Far East Journal of Mathematical Sciences (FJMS)

© 2017 Pushpa Publishing House, Allahabad, India http://www.pphmj.com http://dx.doi.org/10.17654/MS102102459 Volume 102, Number 10, 2017, Pages 2459-2471

ISSN: 0972-0871

PARAMETRIC OPERATIONS BETWEEN 2-DIMENSIONAL TRIANGULAR FUZZY NUMBER AND TRAPEZOIDAL FUZZY SET

Hyung Suk Ko and Yong Sik Yun*

Department of Mathematics Jeju National University Jeju 63243, Korea

Department of Mathematics and Research Institute for Basic Sciences Jeju National University Jeju 63243, Korea

Abstract

By defining parametric operations between two regions valued α -cuts, we get the parametric operations for two fuzzy numbers defined on \mathbb{R}^2 . The results for the parametric operations generalized Zadeh's extended algebraic operations.

In this paper, we generate the trapezoidal fuzzy set on \mathbb{R} to \mathbb{R}^2 and calculate the parametric operations between a 2-dimensional triangular fuzzy number and a trapezoidal fuzzy set.

Received: August 7, 2017; Accepted: September 11, 2017

2010 Mathematics Subject Classification: 47N99.

Keywords and phrases: parametric operation, 2-dimensional trapezoidal fuzzy number.

This work was supported by the research grand of Jeju National University in 2017.

*Corresponding author

1. Introduction

We defined the parametric operations on \mathbb{R} . The results of parametric operations for two triangular fuzzy numbers were same as those of Zadeh's max-min operations [1]. We generated the triangular fuzzy numbers on \mathbb{R} to \mathbb{R}^2 and calculated Zadeh's extension principle for 2-dimensional triangular fuzzy numbers on \mathbb{R}^2 [5]. By defining parametric operations between two regions valued α -cuts, we get the parametric operations for two triangular fuzzy numbers defined on \mathbb{R}^2 . We proved that the results for the parametric operations generalized Zadeh's max-min composition operations [2]. We generalized the triangular fuzzy numbers on \mathbb{R}^2 and calculated parametric operations for two generalized 2-dimensional triangular fuzzy sets on \mathbb{R}^2 [4]. We calculated the operators for two quadratic fuzzy numbers [6]. We generated also the quadratic fuzzy numbers on \mathbb{R} to \mathbb{R}^2 . We calculated the Zadeh's max-min composition operator for two 2-dimensional quadratic fuzzy numbers [3].

In this paper, we generated the trapezoidal fuzzy numbers on \mathbb{R} to \mathbb{R}^2 . We calculate the parametric operations between a 2-dimensional triangular fuzzy number and a trapezoidal fuzzy set.

2. Generalized 2-dimensional Triangular Fuzzy Sets on $\,\mathbb{R}^2$

Let X be a set. We define α -cut and α -set of the fuzzy set A with the membership function $\mu_A(x)$.

Definition 2.1. An α -*cut* of the fuzzy number A is defined by $A_{\alpha} = \{x \in \mathbb{R} \mid \mu_A(x) \geq \alpha\}$ if $\alpha \in (0, 1]$ and $A_{\alpha} = cl\{x \in \mathbb{R} \mid \mu_A(x) > \alpha\}$ if $\alpha = 0$. For $\alpha \in (0, 1)$, the set $A^{\alpha} = \{x \in X \mid \mu_A(x) = \alpha\}$ is said to be the α -set of the fuzzy set A, A^0 is the boundary of $\{x \in \mathbb{R} \mid \mu_A(x) > \alpha\}$ and $A^1 = A_1$.

