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Abstract

The purpose of this paper is to determine some remarkable classes of
the induced structures on the product of a locally conformally Kahler
manifold with the real line and an almost contact metric manifold.

1. Introduction

From Chinea and Gonzalez [6], it is known that there are a large number
of classes of amost contact structures. These manifolds are grouped in
Sasakian, cosymplectic and Kenmotsu types. In 1985, using the warped
product, Oubifia showed that there is a one-to-one correspondence between
Sasakian and Kahlerian structures [10]. In 2013, building on the work of
Tanno [8], Blair [5] introduced the notion of D -homothetic warping and he
showed by another way this correspondence.
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Recently, Beldjilali and Belkhelfa [1] introduced the notion of D -
homothetic bi-warping and proved that every Sasakian manifold M generates
a 1-parameter family of Kahlerian manifolds, thereby generalizing the results
of Oubifia and Blair. They investigated the conditions on the product of a
cosymplectic or Kenmotsu manifold and the real line to be a family of
conforma Kahler manifolds. Regarding this result, one can ask if it is
possible to construct a Sasakian cone with the same reasoning.

On the other hand, in [7], Kenmotsu proved that a locally Kenmotsu
manifold is awarped product T x M of aninterval T and a Kéhler manifold

M with warping function f(t)=ce', where ¢ is a positive constant.

Conversely, the conformal Ké&hler manifold M is supposed to be warped
product of odd dimensiona manifold M and the real line R. Then the
conditions in which the odd dimensional manifold M is an amost Kenmotsu
manifold are investigated lately.

In [9], Tshikuna-Matamba examined the product of an almost Hermitian
manifold with an almost contact metric manifold and completed the study of
Oubifia[10].

Here, by deforming the canonical almost contact metric structure with
some functions of the norm of vectors and a 1-form, we construct many
geometric structures rely on alocally conformally Kahler structure.

This paper is organized in the following way.

Section 2 is devoted to the background of the structures which will be
used in the sequel.

In Section 3, we examine the product of a locally conformally Kahler
manifold with the real line. Since this product is Sasakian or Kenmotsu
manifold, we give the conversely study of Oubifia [10] and Blair [5]. In
Section 4, we construct a concrete example. Section 5 is devoted to the case
of the product of an almost Hermitian manifold with an amost contact metric
manifold. This completes the work of Tshikuna-Matamba[9].
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2. Preliminaries
2.1. Almost contact metric structures and Sasakian structures

For more background on almost contact metric manifolds, we refer the
reader to [3, 4].

An odd dimensional Riemannian manifold (M, g) is said to be an
almost contact metric manifold if there exist on M a (1, 1) tensor field ¢, a
vector field & (called the structure vector field) and a 1-form n such that

nE) =1 ¢*(X)=-X+n(X)& and

9(eX, oX) = g(X, Y) - n(X)n(Y), (21)

for any vector fields X, Y on M. In particular, in an almost contact metric
manifold, we also have ¢ =0 and o ¢ = 0.

Such a manifold is said to be a contact metric manifold if dn = @,
where ®(X, Y) = g(X, ¢Y) is called the fundamental 2-form of M. If, in

addition, & isaKilling vector field, then M is said to be a K-contact manifold.
It iswell-known that a contact metric manifold is a K-contact manifold if and
only if Vy& = —X, for any vector field X on M.

On the other hand, the amost contact metric structure of M is said to be
normal if

Ny (X, Y) = [0, 0](X, Y) + 2dn(X, Y)& = 0, (2.2)
for any X, Y, where [¢, ¢] denotes the Nijenhuis torsion of ¢, given by

[0, 0](X, Y) = %[X, Y]+ [0X, oY] - gloX, Y]~ ¢[X, Y]

An amost contact metric structure (¢, &, m, g) on M is said to be
[3.4,7]
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(a): Sasaki < ® = dn and (o, &, n) is normal,
(b) : Cosymplectic < d® = dn = 0 and (¢, &, n) is normal, (2.3)
(c) : Kenmotsu < dn =0, d® = 20 A n and (o, &, n) is normal,

where d denotes the exterior derivative. These manifolds can be characterized
through their Levi-Civita connection, by requiring

(1) : Sasaki = (V)Y = g(X, Y)E-n(Y) X,
(2) : Cosymplectic < Vo =0, (2.9
(3): Kenmotsu < (Vx @)Y = g(@X, Y)E —n(Y)pX

(see[3, 4, 11)).

