STRUCTURES AND \mathcal{D} -HOMOTHETIC PRODUCT METRIC

ISSN: 0972-415X

Gherici Beldjilali

Département de Mathématiques Faculté des Sciences Exactes Université de Mascara Bp 305 route de Mamounia 29000 Mascara, Algeria

Abstract

The purpose of this paper is to determine some remarkable classes of the induced structures on the product of a locally conformally Kähler manifold with the real line and an almost contact metric manifold.

1. Introduction

From Chinea and Gonzalez [6], it is known that there are a large number of classes of almost contact structures. These manifolds are grouped in Sasakian, cosymplectic and Kenmotsu types. In 1985, using the warped product, Oubiña showed that there is a one-to-one correspondence between Sasakian and Kählerian structures [10]. In 2013, building on the work of Tanno [8], Blair [5] introduced the notion of \mathcal{D} -homothetic warping and he showed by another way this correspondence.

Received: July 12, 2017; Accepted: October 10, 2017

2010 Mathematics Subject Classification: 53C15, 53C25, 53C55, 53D25.

Keywords and phrases: locally conformally Kähler manifold, Sasakian manifold, product manifolds.

Recently, Beldjilali and Belkhelfa [1] introduced the notion of \mathcal{D} -homothetic bi-warping and proved that every Sasakian manifold M generates a 1-parameter family of Kählerian manifolds, thereby generalizing the results of Oubiña and Blair. They investigated the conditions on the product of a cosymplectic or Kenmotsu manifold and the real line to be a family of conformal Kähler manifolds. Regarding this result, one can ask if it is possible to construct a Sasakian cone with the same reasoning.

On the other hand, in [7], Kenmotsu proved that a locally Kenmotsu manifold is a warped product $\mathbb{I} \times M$ of an interval \mathbb{I} and a Kähler manifold M with warping function $f(t) = ce^t$, where c is a positive constant. Conversely, the conformal Kähler manifold M is supposed to be warped product of odd dimensional manifold M and the real line \mathbb{R} . Then the conditions in which the odd dimensional manifold M is an almost Kenmotsu manifold are investigated lately.

In [9], Tshikuna-Matamba examined the product of an almost Hermitian manifold with an almost contact metric manifold and completed the study of Oubiña [10].

Here, by deforming the canonical almost contact metric structure with some functions of the norm of vectors and a 1-form, we construct many geometric structures rely on a locally conformally Kähler structure.

This paper is organized in the following way.

Section 2 is devoted to the background of the structures which will be used in the sequel.

In Section 3, we examine the product of a locally conformally Kähler manifold with the real line. Since this product is Sasakian or Kenmotsu manifold, we give the conversely study of Oubiña [10] and Blair [5]. In Section 4, we construct a concrete example. Section 5 is devoted to the case of the product of an almost Hermitian manifold with an almost contact metric manifold. This completes the work of Tshikuna-Matamba [9].

2. Preliminaries

2.1. Almost contact metric structures and Sasakian structures

For more background on almost contact metric manifolds, we refer the reader to [3, 4].

An odd dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold if there exist on M a (1, 1) tensor field φ , a vector field ξ (called the *structure vector field*) and a 1-form η such that

$$\eta(\xi) = 1, \quad \varphi^2(X) = -X + \eta(X)\xi \quad \text{and}$$

$$g(\varphi X, \varphi X) = g(X, Y) - \eta(X)\eta(Y), \tag{2.1}$$

for any vector fields X, Y on M. In particular, in an almost contact metric manifold, we also have $\varphi \xi = 0$ and $\eta \circ \varphi = 0$.

Such a manifold is said to be a *contact metric manifold* if $d\eta = \Phi$, where $\Phi(X, Y) = g(X, \varphi Y)$ is called the *fundamental 2-form* of M. If, in addition, ξ is a Killing vector field, then M is said to be a K-contact manifold. It is well-known that a contact metric manifold is a K-contact manifold if and only if $\nabla_X \xi = -\varphi X$, for any vector field X on M.

