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Abstract 

The main objective of the present research is to provide a new 
approach for solution of linear time-delay integral equations via                
Z-decommission method (ZDM). The selected method is applied to 
solve the equations of Fredholm and Volterra types with time-delay. 
This study is so important for various fields of sciences, engineering, 
space and time domain and population dynamics. We applied this 
approach to some examples of time-delay integral equations. In fact, 
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ZDM is easily applied for obtaining highly accurate (exact) solutions 
without requiring a large number of computations and complex 
numerical operations. 

1. Introduction 

Consider the type of integral equations with time-delay ,0>τ  shown 

below [1-3, 10] 

 ( ) ( ) ( ) ( ) ( ) [ ]
( )

∫ ∈τ−λ+=
tb

t
Tttdssgstktftgth

0
,,,, 0  (1) 

where the functions ( ) ( ) ( ) ( )tbstktfth ,,,,  are given and ( )tg  is unknown, 

λ is constant and [ ] ( ) .,,,0 MstkTtt ≤∈∀  

Equation (1) can be determined by many types of equations                
which depend on ( ) ( )tfth ,  and ( ).tb  If ( ) 0=th  and ( ) ,1=th  then the 

time-delay is called to be of the first kind and second kind, respectively. If 
( ) 0=tf  and ( ) ,0≠tf  then it is called time-delay of the homogeneous and 

nonhomogeneous equations, respectively. If ( ) ,btb =  where b is fixed, then 

it is called Fredholm (FIEs) with time-delay. If ( ) ,ttb =  then it is called 

Volterra (VIEs) with time-delay. 

These types of equations are so important for various fields of sciences, 
engineering, population dynamics, and space and time domain. Here we 
review some of the studies done [1-8] on this type of equations. To begin 
with [1], expansion methods have been used to solve VIEs and FIEs with 
time lags. In [2], Nouri and Maleknejad used block pulse functions to VIEs 
and FIEs with time-delay. Stability analysis for VIEs with delay has been 
discussed in [3]. In [4], trapezoidal direct quadrature method is introduced 
for VIEs with delay. Zarebnia and Shiri applied sinc-collocation method       
to VIEs with delay in [5]. Otadi and Mosleh [6] presented universal 
approximation method for VIEs with delay. Numerical solution of VIEs with 
delay by single term Walsh series method has been given in [7]. In [8], 
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collocation methods are proposed for VIEs with delay. And also other papers 
(see [9-11]). 

In general, integral equations whether Fredholm or Volterra have          
been studied by various methods (see [12-20] and references therein). This 
research focuses on linear time-delay integral equations which are essential 
in various sciences.  

2. Description of the Algorithm 

Below, we suggest a new algorithm for solution of equation (1)               
with non-homogeneous second kind ( ) ( )( ).0and1 ≠= tfth  To apply this 

algorithm, we split ( )tf  as 

 ( ) ( ) ( ).21 tftftf +=  (2) 

Thus, equation (1) becomes 

 ( ) ( ) ( ) ( ) ( )
( )

∫ >ττ−λ++=
tb

t
dssgstktftftg

0
.0,,21  (3) 

Start with the following initial guess: 

 ( ) ( ).10 tftg =  (4) 

The basic of proposed algorithm is to construct a recurrence relation, 
which reads 

( ) ( ) ( ) ( ) ( ) ( )
( )

∫ =τ−λ+−+=
tb

t nnn ndssgstktgtftgtZ
0

...,,2,1,0,,20  (5) 

where ( )tgn  is obtained by 

 ( ) ( ) ( ) .,2,1,0,1 …=+=+ ntZtgtg nnn  (6) 

We finally obtain the solution as 

 ( ) ( ).lim tgtg nn ∞→=  (7) 
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Theorem. Equation (1) has a unique solution if ,LMT=α  where             

L-Lipschitz and ( ).1,0∈α  

Proof. Let equation (1) has two solutions ϕ and .∗ϕ  Then 

( ) ( ) ( ) ( )
( )( )

∫ ∫ τ−ϕλ−τ−ϕλ=ϕ−ϕ ∗∗ tb

t

tb

t
dssstkdssstk

0 0
,,  

( ) ( ( ) ( ))
( )

∫ τ−ϕ−τ−ϕλ=
tb

t
dsssstk

0

*,  

( ) ( ( ) ( ))
( )

∫ τ−ϕ−τ−ϕλ≤ ∗tb

t
dsssstk

0
,  

Using Lipschitz condition, we have 

( )
∫λϕ−ϕ≤ ∗ tb

t
dsLM

0
 

∗ϕ−ϕ≤ LMT  

∗ϕ−ϕα≤  

( ) .01 ≤ϕ−ϕα− ∗  

Since ( ),1,0∈α  therefore 0=ϕ−ϕ ∗  and hence .∗ϕ=ϕ  ~ 

3. Applications  

To show the performance of ZDM in obtaining highly accurate (true) 
solutions of FIEs and VIEs types with time-delay, we examine in depth three 
illustrative examples that are solved using ZDM. The computations are 
performed by Maple 17 software. Examples 1 and 2 take VIEs form with 
time-delay. Also, Example 3 takes FIEs form with time-delay. 
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Volterra type with time-delay 

Example 1. Consider equation (1) with the constants ,1=λ  1=τ  and 

,00 =t  and the functions ( ) ,, tstk =  ( ) ,1=th  ( ) 11 −− +−= teteetf tt  and 