2.2. Almost complex structures and Kéahlerian structures

For more background on almost complex structure manifolds, we
recommend [11].

An amost complex manifold with a Hermitian metric is called an almost
Hermitian manifold. For an almost Hermitian manifold (M, J, g), we thus

have
J2 =21 g(IX, IY)=g(X,Y).

An amost complex structure J is integrable, and hence the manifold is a
complex manifold, if and only if its Nijenhuis tensor N vanishes, with

Nj(X, Y) = [3X, Y] - [X, Y]- J[X, IY]- I[IX, Y]. (2.5)

For an almost Hermitian manifold (M, J, g), we define the fundamental
Kéahler form as:

Q(X,Y) = g(X, JY).
(M, J, g) isthen caled almost Kahler if isclosed, i.e, dQ = 0. It can be
shown that this condition for (M, J, g) to be amost Kahler is equivalent to

9((VxJ)Y, Z2)+ g((VyI)Z, X)+ 9((VzI) X, Y) = 0.
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An amost Kahler manifold with integrable J is called a Kahler manifold, and
thus is characterized by the conditions: dQ = 0 and N; = 0. One can prove
that both these conditions combined are equivalent with the single condition

Vi =0.

For brevity, we cal a Kéahlerian manifold with exact Kahler form
(i.e, Q = do) for some 1-form 6 an exact K&hlerian manifold.

A localy conformaly Kahler structure, or shortly I.c.K. structure on a
differentiable manifold M is a Hermitian structure on M with its associated
fundamental form Q satisfying dQQ = ® A Q for some closed 1-form ®
(which is so-called Lee form). A differentiable manifold M is called a locally
conformally Kahler manifold, or shortly I.c.K. manifold if M admits al.cK.
structure. Note that I.c.K. structure Q is globally conformally K&hler (or
Kahler) if and only if o isexact (or O, respectively).

3. Product R x M 2"

Let (M, J, g) bean amost Hermitian manifold of dimension 2n. On the

product M = R x M, one can define an almost contact structure (, &, 7)
by setting

PX = IX —0(IX)d,, E=0,, m=dr+0, (3.1)
and a Riemannian metric g given by
g=o0g+n®n, (3.2)

for any vector field X of M and 0, denotes the unit tangent field to R,

where 0 isa1-form on M and o is a positive function on R.

Proposition 3.1. The structure (o, E M, ) constructed on the product

M isan almost contact metric structure.

Proof. The proof follows by aroutine calculation, we shall omit it. O
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We denote by Ng the tensor field of type (4, 2) on M. Using definition
of ¢ in (3.1) with formulas (2.2) and (2.5), the only non-zero component of
Ng is

Nz = ((0, X), (0,Y))
= (2(dO(X, Y) — dB(IX, IY)) — 6(N; (X, Y)); N3(X,Y)),
for al X, Y are vector fields on M.

We note that (, &, 7j) is normal if and only if J isintegrable and do =
do o J.

On the other hand, the fundamental 2-form @ of (¢, E M, 9) is

(o5} (657) o X) 05)
Easily, it follows that
O = aQ, (3.3
and hence

{{15 = o) {d(is =o'dr A Q + adQ
-

R=dr+0 dn = do.

For the specia cases, we have the following:

dd = o'dr A Q,
(1) Almost Kahler: _
dn=do =® - aQ +do,

dd = 27 A @ + (o' — 20)dr + a(Q — 20)) A Q,

(2) L.cK.: {
dn = de.