On the other hand, the almost contact metric structure of *M* is said to be *normal* if

$$N_{\varphi}(X, Y) = [\varphi, \varphi](X, Y) + 2d\eta(X, Y)\xi = 0,$$
 (2.2)

for any X, Y, where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of φ , given by

$$[\varphi, \varphi](X, Y) = \varphi^{2}[X, Y] + [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y].$$

An almost contact metric structure (φ, ξ, η, g) on M is said to be [3, 4, 7]

 $\int (a) : Sasaki \Leftrightarrow \Phi = d\eta \text{ and } (\varphi, \xi, \eta) \text{ is normal,}$

$$\begin{cases} (b) : Cosymplectic \Leftrightarrow d\Phi = d\eta = 0 \text{ and } (\varphi, \xi, \eta) \text{ is normal,} \end{cases}$$
 (2.3)

$$(c)$$
: Kenmotsu $\Leftrightarrow d\eta = 0$, $d\Phi = 2\Phi \wedge \eta$ and (φ, ξ, η) is normal,

where d denotes the exterior derivative. These manifolds can be characterized through their Levi-Civita connection, by requiring

$$\begin{cases} (1) : Sasaki \Leftrightarrow (\nabla_X \varphi)Y = g(X, Y)\xi - \eta(Y)X, \\ (2) : Cosymplectic \Leftrightarrow \nabla \varphi = 0, \\ (3) : Kenmotsu \Leftrightarrow (\nabla_X \varphi)Y = g(\varphi X, Y)\xi - \eta(Y)\varphi X \end{cases}$$
 (2.4)

(see [3, 4, 11]).

2.2. Almost complex structures and Kählerian structures

For more background on almost complex structure manifolds, we recommend [11].

An almost complex manifold with a Hermitian metric is called an *almost Hermitian manifold*. For an almost Hermitian manifold (M, J, g), we thus have

$$J^2 = -1$$
, $g(JX, JY) = g(X, Y)$.

An almost complex structure J is integrable, and hence the manifold is a complex manifold, if and only if its Nijenhuis tensor N_j vanishes, with

$$N_{j}(X, Y) = [JX, JY] - [X, Y] - J[X, JY] - J[JX, Y].$$
 (2.5)

For an almost Hermitian manifold (M, J, g), we define the fundamental Kähler form as:

$$\Omega(X, Y) = g(X, JY).$$

(M, J, g) is then called *almost Kähler* if is closed, i.e., $d\Omega = 0$. It can be shown that this condition for (M, J, g) to be almost Kähler is equivalent to

$$g((\nabla_X J)Y, Z) + g((\nabla_Y J)Z, X) + g((\nabla_Z J)X, Y) = 0.$$

An almost Kähler manifold with integrable J is called a Kähler manifold, and thus is characterized by the conditions: $d\Omega = 0$ and $N_J = 0$. One can prove that both these conditions combined are equivalent with the single condition

$$\nabla J = 0.$$

For brevity, we call a Kählerian manifold with exact Kähler form (i.e., $\Omega = d\theta$) for some 1-form θ an exact Kählerian manifold.

A locally conformally Kähler structure, or shortly l.c.K. structure on a differentiable manifold M is a Hermitian structure on M with its associated fundamental form Ω satisfying $d\Omega = \omega \wedge \Omega$ for some closed 1-form ω (which is so-called Lee form). A differentiable manifold M is called a *locally conformally Kähler manifold*, or shortly *l.c.K. manifold* if M admits a l.c.K. structure. Note that l.c.K. structure Ω is globally conformally Kähler (or Kähler) if and only if ω is exact (or 0, respectively).

3. Product
$$\mathbb{R} \times M^{2n}$$

Let (M, J, g) be an almost Hermitian manifold of dimension 2n. On the product $\widetilde{M} = \mathbb{R} \times M$, one can define an almost contact structure $(\widetilde{\varphi}, \widetilde{\xi}, \widetilde{\eta})$ by setting

$$\widetilde{\varphi}X = JX - \theta(JX)\partial_r, \quad \widetilde{\xi} = \partial_r, \quad \widetilde{\eta} = dr + \theta, \tag{3.1}$$

and a Riemannian metric \tilde{g} given by

$$\widetilde{g} = \alpha g + \widetilde{\eta} \otimes \widetilde{\eta},$$
 (3.2)

for any vector field X of M and ∂_r denotes the unit tangent field to \mathbb{R} , where θ is a 1-form on M and α is a positive function on \mathbb{R} .

Proposition 3.1. The structure $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ constructed on the product \tilde{M} is an almost contact metric structure.

