$, then $y = x\alpha$ for some $x \in X$. This implies that $x \in E_s$ for some $s \in R$ and so $s\alpha = r$. Since $\alpha \in R$

 $Reg(T_E(X, R))$ by Theorem 2.2, $\alpha|_R$ is injective. Since $s\alpha = r'\alpha$, we have s = r'. Hence, $y \in E_{r'}\alpha$. This shows that $E_r \cap X\alpha \subseteq E_{r'}\alpha$ and so equality holds.

Theorem 2.6. $Reg(T_E(X, R))$ is a regular semigroup.

Proof. It is easy to see that $Reg(T_E(X, R))$ contains the identity mapping on X, hence $Reg(T_E(X, R)) \neq \emptyset$. Let $\alpha, \beta \in Reg(T_E(X, R))$. To show that $\alpha\beta$ is regular, let $r, s \in R$ be such that $r\alpha\beta = s\alpha\beta$. Since $r\alpha, s\alpha \in R$ and $\beta \in Reg(T_E(X, R))$, we get $r\alpha = s\alpha$ by Theorem 2.2. Similarly, we have r = s. This verifies that $\alpha\beta|_R$ is injective. From Theorem 2.2, $\alpha\beta \in Reg(T_E(X, R))$. Hence, $Reg(T_E(X, R))$ is a subsemigroup of $T_E(X, R)$.

Let $\alpha \in Reg(T_E(X,R))$. We construct $\beta \in Reg(T_E(X,R))$ such that $\alpha = \alpha\beta\alpha$. For each $r \in R$, we choose $r' \in R$ such that $E_r \cap X\alpha = E_{r'}\alpha$ by Lemma 2.5. It follows that $r = r'\alpha$. Let $a_r = r'$. For each $y \in (E_r \cap X\alpha) \setminus \{r\}$, we choose $a_y \in E_{r'}$ such that $a_y\alpha = y$. Define $\beta_r : E_r \to E_{r'}$ by

$$x\beta_r = \begin{cases} a_x & \text{if } x \in X\alpha, \\ r' & \text{otherwise.} \end{cases}$$

Then β_r is well-defined, $E_r\beta_r\subseteq E_{r'}$ and $r\beta_r=a_r=r'\in R$. Let $\beta\in T(X)$ be defined by $\beta|_{E_r}=\beta_r$ for all $r\in R$. Since R is a cross-section of the partition X/E induced by E, β is well-defined. Obviously, $\beta\in T_E(X)$ and $R\beta\subseteq R$. Let $r\in R$. Then $r\alpha=s$ for some $s\in R$. Thus, $s\beta_s=a_s=s'$ for some $s'\in R$ with $s'\alpha=s$. Therefore, $s'\alpha=r\alpha$. By assumption, we have that s'=r and thus $s\beta=s\beta|_{E_s}=s\beta_s=a_s=s'=r$. It follows that $R\beta=R$ and therefore $\beta\in T_E(X,R)$. If $x\in X$, then $x\alpha\in E_r$ for some $r\in R$. Thus,

$$x\alpha\beta\alpha = (x\alpha)\beta|_{E_r}\alpha = (x\alpha)\beta_r\alpha = a_{x\alpha}\alpha = x\alpha$$

and therefore $\alpha = \alpha \beta \alpha$. It remains to show that $\beta \in Reg(T_E(X, R))$. To do this, let $r, s \in R$ be such that $r\beta = s\beta$. Then $r\beta = a_r = r'$ and $s\beta = a_s = s'$ for some $r', s' \in R$ with $r = r'\alpha$ and $s = s'\alpha$. Thus, $r = r'\alpha = s'\alpha = s$. By Theorem 2.2, $\beta \in Reg(T_E(X, R))$.

Hence, the theorem is completely proved.

Next, we describe the complement of $Reg(T_E(X, R))$ in $T_E(X, R)$.

Theorem 2.7. If $T_E(X, R) \backslash Reg(T_E(X, R))$ is a nonempty set, then it is an ideal of $T_E(X, R)$.