Definition 2.2 [7]. The extended addition A(+)B, extended subtraction A(-)B, extended multiplication $A(\cdot)B$ and extended division A(/)B are fuzzy sets with membership functions as follows. For all $x \in A$ and $y \in B$,

$$\mu_{A(*)B}(z) = \sup_{z=x*y} \min\{\mu_A(x), \, \mu_B(y)\}, \quad * = +, -, \cdot, /.$$

We define the generalized 2-dimensional triangular fuzzy numbers on \mathbb{R}^2 as a generalization of generalized triangular fuzzy numbers on \mathbb{R} . Then we define the parametric operations between two 2-dimensional fuzzy numbers. For that, we have to calculate operations between α -cuts in \mathbb{R} . The α -cuts are intervals in \mathbb{R} but in \mathbb{R}^2 , the α -cuts are regions, which make the existing method of calculations between α -cuts unusable. We interpret the existing method from a different perspective and apply the method to the region valued α -cuts on \mathbb{R}^2 .

Definition 2.3 [5]. A fuzzy set *A* with a membership function

$$\mu_A(x, y) = \begin{cases} h - \sqrt{\frac{(x - x_1)^2}{a^2} + \frac{(y - y_1)^2}{b^2}}, & b^2(x - x_1)^2 + a^2(y - y_1)^2 \le a^2b^2h^2, \\ 0, & \text{otherwise,} \end{cases}$$

where a, b > 0 and 0 < h < 1 is called the *generalized 2-dimensional* triangular fuzzy number and denoted by $((a, x_1, h, b, y_1))^2$.

Note that $\mu_A(x, y)$ is a cone. The intersections of $\mu_A(x, y)$ and the horizontal planes $z=\alpha$ $(0<\alpha< h)$ are ellipses. The intersections of $\mu_A(x, y)$ and the vertical planes $y-y_1=k(x-x_1)(k\in\mathbb{R})$ are symmetric triangular fuzzy numbers in those planes. If a=b, then ellipses become circles. The α -cut $(0<\alpha< h)$ A_α of a generalized 2-dimensional triangular fuzzy number $A=((a, x_1, h, b, y_1))^2$ is interior to an ellipse in the xy-plane including the boundary

$$\begin{split} A_{\alpha} &= \{(x, y) \in \mathbb{R}^2 \, | \, b^2(x - x_1)^2 + a^2(y - y_1)^2 \le a^2 b^2(h - \alpha)^2 \} \\ &= \left\{ (x, y) \in \mathbb{R}^2 \, | \left(\frac{x - x_1}{a(h - \alpha)} \right)^2 + \left(\frac{y - y_1}{b(h - \alpha)} \right)^2 \le 1 \right\}. \end{split}$$

Definition 2.4. A 2-dimensional fuzzy number A defined on \mathbb{R}^2 is called *convex fuzzy number* if for all $\alpha \in (0, 1)$, the α -cuts $A_{\alpha} = \{(x, y) \in \mathbb{R}^2 \mid \mu_A(x, y) \geq \alpha\}$ are convex subsets in \mathbb{R}^2 .

Theorem 2.5 [5]. Let A be a convex fuzzy number defined on \mathbb{R}^2 and $A^{\alpha} = \{(x, y) \in \mathbb{R}^2 \mid \mu_A(x, y) = \alpha\}$ be the α -set of A. Then, for all $\alpha \in (0, 1)$, there exist piecewise continuous functions $f_1^{\alpha}(t)$ and $f_2^{\alpha}(t)$ defined on $[0, 2\pi]$ such that $A^{\alpha} = \{(f_1^{\alpha}(t), f_2^{\alpha}(t)) \in \mathbb{R}^2 \mid 0 \le t \le 2\pi\}$.

If A is a continuous convex fuzzy number defined on \mathbb{R}^2 , then the α -set A^{α} is a closed circular convex subset in \mathbb{R}^2 .