We can claim the following first main theorem:
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Theorem 3.1. (1) The almost contact metric structure on M is an
almost cosymplectic if and only if the almost Hermitian structure (g, J) is

almost Kahler with do = 0. In addition, the structureon M is cosymplectic
if and only if the structure (g, J) isexact Kahlerian.

(2) The almost contact metric structure on M is a contact metric if
and only if the almost Hermitian structure (g, J) is almost Kahler with
do = a2 and o is a positive constant. In addition, the structure on M is

a-Sasakian if and only if the structure (g, J) is exact Kahlerian with

a-1a
o

(3) The almost contact metric structure on M isa Kenmotsu if and only
if the almost Hermitian structure (g, J) is locally conformally Kahler with

dQ =20 A Q and o = ce?, where ¢ > 0.
Proof. The necessity was observed above for both cases.

For the sufficiency, first note that
dd((4,, 0), (0, X), (0, Y)) = a'Q(X, Y),
dd((0, X), (0,Y), (0, 2)) = adX(X, Y, Z), (3.4)
dn((0, X), (0, Y)) = do(X, Y).
(1) Supposethat (¢, &, 7, §) isan aimost cosymplectic structureon M,
i.e., wehave dd = dij = 0. Then (3.4) gives
oa'=0, d2=0 and do=0,

i.e, Jisan amost Kahlerian structure with 6 as an exact 1-form on M and o
isastrictly positive constant.

(2) Suppose that (¢, é‘ M, §) is a contact metric structure on M, ie,

we have dn = ® which gives d0 = Q2 implying that dQ = 0 since d® =0
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which confirms that J is an dmost Kahlerian structure with exact Kahler

form Q = éde and o isastrictly positive constant.

(3) Suppose that (¢, &, 7, §) is a Kenmotsu structure on M, i.e,, we

have d® = 2n A ®, and dn = 0. From equations (3.4), we obtain
a=ce?, d2=20A0,do=0

which shows that J is a locally conformally Kahler with dQ2 = 26 A Q and

o = ce?, where ¢ > 0. O

4. Construction of an Example

For this construction, we use our example in [1]. We denote the
Cartesian coordinates in a 4-dimensional Euclidean space E* by (t, x, y, 2)

and let (J, g) be an amost Hermitian structure defined by

1 0 0 0
DR S CER BN - i
9710 0 f2p2 o [
0 _f 2§12 0 f2§12
1 —ff" 0o ff
0 0 -1 0
J=1 o 1 0 o]
—% 0 —T 0

where f = f(t),p =p(X, Y, 2) and t=1(X, y, z) are three functions on
E%.

We know that (J, g) hastwo cases:

(1) Kahlerian structure when 1, = —2p2 and p3 =13 =0,



Structures and D -homothetic Product Metric 435

(2) locally conformally Kahlerian structure when pz =1, =13 =0,

_ ot

where p; _% and T; =

¢
On the other hand, we have
Q = 2ff it A (dz — tdx) — 2f 2p2dx A dy,

which implies

dQ = —4ff p%dt A dx A dy + 2ff bt A dx A T — 4 %pdx A dy A dp.
So, for the first case, we get

Q = d(f?(dz - wdx)),

and for the second case, we obtain

do=dinf? Q.

Using the above cases and Theorem 3.1, the manifold (R x E4, ?, g n, 9)
is:

(1) Sasakian if 1, = —2p2, p3 = 13 = 0 and 0 = f %(dz — dx),

(2) Kenmotsu if pg =1, =13 =0, a =ce? and 0 =dIn 2.
5. Product MZ™1 x M3"

Let (Mg, ¢1, &, N1, 91) be an amost contact metric manifold of
dimension 2 +1 and (M, J, g») be an amost Hermitian manifold of
dimension 2n,. It is known that the product M =M;xM, is a
differentiable manifold of dimension 2(n + ny)+1. One can put n=
m+n, so that the dimenson of M is 2n+1. On the product
M = M; + M5, one defines an amost contact structure (o, &, n, g) by
setting
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P(X1, X2) = (@1 X1 - 6(IX3)&, IX3),
n(Xy X2) = m(Xy) + 0(X2), € = (&, 0),
9((Xy, X2), (M1, Y2)) = 91(X1, Y1) + 0g2(X2, Y2)
+M1(Xp)0(Y2) + 0(X2)m1(V1) + 0(X2)6(Y2).

for any vector fields X4, Y; of My and X5, Y, of M,, where 6 isa1-form

(5.1)

on M, and o isapositive function on M;.