( ) .ttb =  Then true solution ( ) [ ],1,0, ∈= tetg t  i.e., [10] 

 ( ) ( )∫ −++−= −− ttt dsstgteteetg
0

11 .1  (8) 

To apply the algorithm in Section 2, we split ( )tf  as 

( ) ( ) ( ),21 tftftf +=  

where ( ) tetf =1  and ( ) .11
2

−− +−= tetetf t  

Apply equation (5) with above equations to get 

 ( ) ( ) ( ) ( )∫ =−+−+−= −− t
nn

t
n ndsstgtgtetetgtZ

0
11

0 ...,,2,1,0,1  (9) 

where ( ) ( ).10 tftg =  

Calculate ( )tgn  as follows: 

( ) ( ) ( ) .,2,1,0,1 …=+=+ ntZtgtg nnn  

The use of above steps, yields: 

Zeroth-order problem 

( ) ( )

⎪⎩

⎪
⎨
⎧

=

=

.

10
te

tftg
 

First-order problem 

( ) ( ) ( ) ( )

( ) ( ) ( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

+=

=

−+−+−= ∫−−

.

,0

1

001

0 00
11

00

t

tt

e

tZtgtg

dsstgtgtetetgtZ
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Second-order problem 

( ) ( ) ( ) ( )

( ) ( ) ( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

+=

=

−+−+−= ∫−−

.

,0

1

112

0 11
11

01

t

tt

e

tZtgtg

dsstgtgtetetgtZ

 

Third-order problem 

( ) ( ) ( ) ( )

( ) ( ) ( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

+=

=

−+−+−= ∫−−

.

,0

1

223

0 22
11

02

t

tt

e

tZtgtg

dsstgtgtetetgtZ

 

So, true solution is obtained. 

 

Figure 1. Graph solution for Example 1. 

Example 2. Here, we solve equation (1) with ,1=λ  ,1=τ  ,00 =t  

( ) ,, 2tstk =  ( ) ,1=th  ( ) ttb =  and ( ) ( ) ( ) ( )1cos1cossin 22 −−−+= tttttf  

with true solution ( ) ( ),sin ttg =  [ ].1,0∈t  So, we have [10] 

( ) ( ) ( ) ( ) ( )∫ −+−−−+=
t

dssgttttttg
0

222 .11cos1cossin  (10) 

Let ( ) ( )ttf sin1 =  and ( ) ( ) ( ).1cos1cos 22
2 −−−= ttttf  
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Now, ( )tZn  is obtained as 

( ) ( ) ( ) ( ) ( ) ( )∫ −+−−−−+=
t

nnn dssgttgttttgtZ
0

222
0 ,11cos1cos  

.,2,1,0 …=n  (11) 

Choose ( ) ( )tftg 10 =  and calculate ( )tgn  as follows: 

( ) ( ) ( ) .,2,1,0,1 …=+=+ ntZtgtg nnn  

Consequently, we have: 

Zeroth-order problem 

( ) ( )
( )⎩

⎨
⎧

=

=

.sin
10

t

tftg
 

First-order problem 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

+=

=

−+−−−−+= ∫

.sin

,0

11cos1cos

001

0 0
2

0
22

00

t

tZtgtg

dssgttgttttgtZ
t

 

Second-order problem 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

+=

=

−+−−−−+= ∫

.sin

,0

11cos1cos

112

0 1
2

1
22

01

t

tZtgtg

dssgttgttttgtZ
t

 

Third-order problem 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

+=

=

−+−−−−+= ∫

.sin

,0

11cos1cos

223

0 2
2

2
22

02

t

tZtgtg

dssgttgttttgtZ
t
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So, the true solution is ( ) ( ).sin ttg =  

 

Figure 2. Graph solution for Example 2. 

Fredholm type with time-delay 

Example 3. In equation (1), let ,1=λ  ,1=τ  ,10 −=t  ( ) ,, ststk =  

( ) ,1=th  ( ) 1=tb  and ( ) .3
52 tttf +=  Then ( ) tttg += 2  [9] 

 ( ) ( )∫− −++=
1

1
2 .13

5 dssgsttttg  (12) 

Consider ( ) ( ) ( ).21 tftftf +=  

Next step, choose ( ) ( ) tttftg +== 2
10  and ( ) .3

2
2 ttf =  

Using equations (5)-(7), we have: 

Zeroth-order problem 

( ) ( )

⎪⎩

⎪
⎨
⎧

+=

=

.2
10

tt

tftg
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First-order problem 

( ) ( ) ( ) ( )

( ) ( ) ( )
⎪
⎪
⎪

⎩
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⎪

⎨

⎧

+=

+=

=

−+−+= ∫−
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Second-order problem 

( ) ( ) ( ) ( )

( ) ( ) ( )
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⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
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+=

=

−+−+= ∫−

.

,0

13
2

2
112

1

1 1101

tt

tZtgtg

dssgsttgttgtZ

 

Third-order problem 

( ) ( ) ( ) ( )

( ) ( ) ( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+=

+=

=

−+−+= ∫−
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2
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1 2202
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tZtgtg
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This is a true solution. 

 

Figure 3. Graph solution for Example 3. 
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4. Conclusions 

We have provided a new approach for solution of linear TDVIEs and 
TDFIEs, namely ZDM. We have applied the selected method for solving 
some examples of TDVIEs and TDFIEs. Clearly, ZDM is easily applied for 
obtaining highly accurate (exact) solutions without requiring a large number 
of computations and complex numerical operations. 
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