Corollary 2.6 [5]. Let A be a continuous convex fuzzy number defined on \mathbb{R}^2 and $A^{\alpha} = \{(x, y) \in \mathbb{R}^2 \mid \mu_A(x, y) = \alpha\}$ be the α -set of A. Then, for all $\alpha \in (0, 1)$, there exist continuous functions $f_1^{\alpha}(t)$ and $f_2^{\alpha}(t)$ defined on $[0, 2\pi]$ such that $A^{\alpha} = \{(f_1^{\alpha}(t), f_2^{\alpha}(t)) \in \mathbb{R}^2 \mid 0 \le t \le 2\pi\}$.

Definition 2.7 [5]. Let A and B be convex fuzzy numbers defined on \mathbb{R}^2 and

$$A^{\alpha} = \{ (f_1^{\alpha}(t), f_2^{\alpha}(t)) \in \mathbb{R}^2 \mid 0 \le t \le 2\pi \},$$

$$B^{\alpha} = \{ (g_1^{\alpha}(t), g_2^{\alpha}(t)) \in \mathbb{R}^2 \mid 0 \le t \le 2\pi \}$$

be the α -sets of A and B, respectively. For $\alpha \in (0, 1)$, we define that the parametric addition $A(+)_p B$, parametric subtraction $A(-)_p B$, parametric multiplication $A(\cdot)_p B$ and parametric division $A(/)_p B$ of two fuzzy numbers A and B are fuzzy numbers that have their α -sets as follows:

$$A(+)_{p}B: (A(+)_{p}B)^{\alpha} = \{(f_{1}^{\alpha}(t) + g_{1}^{\alpha}(t), f_{2}^{\alpha}(t) + g_{2}^{\alpha}(t)) \in \mathbb{R}^{2} | 0 \le t \le 2\pi \},$$

$$(2) \ A(-)_{p}B: (A(-)_{p}B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) \in \mathbb{R}^{2} | 0 \le t \le 2\pi \}, \text{ where}$$

$$x_{\alpha}(t) = \begin{cases} f_{1}^{\alpha}(t) - g_{1}^{\alpha}(t+\pi), & \text{if } 0 \le t \le \pi, \\ f_{1}^{\alpha}(t) - g_{1}^{\alpha}(t-\pi), & \text{if } \pi \le t \le 2\pi \end{cases}$$

and

$$y_{\alpha}(t) = \begin{cases} f_2^{\alpha}(t) - g_2^{\alpha}(t+\pi), & \text{if } 0 \le t \le \pi, \\ f_2^{\alpha}(t) - g_2^{\alpha}(t-\pi), & \text{if } \pi \le t \le 2\pi, \end{cases}$$

(3)

$$A(\cdot)_{p}B:(A(\cdot)_{p}B)^{\alpha}=\{(f_{1}^{\alpha}(t)\cdot g_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\cdot g_{2}^{\alpha}(t))\in \mathbb{R}^{2} \mid 0\leq t\leq 2\pi\},$$

(4)
$$A(/)_p B : (A(/)_p B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) \in \mathbb{R}^2 \mid 0 \le t \le 2\pi\}, \text{ where }$$

$$x_{\alpha}(t) = \frac{f_1^{\alpha}(t)}{g_1^{\alpha}(t+\pi)} \quad (0 \le t \le \pi), \quad x_{\alpha}(t) = \frac{f_1^{\alpha}(t)}{g_1^{\alpha}(t-\pi)} \quad (\pi \le t \le 2\pi)$$

and

$$y_{\alpha}(t) = \frac{f_2^{\alpha}(t)}{g_2^{\alpha}(t+\pi)} \quad (0 \le t \le \pi), \quad y_{\alpha}(t) = \frac{f_2^{\alpha}(t)}{g_2^{\alpha}(t-\pi)} \quad (\pi \le t \le 2\pi).$$

For
$$\alpha = 0$$
 and $\alpha = 1$, $(A(*)_p B)^0 = \lim_{\alpha \to 0^+} (A(*)_p B)^\alpha$ and $(A(*)_p B)^1$
= $\lim_{\alpha \to 1^-} (A(*)_p B)^\alpha$, where $* = +, -, \cdot, /$.