Proposition 5.1. The structure (o, &, , g) constructed on the product

M = M; x M, isan almost contact metric structure.
Proof. It follows from (2.1). O

We denote by N, the tensor of the aimost contact metric structure of

M (see (2.2)) and N; the Nijenhuis tensor of the amost complex structure
J. Then from the almost contact metric structure of M defined in (5.1) and
formula (2.2), we get

Proposition 5.2. The almost contact metric structure (o, &, 1, g) on M
is normal if and only if the almost contact metric structure (¢4, &1, M1, 91)
on M; isnormal and the almost Hermitian structure J on M, is integrable
and do = do - J.

Proof. Since No is a tensor field of type (1, 2) on M, it suffices to

compute it on pairs of vector fields of the forms (Xy, Y1), (X1, Yo) and
(X2,Y2), where X4, Y; and X,, Y, are vector fields on M; and M,
respectively. Using definition of ¢ in (5.1) with formulas (2.2) and (2.5), we
have

No(X1, Y1) = Ny, (Xg, Y1),

Ny (X1, Y2) = 0(I¥2) (Le 91) (Xp),

Ny (X2, Y2) = N3 (X2, Y2) - 6(N; (X3, Y2))&;
+ 2(d6(X2, Yz) — dG(JXZ, JYz))E)l

(5.2)
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Suppose that (¢, & m, g) on M is normd, i.e, N, =0. From the first
equation of (5.2), we get Ny, = 0. From the third equation, we get
N3 (X2, Y2) = 6(N3 (X2, Y2))&1 + 2(dO(X2, Y2) — dO(IX2, IY2))& =0,
whichimplies Nj =0 and d6 = d6 o J.
Conversely, suppose that (o1, &1, ng, g1) is norma and J is integrable

with 0 exact, i.e., we have N<P1 =0, Ny =0 and do = 0. From (5.2), we get

No(X1, ¥p) = 0,

N (X1, Y2) = 0(IY2) (Le, 01) (X2),
N(p(XZ’ Y2) = 0

and knowing that
Ng, (91X1, &1) = [E1, @, X1] = @1[&1, X1] = (Le01) (Xp),
then we obtain N, = 0. O
The manifold (M, ¢, &, m, g) possesses a fundamental 2-form, ¢,
defined by
d((X1, X2), (Y1, Y2)) = 9((X1, X2), ¢(Y1, Y2)).
From the definitions of g and ¢ (see (5.1)), we get
O((X1, X2), (Y1, Y2)) = 01(X1, Y1) + a (X2, Y2), (5.3)
where Q is the fundamental Kahler form of M, given by Q(X5, Y,) =
92(X2, IY2).
We have immediately that
dd = dp; + do A Q + adQ. (5.4)

For our motivation, we consider M, is a locally conformally Kahler
manifold with dQQ = ® A Q. From (5.4), we get

dp = dpy + a(dIna + ®) A Q. (5.5
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For the special cases of M4, we have the following:

dp = a(dIna + o) A Q,

1) Almost lectic:
(1) Almost cosymplectic {dnzde.

(2) Almost Kenmotsu:
dd=2nA"d—-20A¢;+a(dIina —2n; + ® - 20) A Q,
dn = do.

dp =a(dIna +0) A Q,

(3) Contact metric:
n = ¢+ do — aQ.

We note that:

(1) ¢ is closed only in the case of amost cosymplectic if and only if
® = 0 and o is a constant.

(2) dp =2n A ¢ only in the case of almost Kenmotsu if and only if
o=20=0and dina = 2n;.