Proof. Suppose that $T_E(X,R) \backslash Reg(T_E(X,R)) \neq \emptyset$. Let $\alpha \in T_E(X,R) \backslash Reg(T_E(X,R))$ and $\beta, \gamma \in T_E(X,R)$. Suppose that $\beta \alpha \gamma \in Reg(T_E(X,R))$. Claim that $\alpha \gamma |_R$ is injective. Let $r, s \in R$ be such that $r\alpha \gamma = s\alpha \gamma$. Since $R\beta = R$, $r'\beta = r$ and $s'\beta = s$ for some $r', s' \in R$. Thus, $r'\beta\alpha\gamma = s'\beta\alpha\gamma$. By the regularity of $\beta\alpha\gamma$, we get that r' = s' and hence $r = r'\beta = s'\beta = s$. So we have the claim. From Theorem 2.2, $\alpha\gamma \in Reg(T_E(X,R))$. Since $\alpha \notin Reg(T_E(X,R))$, there are distinct elements $r, s \in R$ such that $r\alpha = s\alpha$. Thus, $r\alpha\gamma = s\alpha\gamma$. But $\alpha\gamma \in Reg(T_E(X,R))$, we have that r and s must be equal, contradicting the supposition. Hence, $\beta\alpha\gamma \notin Reg(T_E(X,R))$. Consequently, $T_E(X,R) \backslash Reg(T_E(X,R))$ is an ideal of $T_E(X,R)$, as required.

The next theorems provide conditions under which semigroups $T_{E^*}(X)$ and $T_{E}(X, R)$ are regular [4, 6].

Theorem 2.8 [4]. $T_{E^*}(X)$ is a regular semigroup if and only if X/E is finite.

Theorem 2.9 [6]. $T_E(X, R)$ is a regular semigroup if and only if R is finite.

Finally, we investigate the equality of the semigroups $T_{E^*}(X)$ and $T_{E}(X,R)$.

Theorem 2.10. $T_E(X, R) = T_{E^*}(X)$ if and only if R is finite and E is the identity relation.

Proof. Suppose that $T_E(X,R) = T_{E^*}(X)$. To show that $T_{E^*}(X)$ is regular, let $\alpha \in T_{E^*}(X)$. Then $\alpha \in T_E(X,R)$ and hence $R\alpha = R$. It follows that $E_r \cap X\alpha \neq \emptyset$ for all $r \in R$. From Theorem 2.1, we have $\alpha \in Reg(T_{E^*}(X))$. Hence, $T_{E^*}(X)$ is regular. By Theorem 2.8, X/E is finite and this implies that R is finite. Next, to show that E is the identity relation on E, let E, E be such that E be defined by

$$x\alpha = \begin{cases} a & \text{if } x \in E_r, \\ x & \text{otherwise} \end{cases}$$

and

$$x\beta = \begin{cases} b & \text{if } x \in E_r, \\ x & \text{otherwise.} \end{cases}$$

Obviously, $\alpha, \beta \in T_{E^*}(X)$. By assumption, $\alpha, \beta \in T_E(X, R)$. It then follows that $a = r\alpha = r = r\beta = b$. Hence, E is the identity relation, as desired.

Conversely, assume that R is finite and E is the identity relation. Since R is finite, X/E is also finite. Then Theorems 2.8, 2.9 and Proposition 2.3 imply that $T_E(X,R) \subseteq T_{E^*}(X)$. For the reverse inclusion, let $\alpha \in T_{E^*}(X)$. It suffices to show that $R\alpha = R$. Let $r \in R$. Then $r\alpha \in E_s$ for some $s \in R$. Since E is the identity relation, $r\alpha = s$ and hence $R\alpha \subseteq R$. On the other hand, let $r \in R$. Since X/E is finite, by Theorem 2.8, we have α is a regular element of $T_{E^*}(X)$. By Theorem 2.1, $E_r \cap X\alpha \neq \emptyset$. Then there exists

 $r' \in R$ such that $E_{r'}\alpha \subseteq E_r$. Consequently, $(r'\alpha, r) \in E$. By assumption, we have $r'\alpha = r$. Thus, $R \subseteq R\alpha$, the equality holds. Thus, $\alpha \in T_E(X, R)$ and hence $T_E(X, R) = T_{F^*}(X)$.

Therefore, the proof is complete.

Acknowledgment

The authors would like to express gratitude to Science Achievement Scholarship of Thailand (SAST) for full scholarship to the first author and support in academic activities.

References

- [1] J. Araújo and J. Konieczny, Automorphism groups of centralizers of idempotents, J. Algebra 269 (2003), 227-239.
- [2] J. Araújo and J. Konieczny, Semigroups of transformations preserving an equivalence relation and a cross-section, Comm. Algebra 32 (2004), 1917-1935.
- [3] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys, American Mathematical Society, Rhode Island, 1961.
- [4] L. Deng, J. Zeng and B. Xu, Green's relations and regularity for semigroups of transformations that preserve double direction equivalence, Semigroup Forum 80 (2010), 416-425.
- [5] C. Doss, Certain equivalence relations in transformation semigroups, M. A. Master's Thesis, University of Tennessee, Knoxville, 1955.
- [6] C. Namnak, P. Kammoo and N. Sawatraksa, *E*-inversive elements in some semigroups of transformations that preserve equivalence, Thai J. Math. (to appear).
- [7] H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), 109-118.