For
$$0 < h_1 < h_2 \le 1$$
, let

$$A = ((a_1, x_1, h_1, b_1, y_1))^2$$
 and $B = ((a_2, x_2, h_2, b_2, y_2))^2$

be two generalized 2-dimensional triangular fuzzy numbers. If $0 \le \alpha < h_1$, then $(A(*)_p B)^{\alpha}$ can be defined same as Definition 2.7. If $\alpha = h_1$, then

$$(A(*)_p B)^{h_1} = \lim_{\alpha \to h_1^-} (A(*)_p B)^{\alpha}, \quad * = +, -, \cdot, /.$$

Thus, $(A(*)_p B)^{h_1}$ becomes an ellipse not a point. If $h_1 < \alpha \le h_2$, then by the Zadeh's max-min principle operations, we have to define

$$(A(*)_p B)^{\alpha} = \emptyset, \quad * = +, -, \cdot, /.$$

Theorem 2.8 [3]. *Let*

$$A = ((a_1, x_1, h_1, b_1, y_1))^2$$
 and $B = ((a_2, x_2, h_2, b_2, y_2))^2$

be two generalized 2-dimensional triangular fuzzy numbers. If $0 < h_1 < h_2 \le 1$, then we have the following:

(1) For $0 < \alpha < h_1$, the α -set of $A(+)_p B$ is

$$(A(+)_p B)^{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 \middle| \left(\frac{x - x_1 - x_2}{a_1(h_1 - \alpha) + a_2(h_2 - \alpha)} \right)^2 + \left(\frac{y - y_1 - y_2}{b_1(h_1 - \alpha) + b_2(h_2 - \alpha)} \right)^2 = 1 \right\}.$$

(2) For $0 < \alpha < h_1$, the α -set of $A(-)_p B$ is

$$(A(-)_p B)^{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 \middle| \left(\frac{x - x_1 + x_2}{a_1(h_1 - \alpha) + a_2(h_2 - \alpha)} \right)^2 + \left(\frac{y - y_1 + y_2}{b_1(h_1 - \alpha) + b_2(h_2 - \alpha)} \right)^2 = 1 \right\}.$$

(3)
$$(A(\cdot)_p B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) | 0 \le t \le 2\pi\}, \text{ where}$$

$$x_{\alpha}(t) = x_1 x_2 + (x_1 a_2 (h_2 - \alpha) + x_2 a_1 (h_1 - \alpha)) \cos t + a_1 a_2 (h_1 - \alpha) (h_2 - \alpha) \cos^2 t, \quad 0 < \alpha < h_1,$$

$$y_{\alpha}(t) = y_{1}y_{2} + (y_{1}b_{2}(h_{2} - \alpha) + y_{2}b_{1}(h_{1} - \alpha))\sin t$$

$$+ b_{1}b_{2}(h_{1} - \alpha)(h_{2} - \alpha)\sin^{2} t, \quad 0 < \alpha < h_{1}.$$

$$(4) (A(/)_{p}B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) | 0 \le t \le 2\pi\}, \text{ where}$$

$$x_{\alpha}(t) = \frac{x_{1} + a_{1}(h_{1} - \alpha)\cos t}{x_{2} - a_{2}(h_{2} - \alpha)\cos t}, \quad y_{\alpha}(t) = \frac{y_{1} + b_{1}(h_{1} - \alpha)\sin t}{y_{2} - b_{2}(h_{2} - \alpha)\cos t}, \quad 0 < \alpha < h_{1}.$$

3. Parametric Operations between 2-dimensional Triangular Fuzzy Number and Trapezoidal Fuzzy Set

In this section, we define the 2-dimensional trapezoidal fuzzy sets on \mathbb{R}^2 as a generalization of trapezoidal fuzzy sets on \mathbb{R} . Then we want to calculate the parametric operations between 2-dimensional triangular fuzzy number and trapezoidal fuzzy set on \mathbb{R}^2 .