(3) dn=¢ only in the case of contact metric if and only if ® =0,
do = aQ2 and a is a constant.

Therefore, summing up the arguments above, we have the following
second main theorem:

Theorem 5.1. (1) The almost contact metric structure on M is
almost cosymplectic if and only if the almost contact metric structure
(01, &1, M1, 91) on M; is almost cosymplectic and the almost Hermitian

structure (J, go) on M, isalmost Kahler with 6 being exact.
In addition, the structure on M is cosymplectic if and only if the
structures on M; and M, are cosymplectic and Kéhlerian, respectively,

with 6 being exact.

(2) The almost contact metric structure on M is almost Kenmotsu if and
only if the almost contact metric structure (o4, &1, g, 91) on M is almost
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Kenmotsu and the almost Hermitian structure (J, g») on M, is almost

Kahler with 6 =0 and dIna = 2n;.

In addition, the structure on M is Kenmotsu if and only if the structures
on M; and M, are Kenmotsu and K&hlerian, respectively, with 6 = 0 and

dlna = 2n;.

(3) The almost contact metric structure on M is a contact metric
structure if and only if the almost contact metric structure (¢, &1, N1, 91)
on Mq is a contact metric structure and the almost Hermitian structure
(J,92) on M, is almost Kahler exact with do = aQ, where a is a
constant.

In addition, the structure on M is a-Sasakian if and only if the structures
on M; and M, are Sasakian and K&hlerian exact, respectively.

Proof. The necessity was observed above for both cases.

For the sufficiency, first note that

do((X1, 0), (Y1, 0), (Z1, 0)) = do1(Xy, Y, Z3), (5.6)
do((X1, 0), (0, Y2), (0, Z3)) = X1(a)Q(Y2, Z3), (5.7)
do((0, X2), (0, Y2), (0, Z3)) = adQ( Xy, Y2, Z5), (5.8)

foral Xq,Y, Z; vector fieldson M4 and X5, Y, Z, vector fieldson M.

(1) Suppose that (¢, &, 1, g) is an amost cosymplectic structure. Then
we have dp = 0 and dn = 0. Equations (5.6), (5.7) and (5.8) give ¢; =0,
o = constant and dQ = 0, respectively, and knowing that m =mn; + 6,
we get dn=d0 =0. So (o1, &, n, g) and (J, g,) are cosymplectic and
Kahlerian structures, respectively.

(2) Suppose that (o, &, 1, g) isan dmost Kenmotsu structure. Then we
have do = 2n A ¢ and dn = 0. Equations (5.6), (5.7) and (5.8) give
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2n1(X) (M1, Z1) = de(Xg, W1, Zy),
20my(X1)QAYz, Z3) = Xy ()Y, Z5),
200(X2)0(Y2, Zp) = adQ(Xz, Y2, Z3),
with dn = dn; + d6 = 0, which implies
doy = 2m A @1, dng = 0,
dina = 2ng,
dQ=20AQ, d6 =0.
In addition, the equation

de((0, X2), (Y1, 0), (Z1, 0)) = 2(n 7 9)((0, X2), (Y1, 0), (21, 0)),
gives 0 = 20(X5)pq(Yy, Z;) which give 6 = 0.

So (91, &1, M1, G1) and (J, g,) are dmost Kenmotsu and almost Kahler
structures, respectively.

(3) Suppose that (¢, &, m, g) is a contact metric structure, i.e., dn = .
Then, for all X4, Y; vector fieldson M, and X5, Y, vector fieldson M,
we get

{dﬂ(xlv Y1) = o(Xy, V1) - {dm(xl, Y1) = ¢1(X1, ¥p)
dn(X2X2) = 9(X2X3) do(X2X2) = aQ(X2X2).

On the other hand, dn = ¢ implies dp = 0 which gives ¢; =0, a =
constant and dQ = 0.

So, (91, &1, M1, 91) and (J, g,) are contact metric and almost Kahler
structures, respectively. O
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