Proof. The proof follows by a routine calculation, we shall omit it. \Box

We denote by $N_{\widetilde{\phi}}$ the tensor field of type (1, 2) on \widetilde{M} . Using definition of $\widetilde{\phi}$ in (3.1) with formulas (2.2) and (2.5), the only non-zero component of $N_{\widetilde{\phi}}$ is

$$N_{\widetilde{\Phi}} = ((0, X), (0, Y))$$

$$= (2(d\theta(X, Y) - d\theta(JX, JY)) - \theta(N_I(X, Y)); N_I(X, Y)),$$

for all X, Y are vector fields on M.

We note that $(\widetilde{\varphi}, \widetilde{\xi}, \widetilde{\eta})$ is normal if and only if J is integrable and $d\theta = d\theta \circ J$.

On the other hand, the fundamental 2-form $\widetilde{\Phi}$ of $(\widetilde{\varphi}, \widetilde{\xi}, \widetilde{\eta}, \widetilde{g})$ is

$$\widetilde{\Phi}\!\!\left(\!\!\left(a\,\frac{\partial}{\partial t}\,,\,X\right)\!\!,\left(b\,\frac{\partial}{\partial t}\,,\,Y\right)\!\!\right) = \widetilde{g}\!\left(\!\!\left(a\,\frac{\partial}{\partial t}\,,\,X\right)\!\!,\,\widetilde{\varphi}\!\!\left(b\,\frac{\partial}{\partial t}\,,\,Y\right)\!\!\right)\!\!.$$

Easily, it follows that

$$\widetilde{\Phi} = \alpha \Omega, \tag{3.3}$$

and hence

$$\begin{cases} \widetilde{\Phi} = \alpha \Omega \\ \widetilde{\eta} = dr + \theta \end{cases} \Rightarrow \begin{cases} d\widetilde{\Phi} = \alpha' dr \wedge \Omega + \alpha d\Omega \\ d\widetilde{\eta} = d\theta. \end{cases}$$

For the special cases, we have the following:

(1) Almost Kähler:
$$\begin{cases} d\widetilde{\Phi} = \alpha' dr \wedge \Omega, \\ d\widetilde{\eta} = d\theta = \widetilde{\Phi} - \alpha\Omega + d\theta, \end{cases}$$

(2) L.c.K.:
$$\begin{cases} d\widetilde{\Phi} = 2\widetilde{\eta} \wedge \widetilde{\Phi} + ((\alpha' - 2\alpha)dr + \alpha(\Omega - 2\theta)) \wedge \Omega, \\ d\widetilde{\eta} = d\theta. \end{cases}$$

We can claim the following first main theorem:

Theorem 3.1. (1) The almost contact metric structure on \tilde{M} is an almost cosymplectic if and only if the almost Hermitian structure (g, J) is almost Kähler with $d\theta = 0$. In addition, the structure on \tilde{M} is cosymplectic if and only if the structure (g, J) is exact Kählerian.

- (2) The almost contact metric structure on \widetilde{M} is a contact metric if and only if the almost Hermitian structure (g, J) is almost Kähler with $d\theta = \alpha \Omega$ and α is a positive constant. In addition, the structure on \widetilde{M} is α -Sasakian if and only if the structure (g, J) is exact Kählerian with $\Omega = \frac{1}{\alpha} d\theta$.
- (3) The almost contact metric structure on \tilde{M} is a Kenmotsu if and only if the almost Hermitian structure (g, J) is locally conformally Kähler with $d\Omega = 2\theta \wedge \Omega$ and $\alpha = ce^{2r}$, where c > 0.

Proof. The necessity was observed above for both cases.

For the sufficiency, first note that

$$\begin{cases} d\widetilde{\Phi}((\partial_{r}, 0), (0, X), (0, Y)) = \alpha'\Omega(X, Y), \\ d\widetilde{\Phi}((0, X), (0, Y), (0, Z)) = \alpha d\Omega(X, Y, Z), \\ d\widetilde{\eta}((0, X), (0, Y)) = d\theta(X, Y). \end{cases}$$
(3.4)

(1) Suppose that $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is an almost cosymplectic structure on \tilde{M} , i.e., we have $d\tilde{\Phi} = d\tilde{\eta} = 0$. Then (3.4) gives

$$\alpha' = 0$$
, $d\Omega = 0$ and $d\theta = 0$,

i.e., J is an almost Kählerian structure with θ as an exact 1-form on M and α is a strictly positive constant.