Definition 3.1 [5]. A fuzzy set A with a membership function

$$\mu_A(x, y) = \begin{cases} 1 - \sqrt{\frac{(x - x_1)^2}{a^2} + \frac{(y_1 - y_1)^2}{b^2}}, & b^2(x - x_1)^2 + a^2(y - y_1)^2 \le a^2b^2, \\ 0, & \text{otherwise,} \end{cases}$$

where a, b > 0 is called the 2-dimensional triangular fuzzy number and denoted by $A = (a, x_1, b, y_1)^2$.

Note that $\mu_A(x, y)$ is a cone. The intersections of $\mu_A(x, y)$ and the horizontal planes $z = \alpha$ (0 < α < 1) are ellipses. The intersections of $\mu_A(x, y)$ and the vertical planes $y - y_1 = k(x - x_1)(k \in \mathbb{R})$ are symmetric triangular fuzzy numbers in those planes. If a = b, then ellipses become circles. The α -cut A_{α} of a 2-dimensional triangular fuzzy number $A = (a, x_1, b, y_1)^2$ is interior to an ellipse in the xy-plane including the boundary

$$\begin{split} A_{\alpha} &= \{(x, y) \in \mathbb{R}^2 \, | \, b^2(x - x_1)^2 + a^2(y - y_1)^2 \le a^2 b^2(1 - \alpha)^2 \} \\ &= \left\{ (x, y) \in \mathbb{R}^2 \, | \left(\frac{x - x_1}{a(1 - \alpha)} \right)^2 + \left(\frac{y - y_1}{b(1 - \alpha)} \right)^2 \le 1 \right\}. \end{split}$$

Definition 3.2. A fuzzy set *B* with a membership function

$$\mu_{B}(x, y) = \begin{cases} h - \sqrt{\frac{(x - x_{1})^{2}}{a^{2}} + \frac{(y - y_{1})^{2}}{b^{2}}}, & h - 1 \leq \sqrt{\frac{(x - x_{1})^{2}}{a^{2}} + \frac{(y - y_{1})^{2}}{b^{2}}} \leq h, \\ 1, & 0 \leq \sqrt{\frac{(x - x_{1})^{2}}{a^{2}} + \frac{(y - y_{1})^{2}}{b^{2}}} \leq h - 1, \\ 0, & \text{otherwise,} \end{cases}$$

where a, b > 0 and 1 < h is called the 2-dimensional trapezoidal fuzzy set and denoted by $B = ((a, x_1, h, b, y_1))^2$.

 $\mu_B(x, y)$ is a truncated cone. The intersections of $\mu_B(x, y)$ and the horizontal planes $z = \alpha$ (0 < α < 1) are ellipses. The intersections of $\mu_B(x, y)$ and the vertical planes $y - y_1 = k(x - x_1)(k \in \mathbb{R})$ are symmetric trapezoidal fuzzy sets in those planes. If a = b, then ellipses become circles. The α -cut B_{α} of a 2-dimensional trapezoidal fuzzy number $B = ((a, x_1, h, b, y_1))^2$ is interior to an ellipse in the xy-plane including the boundary

$$B_{\alpha} = \{(x, y) \in \mathbb{R}^2 \mid b^2(x - x_1)^2 + a^2(y - y_1)^2 \le a^2b^2(h - \alpha)^2\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 \mid \left(\frac{x - x_1}{a(h - \alpha)}\right)^2 + \left(\frac{y - y_1}{b(h - \alpha)}\right)^2 \le 1 \right\}.$$

Note that if 0 < h < 1, then $((a, x_1, h, b, y_1))^2$ becomes a generalized 2-dimensional triangular fuzzy number and if 1 < h, then $((a, x_1, h, b, y_1))^2$ becomes a 2-dimensional trapezoidal fuzzy set.

Theorem 3.3. Let $A = (a_1, x_1, b_1, y_1)^2$ be a 2-dimensional triangular fuzzy number and $B = ((a_2, x_2, h, b_2, y_2))^2$ be a 2-dimensional trapezoidal fuzzy set. Then we have the following:

(1) For $0 < \alpha < 1$, the α -set of $A(+)_p B$ is

$$(A(+)_p B)^{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 \middle| \left(\frac{x - x_1 - x_2}{a_1(1 - \alpha) + a_2(h - \alpha)} \right)^2 + \left(\frac{y - y_1 - y_2}{b_1(1 - \alpha) + b_2(h - \alpha)} \right)^2 = 1 \right\}.$$

(2) For $0 < \alpha < 1$, the α -set of $A(-)_p B$ is

$$(A(-)_p B)^{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 \middle| \left(\frac{x - x_1 + x_2}{a_1(1 - \alpha) + a_2(h - \alpha)} \right)^2 + \left(\frac{y - y_1 + y_2}{b_1(1 - \alpha) + b_2(h - \alpha)} \right)^2 = 1 \right\}.$$

(3)
$$(A(\cdot)_p B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) | 0 \le t \le 2\pi\}, \text{ where}$$

$$x_{\alpha}(t) = x_1 x_2 + (x_1 a_2 (h - \alpha) + x_2 a_1 (1 - \alpha)) \cos t + a_1 a_2 (1 - \alpha) (h - \alpha) \cos^2 t, \quad 0 < \alpha < 1,$$

$$y_{\alpha}(t) = y_1 y_2 + (y_1 b_2 (h - \alpha) + y_2 b_1 (1 - \alpha)) \sin t + b_1 b_2 (1 - \alpha) (h - \alpha) \sin^2 t, \quad 0 < \alpha < 1.$$

(4)
$$(A(/)_p B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) | 0 \le t \le 2\pi\}, \text{ where }$$

$$x_{\alpha}(t) = \frac{x_1 + a_1(1 - \alpha)\cos t}{x_2 - a_2(h - \alpha)\cos t}, \quad y_{\alpha}(t) = \frac{y_1 + b_1(1 - \alpha)\sin t}{y_2 - b_2(h - \alpha)\sin t}, \quad 0 < \alpha < 1.$$

Proof. Since A and B are convex fuzzy numbers defined on \mathbb{R}^2 , by Theorem 2.5, there exist $f_i^{\alpha}(t)$, $g_i^{\alpha}(t)$ (i = 1, 2) such that for $0 < \alpha < 1$,

$$A^{\alpha} = \{ (f_1^{\alpha}(t), f_2^{\alpha}(t)) \in \mathbb{R}^2 \mid 0 \le t \le 2\pi \},$$

$$B^{\alpha} = \{ (g_1^{\alpha}(t), g_2^{\alpha}(t)) \in \mathbb{R}^2 \mid 0 \le t \le 2\pi \}.$$

Since
$$A = (a_1, x_1, b_1, y_1)^2$$
 and $B = ((a_2, x_2, h, b_2, y_2))^2$, we have

$$f_1^{\alpha}(t) = x_1 + a_1(1-\alpha)\cos t$$
, $f_2^{\alpha}(t) = y_1 + b_1(1-\alpha)\sin t$, $0 < \alpha < 1$,

$$g_1^{\alpha}(t) = x_2 + a_2(h - \alpha)\cos t$$
, $g_2^{\alpha}(t) = y_2 + b_2(h - \alpha)\sin t$, $0 < \alpha < 1$.