(2) Suppose that $(\widetilde{\varphi}, \widetilde{\xi}, \widetilde{\eta}, \widetilde{g})$ is a contact metric structure on \widetilde{M} , i.e., we have $d\widetilde{\eta} = \widetilde{\Phi}$ which gives $d\theta = \alpha\Omega$ implying that $d\Omega = 0$ since $d\theta = 0$

which confirms that J is an almost Kählerian structure with exact Kähler form $\Omega = \frac{1}{\alpha} d\theta$ and α is a strictly positive constant.

(3) Suppose that $(\widetilde{\varphi}, \widetilde{\xi}, \widetilde{\eta}, \widetilde{g})$ is a Kenmotsu structure on \widetilde{M} , i.e., we have $d\widetilde{\Phi} = 2\widetilde{\eta} \wedge \widetilde{\Phi}$, and $d\widetilde{\eta} = 0$. From equations (3.4), we obtain

$$\alpha = ce^{2r}$$
, $d\Omega = 2\theta \wedge \Omega$, $d\theta = 0$

which shows that J is a locally conformally Kähler with $d\Omega = 2\theta \wedge \Omega$ and $\alpha = ce^{2r}$, where c > 0.

4. Construction of an Example

For this construction, we use our example in [1]. We denote the Cartesian coordinates in a 4-dimensional Euclidean space E^4 by (t, x, y, z) and let (J, g) be an almost Hermitian structure defined by

$$g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & f^{2}(\rho^{2} + f'^{2}\tau^{2}) & 0 & -\tau f^{2}f'^{2} \\ 0 & 0 & f^{2}\rho^{2} & 0 \\ 0 & -\tau f^{2}f'^{2} & 0 & f^{2}f'^{2} \end{pmatrix},$$

$$J = \begin{pmatrix} 1 & -\tau f f' & 0 & f f' \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{1}{f f'} & 0 & -\tau & 0 \end{pmatrix},$$

where f = f(t), $\rho = \rho(x, y, z)$ and $\tau = \tau(x, y, z)$ are three functions on E^4 .

We know that (J, g) has two cases:

(1) Kählerian structure when $\tau_2 = -2\rho^2$ and $\rho_3 = \tau_3 = 0$,

(2) locally conformally Kählerian structure when $\rho_3 = \tau_2 = \tau_3 = 0$, where $\rho_i = \frac{\partial \rho}{\partial x_i}$ and $\tau_i = \frac{\partial \tau}{\partial x_i}$.

On the other hand, we have

$$\Omega = 2ff'dt \wedge (dz - \tau dx) - 2f^2 \rho^2 dx \wedge dy,$$

which implies

$$d\Omega = -4ff'\rho^2 dt \wedge dx \wedge dy + 2ff' dt \wedge dx \wedge \tau - 4f^2\rho dx \wedge dy \wedge d\rho.$$

So, for the first case, we get

$$\Omega = d(f^2(dz - \tau dx)),$$

and for the second case, we obtain

$$d\Omega = d \ln f^2 \wedge \Omega.$$

Using the above cases and Theorem 3.1, the manifold $(\mathbb{R} \times E^4, \tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is:

(1) Sasakian if
$$\tau_2 = -2\rho^2$$
, $\rho_3 = \tau_3 = 0$ and $\theta = f^2(dz - \tau dx)$,

(2) Kenmotsu if
$$\rho_3 = \tau_2 = \tau_3 = 0$$
, $\alpha = ce^{2r}$ and $\omega = d \ln f^2$.

5. Product
$$M_1^{2m+1} \times M_2^{2n}$$

Let $(M_1, \varphi_1, \xi_1, \eta_1, g_1)$ be an almost contact metric manifold of dimension $2n_1 + 1$ and (M_2, J, g_2) be an almost Hermitian manifold of dimension $2n_2$. It is known that the product $M = M_1 \times M_2$ is a differentiable manifold of dimension $2(n_1 + n_2) + 1$. One can put $n = n_1 + n_2$ so that the dimension of M is 2n + 1. On the product $M = M_1 + M_2$, one defines an almost contact structure (φ, ξ, η, g) by setting

$$\begin{cases} \varphi(X_{1}, X_{2}) = (\varphi_{1}X_{1} - \theta(JX_{2})\xi_{1}, JX_{2}), \\ \eta(X_{1}, X_{2}) = \eta_{1}(X_{1}) + \theta(X_{2}), \xi = (\xi_{1}, 0), \\ g((X_{1}, X_{2}), (Y_{1}, Y_{2})) = g_{1}(X_{1}, Y_{1}) + \alpha g_{2}(X_{2}, Y_{2}) \\ + \eta_{1}(X_{1})\theta(Y_{2}) + \theta(X_{2})\eta_{1}(Y_{1}) + \theta(X_{2})\theta(Y_{2}). \end{cases}$$
(5.1)

for any vector fields X_1 , Y_1 of M_1 and X_2 , Y_2 of M_2 , where θ is a 1-form on M_2 and α is a positive function on M_1 .

Proposition 5.1. The structure (φ, ξ, η, g) constructed on the product $M = M_1 \times M_2$ is an almost contact metric structure.

Proof. It follows from
$$(2.1)$$
.

We denote by N_{ϕ} the tensor of the almost contact metric structure of M_1 (see (2.2)) and N_J the Nijenhuis tensor of the almost complex structure J. Then from the almost contact metric structure of M defined in (5.1) and formula (2.2), we get

Proposition 5.2. The almost contact metric structure (φ, ξ, η, g) on M is normal if and only if the almost contact metric structure $(\varphi_1, \xi_1, \eta_1, g_1)$ on M_1 is normal and the almost Hermitian structure J on M_2 is integrable and $d\theta = d\theta \circ J$.

Proof. Since N_{ϕ} is a tensor field of type (1, 2) on M, it suffices to compute it on pairs of vector fields of the forms (X_1, Y_1) , (X_1, Y_2) and (X_2, Y_2) , where X_1 , Y_1 and X_2 , Y_2 are vector fields on M_1 and M_2 , respectively. Using definition of φ in (5.1) with formulas (2.2) and (2.5), we have

$$\begin{cases} N_{\varphi}(X_{1}, Y_{1}) = N_{\varphi_{1}}(X_{1}, Y_{1}), \\ N_{\varphi}(X_{1}, Y_{2}) = \theta(JY_{2})(\mathcal{L}_{\xi_{1}}\varphi_{1})(X_{1}), \\ N_{\varphi}(X_{2}, Y_{2}) = N_{J}(X_{2}, Y_{2}) - \theta(N_{J}(X_{2}, Y_{2}))\xi_{1} \\ + 2(d\theta(X_{2}, Y_{2}) - d\theta(JX_{2}, JY_{2}))\xi_{1}. \end{cases}$$
(5.2)

Suppose that (φ, ξ, η, g) on M is normal, i.e., $N_{\varphi} = 0$. From the first equation of (5.2), we get $N_{\varphi_1} = 0$. From the third equation, we get

$$N_J(X_2, Y_2) - \theta(N_J(X_2, Y_2))\xi_1 + 2(d\theta(X_2, Y_2) - d\theta(JX_2, JY_2))\xi_1 = 0,$$
 which implies $N_J = 0$ and $d\theta = d\theta \circ J$.

Conversely, suppose that $(\varphi_1, \xi_1, \eta_1, g_1)$ is normal and J is integrable with θ exact, i.e., we have $N_{\varphi_1} = 0$, $N_J = 0$ and $d\theta = 0$. From (5.2), we get

$$\begin{cases} N_{\varphi}(X_1, Y_1) = 0, \\ N_{\varphi}(X_1, Y_2) = \theta(JY_2)(\mathcal{L}_{\xi_1} \varphi_1)(X_1), \\ N_{\varphi}(X_2, Y_2) = 0 \end{cases}$$

and knowing that

$$N_{\varphi_1}(\varphi_1 X_1, \xi_1) = [\xi_1, \varphi, X_1] - \varphi_1[\xi_1, X_1] = (\mathcal{L}_{\xi_1} \varphi_1)(X_1),$$

then we obtain $N_{\phi} = 0$.