(1) If $0 < \alpha < 1$, since

$$f_1^{\alpha}(t) + g_1^{\alpha}(t) = x_1 + x_2 + (a_1(1-\alpha) + a_2(h-\alpha))\cos t,$$

$$f_2^{\alpha}(t) + g_2^{\alpha}(t) = y_1 + y_2 + (b_1(1-\alpha) + b_2(h-\alpha))\sin t$$

we have

$$(A(+)_p B)^{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 \middle| \left(\frac{x - x_1 - x_2}{a_1(1 - \alpha) + a_2(h - \alpha)} \right)^2 + \left(\frac{y - y_1 - y_2}{b_1(1 - \alpha) + b_2(h - \alpha)} \right)^2 = 1 \right\}.$$

Furthermore, we have

$$(A(+)_p B)^0 = \lim_{\alpha \to 0^+} (A(+)_p B)^{\alpha}$$

$$= \left\{ (x, y) \in \mathbb{R}^2 \left| \left(\frac{x - x_1 - x_2}{a_1 + a_2 h} \right)^2 + \left(\frac{y - y_1 - y_2}{b_1 + b_2 h} \right)^2 \right. = 1 \right\},$$

$$(A(+)_p B)^1 = \lim_{\alpha \to 0^-} (A(+)_p B)^{\alpha}$$

$$= \left\{ (x, y) \in \mathbb{R}^2 \mid \left(\frac{x - x_1 - x_2}{a_2(h - 1)} \right)^2 + \left(\frac{y - y_1 - y_2}{b_2(h - 1)} \right)^2 = 1 \right\}.$$

(2) If $0 \le t \le \pi$ and $0 < \alpha < 1$, then we have

$$f_1^{\alpha}(t) - g_1^{\alpha}(t+\pi) = x_1 - x_2 + (a_1(1-\alpha) + a_2(h-\alpha))\cos t,$$

$$f_2^{\alpha}(t) - g_2^{\alpha}(t+\pi) = y_1 - y_2 + (b_1(1-\alpha) + b_2(h-\alpha))\sin t.$$

In the case of $\pi \le t \le 2\pi$, we have

$$f_1^{\alpha}(t) - g_1^{\alpha}(t - \pi) = f_1^{\alpha}(t) - g_1^{\alpha}(t + \pi),$$

$$f_2^{\alpha}(t) - g_2^{\alpha}(t - \pi) = f_2^{\alpha}(t) - g_2^{\alpha}(t + \pi).$$

Thus,

$$(A(-)_p B)^{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 \middle| \left(\frac{x - x_1 + x_2}{a_1(1 - \alpha) + a_2(h - \alpha)} \right)^2 + \left(\frac{y - y_1 + y_2}{b_1(1 - \alpha) + b_2(h - \alpha)} \right)^2 = 1 \right\}.$$

Furthermore, we have

$$(A(-)_{p}B)^{0} = \lim_{\alpha \to 0^{+}} (A(-)_{p}B)^{\alpha}$$

$$= \left\{ (x, y) \in \mathbb{R}^{2} \left| \left(\frac{x - x_{1} + x_{2}}{a_{1} + a_{2}h} \right)^{2} + \left(\frac{y - y_{1} + y_{2}}{b_{1} + b_{2}h} \right)^{2} = 1 \right\},$$

$$(A(-)_{p}B)^{1} = \lim_{\alpha \to 1^{-}} (A(-)_{p}B)^{\alpha}$$

$$= \left\{ (x, y) \in \mathbb{R}^{2} \left| \left(\frac{x - x_{1} + x_{2}}{a_{2}(h - 1)} \right)^{2} + \left(\frac{y - y_{1} + y_{2}}{b_{2}(h - 1)} \right)^{2} = 1 \right\}.$$