The manifold $(M, \varphi, \xi, \eta, g)$ possesses a fundamental 2-form, ϕ , defined by

$$\phi((X_1, X_2), (Y_1, Y_2)) = g((X_1, X_2), \varphi(Y_1, Y_2)).$$

From the definitions of g and φ (see (5.1)), we get

$$\phi((X_1, X_2), (Y_1, Y_2)) = \phi_1(X_1, Y_1) + \alpha\Omega(X_2, Y_2), \tag{5.3}$$

where Ω is the fundamental Kähler form of M_2 given by $\Omega(X_2, Y_2) = g_2(X_2, JY_2)$.

We have immediately that

$$d\phi = d\phi_1 + d\alpha \wedge \Omega + \alpha d\Omega. \tag{5.4}$$

For our motivation, we consider M_2 is a locally conformally Kähler manifold with $d\Omega = \omega \wedge \Omega$. From (5.4), we get

$$d\phi = d\phi_1 + \alpha (d \ln \alpha + \omega) \wedge \Omega. \tag{5.5}$$

For the special cases of M_1 , we have the following:

(1) Almost cosymplectic:
$$\begin{cases} d\phi = \alpha(d \ln \alpha + \omega) \wedge \Omega, \\ d\eta = d\theta. \end{cases}$$

(2) Almost Kenmotsu:

$$\begin{cases} d\phi = 2\eta \wedge \phi - 2\theta \wedge \phi_1 + \alpha (d \ln \alpha - 2\eta_1 + \omega - 2\theta) \wedge \Omega, \\ d\eta = d\theta. \end{cases}$$

(3) Contact metric:
$$\begin{cases} d\phi = \alpha(d \ln \alpha + \theta) \wedge \Omega, \\ d\eta = \phi + d\theta - \alpha\Omega. \end{cases}$$

We note that:

- (1) ϕ is closed only in the case of almost cosymplectic if and only if $\omega = 0$ and α is a constant.
- (2) $d\phi = 2\eta \wedge \phi$ only in the case of almost Kenmotsu if and only if $\omega = 2\theta = 0$ and $d \ln \alpha = 2\eta_1$.
- (3) $d\eta = \phi$ only in the case of contact metric if and only if $\omega = 0$, $d\theta = \alpha\Omega$ and α is a constant.

Therefore, summing up the arguments above, we have the following second main theorem:

Theorem 5.1. (1) The almost contact metric structure on M is almost cosymplectic if and only if the almost contact metric structure $(\varphi_1, \xi_1, \eta_1, g_1)$ on M_1 is almost cosymplectic and the almost Hermitian structure (J, g_2) on M_2 is almost Kähler with θ being exact.

In addition, the structure on M is cosymplectic if and only if the structures on M_1 and M_2 are cosymplectic and Kählerian, respectively, with θ being exact.

(2) The almost contact metric structure on M is almost Kenmotsu if and only if the almost contact metric structure $(\varphi_1, \xi_1, \eta_1, g_1)$ on M_1 is almost

Kenmotsu and the almost Hermitian structure (J, g_2) on M_2 is almost Kähler with $\theta = 0$ and $d \ln \alpha = 2\eta_1$.

In addition, the structure on M is Kenmotsu if and only if the structures on M_1 and M_2 are Kenmotsu and Kählerian, respectively, with $\theta = 0$ and $d \ln \alpha = 2\eta_1$.

(3) The almost contact metric structure on M is a contact metric structure if and only if the almost contact metric structure $(\varphi_1, \xi_1, \eta_1, g_1)$ on M_1 is a contact metric structure and the almost Hermitian structure (J, g_2) on M_2 is almost Kähler exact with $d\theta = \alpha \Omega$, where α is a constant.

In addition, the structure on M is α -Sasakian if and only if the structures on M_1 and M_2 are Sasakian and Kählerian exact, respectively.

Proof. The necessity was observed above for both cases.

For the sufficiency, first note that

$$d\varphi((X_1, 0), (Y_1, 0), (Z_1, 0)) = d\varphi_1(X_1, Y_1, Z_1), \tag{5.6}$$

$$d\varphi((X_1, 0), (0, Y_2), (0, Z_2)) = X_1(\alpha)\Omega(Y_2, Z_2), \tag{5.7}$$

$$d\varphi((0, X_2), (0, Y_2), (0, Z_2)) = \alpha d\Omega(X_2, Y_2, Z_2), \tag{5.8}$$

for all X_1 , Y_1 , Z_1 vector fields on M_1 and X_2 , Y_2 , Z_2 vector fields on M_2 .

- (1) Suppose that (φ, ξ, η, g) is an almost cosymplectic structure. Then we have $d\varphi = 0$ and $d\eta = 0$. Equations (5.6), (5.7) and (5.8) give $\varphi_1 = 0$, $\alpha = constant$ and $d\Omega = 0$, respectively, and knowing that $\eta = \eta_1 + \theta$, we get $d\eta = d\theta = 0$. So $(\varphi_1, \xi_1, \eta, g)$ and (J, g_2) are cosymplectic and Kählerian structures, respectively.
- (2) Suppose that (φ, ξ, η, g) is an almost Kenmotsu structure. Then we have $d\varphi = 2\eta \wedge \varphi$ and $d\eta = 0$. Equations (5.6), (5.7) and (5.8) give

$$\begin{cases} 2\eta_1(X_1)\varphi_1(Y_1, Z_1) = d\varphi_1(X_1, Y_1, Z_1), \\ 2\alpha\eta_1(X_1)\Omega(Y_2, Z_2) = X_1(\alpha)\Omega(Y_2, Z_2), \\ 2\alpha\theta(X_2)\varphi(Y_2, Z_2) = \alpha d\Omega(X_2, Y_2, Z_2), \end{cases}$$

with $d\eta = d\eta_1 + d\theta = 0$, which implies

$$\begin{cases} d\varphi_1 = 2\eta_1 \wedge \varphi_1, \ d\eta_1 = 0, \\ d \ln \alpha = 2\eta_1, \\ d\Omega = 2\theta \wedge \Omega, \ d\theta = 0. \end{cases}$$

In addition, the equation

$$d\varphi((0, X_2), (Y_1, 0), (Z_1, 0)) = 2(\eta \wedge \varphi)((0, X_2), (Y_1, 0), (Z_1, 0)),$$

gives $0 = 2\theta(X_2)\varphi_1(Y_1, Z_1)$ which give $\theta = 0$.

So $(\varphi_1, \xi_1, \eta_1, g_1)$ and (J, g_2) are almost Kenmotsu and almost Kähler structures, respectively.

(3) Suppose that (φ, ξ, η, g) is a contact metric structure, i.e., $d\eta = \varphi$. Then, for all X_1 , Y_1 vector fields on M_1 and X_2 , Y_2 vector fields on M_2 , we get

$$\begin{cases} d\eta(X_1,Y_1) = \varphi(X_1,Y_1) \\ d\eta(X_2X_2) = \varphi(X_2X_2) \end{cases} \Leftrightarrow \begin{cases} d\eta_1(X_1,Y_1) = \varphi_1(X_1,Y_1) \\ d\theta(X_2X_2) = \alpha\Omega(X_2X_2). \end{cases}$$

On the other hand, $d\eta = \varphi$ implies $d\varphi = 0$ which gives $\varphi_1 = 0$, $\alpha = constant$ and $d\Omega = 0$.

So, $(\varphi_1, \, \xi_1, \, \eta_1, \, g_1)$ and $(J, \, g_2)$ are contact metric and almost Kähler structures, respectively.

Acknowledgment

The author would like to express their hearty thanks to the referee for his suggestions and remarks.

References

- [1] G. Beldjilali and M. Belkhelfa, Kählerian structures on *D*-homothetic bi-warping, J. Geom. Symmetry Phys. 42 (2016), 1-13.
- [2] C. P. Boyer, K. Galicki and P. Matzeu, On Eta-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177-208.
- [3] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer, 1976, pp. 17-35.
- [4] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Vol. 203, Birkhauser, Boston, 2002.
- [5] D. E. Blair, *D*-homothetic warping, Afr. Diaspora J. Math. 14(2) (2012), 134-144.
- [6] D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15-36.
- [7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.
- [8] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717.
- [9] T. Tshikuna-Matamba, Induced structures on the product of Riemannian manifolds, Inter. Electr. J. Geo. 4 (2011), 15-25.
- [10] J. A. Oubiña, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187-193.
- [11] K. Yano and M. Kon, Structures on manifolds, Series in Pure Math., Vol. 3, World Scientific Publishing Co. Pte. Ltd., Singapore, 1984.