(3) Let
$$(A(\cdot)_p B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) | 0 \le t \le 2\pi\}$$
. Since
$$f_1^{\alpha}(t) = x_1 + a_1(1 - \alpha)\cos t, \quad f_2^{\alpha}(t) = y_1 + b_1(1 - \alpha)\sin t,$$
$$g_1^{\alpha}(t) = x_2 + a_2(1 - \alpha)\cos t, \quad g_2^{\alpha}(t) = y_2 + b_2(h - \alpha)\sin t,$$

we have

$$x_{\alpha}(t) = f_1^{\alpha}(t) \cdot g_1^{\alpha}(t)$$

$$= x_1 x_2 + (x_1 a_2(h - \alpha) + x_2 a_1(1 - \alpha)) \cos t$$

$$+ a_1 a_2(1 - \alpha)(h - \alpha) \cos^2 t, \quad 0 < \alpha < 1,$$

$$y_{\alpha}(t) = f_2^{\alpha}(t) \cdot g_2^{\alpha}(t)$$

$$= y_1 y_2 + (y_1 b_2(h - \alpha) + y_2 b_1(1 - \alpha)) \sin t$$

$$+ b_1 b_2(1 - \alpha)(h - \alpha) \sin^2 t, \quad 0 < \alpha < 1.$$

Furthermore, we have

$$x_{0}(t) = \lim_{\alpha \to 0^{+}} x_{\alpha}(t) = x_{1}x_{2} + (x_{1}a_{2}h + x_{2}a_{1})\cos t + a_{1}a_{2}h\cos^{2} t,$$

$$y_{0}(t) = \lim_{\alpha \to 0^{+}} y_{\alpha}(t) = y_{1}y_{2} + (y_{1}b_{2}h + y_{2}b_{1})\sin t + b_{1}b_{2}h\sin^{2} t,$$

$$x_{1}(t) = \lim_{\alpha \to 1^{-}} x_{\alpha}(t) = x_{1}x_{2} + x_{1}a_{2}(h - 1)\cos t,$$

$$y_{1}(t) = \lim_{\alpha \to 1^{-}} y_{\alpha}(t) = y_{1}y_{2} + y_{1}b_{2}(h - 1)\sin t.$$

(4) Let
$$(A(/)_p B)^{\alpha} = \{(x_{\alpha}(t), y_{\alpha}(t)) | 0 \le t \le 2\pi\}$$
. Similarly, we have

$$x_{\alpha}(t) = \frac{x_1 + a_1(1 - \alpha)\cos t}{x_2 - a_2(h - \alpha)\cos t}, \quad y_{\alpha}(t) = \frac{y_1 + b_1(1 - \alpha)\sin t}{y_2 - b_2(h - \alpha)\sin t}, \quad 0 < \alpha < 1.$$

Furthermore, we have

$$x_0(t) = \frac{x_1 + a_1 \cos t}{x_2 - a_2 h \cos t}, \quad y_0(t) = \frac{y_1 + b_1 \sin t}{y_2 - b_2 h \sin t}.$$

The proof is complete.

References

- [1] J. Byun and Y. S. Yun, Parametric operations for two fuzzy numbers, Commun. Korean Math. Soc. 28(3) (2013), 635-642.
- [2] C. Kang and Y. S. Yun, An extension of Zadeh's max-min composition operator, Int. J. Math. Anal. 9(41) (2015), 2029-2035.
- [3] C. Kang and Y. S. Yun, A Zadeh's max-min composition operator for two 2-dimensional quadratic fuzzy numbers, Far East J. Math. Sci. (FJMS) 101(10) (2017), 2185-2193.
- [4] C. Kim and Y. S. Yun, Parametric operations for generalized 2-dimensional triangular fuzzy sets, Int. J. Math. Anal. 11(4) (2017), 189-197.
- [5] C. Kim and Y. S. Yun, Zadeh's extension principle for 2-dimensional triangular fuzzy numbers, Journal of Fuzzy Logic and Intelligent Systems 25(2) (2015), 197-202.
- [6] Y. S. Yun and J. W. Park, The extended operations for generalized quadratic fuzzy sets, Journal of Fuzzy Logic and Intelligent Systems 20(4) (2010), 592-595.
- [7] H.-J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer-Nijhoff Publishing, Boston-Dordrecht-Lancaster, 1985.