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Abstract 

In this paper, the asymptotics of the fundamental system of solutions 
for the Sturm-Liouville equation with block-triangular operator 
potential, increasing at infinity is established. One of the solutions is 
found decreasing at infinity, while the other one increasing. 

1. Introduction 

The theory of singular non-self-adjoint differential operators is       
relatively new. Results turning out in self-adjoint and non-self-adjoint         
cases differentiate substantially. In [3], Marchenko introduced a notion of 
generalized spectral function R for a Sturm-Liouville operator with arbitrary 
complex valued potential on the semi axis. For an operator with a triangular 
matrix potential decreasing at infinity the spectral structure was established 
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in [4]. For differential equations with block-triangular matrix potential that 
increases at infinity, a spectrum structure is investigated in the paper [1]. 

In this paper, the asymptotics of fundamental system of solutions of 
differential equation with block-triangular operator potential that increases at 
infinity is set. In the monograph [6] for the scalar differential equation the 
Langer method in another form is set the asymptotics of the fundamental 
system of solutions by using Hankel functions. 

2. Preliminary Notes 

Let us designate rkHk ...,,2,1, =  as finite-dimensional or infinite-

dimensional separable Hilbert space with inner product ( )⋅⋅,  and norm ,⋅  

dim .∞≤kH  Denoted by .21 rHHH ⊕⊕⊕= …H  Element H∈h  will 

be written in the form ( ),...,,, 21 rhhhcolh =  where ,kk Hh ∈  ,,,1 kIrk =  

I-identity operators in kH  and H accordingly. 

Let us consider the equation with block-triangular operator potential in 
( ):HB  
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( )xv  is a real scalar function, that ( ) ∞→< xv0  monotonically, as ,∞→x  

and it has monotone absolutely continuous derivative. Also, ( )xU  is a 

relatively small perturbation, e.g., ( ) ( ) 01 →⋅ − xvxU  as ∞→x  or 

( ).1
+

∞− ∈ RLvU  The diagonal blocks ( ) rkxUkk ,1, =  are assumed as 

bounded self-adjoint operators in .kH  
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Let ( ) ,2α= xxv  10 ≤α<  and coefficients of equation (1) satisfy the 

condition 

 ( )∫
∞ α− >∞<⋅
a

adtttU .0,  (3) 

Let us rewrite equation (1) in the form 

( ( )) ( ) ( )( ) ,,,2 yxUIxqyxqxy −⋅λ=λ+λ−+′′− α  

where ( )λ,xq  is determined by a formula (cf. with [5]) 
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Now let us denote 
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These solutions constitute a fundamental system of solutions of the scalar 

differential equation ( ( )) ,0,2 =λ+λ−+′′− α zxqxz  in such a way that for 

all [ ),,0 ∞∈x  one has 

( ) ( ) ( ) ( ) ( ) .1,,,,:, 000 =λγ⋅λγ′−λγ′⋅λγ=γγ ∞∞∞ xxxxW  

3. Asymptotics of the Fundamental System of Solutions at Infinity 

We are about to establish the asymptotics1 of ( )λγ ,0 x  as :∞→x  

                                                           
1For 1=α  and ,2

1=α  i.e., for ( ) 2xxv =  and ( ) ,xxv =  the asymptotics of the 

functions ( )λγ ,0 x  and ( )λγ∞ ,x  is known.  
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After expanding here the integral, we obtain the exponential as follows: 
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In case ,2
1 Nn ∈=

α
+α  i.e., ,12

1
−

=α n  this expression after integration 

acquires the form: 
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The asymptotics of ( )λγ ,0 x  as ∞→x  is as follows: 
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In particular, for ( ),11 ==α n  ( )λγ ,0 x  has the following asymptotics at 

infinity: ( ) ( )( ).112exp,
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In case ,2
1 N∉

α
+α  we set ,12

1 +⎥⎦
⎤

⎢⎣
⎡

α
+α=n  with [ ]β  being the integral 

part of β, to obtain the following asymptotics for ( )λγ ,0 x  at infinity: 
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In particular, with ( ),22
1 ==α n  one has 
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A similar procedure allows to establish the asymptotics of ( )x∞γ  as .∞→x  
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In case ( ),22
1 ==α n  one has 
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In paper [2] for equation (1) with operator potential the fundamental 
system of solutions is built, one of that is decreasing and at infinity               
has asymptotics ( ),,0 λγ x  and the second is increasing with asymptotics 

( )., λγ∞ x  

Theorem 1. Under condition (3) equation (1) has a unique decreasing at 
infinity operator solution ( ) ( ),, HBx ∈λΦ  satisfying the conditions 
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Corollary 1. If ,1=α  i.e., the coefficient ( ) ,2xxv =  then, under 

condition (3), equation (1) has a unique operator solution ( )λΦ ,x  
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Remark 1. In the monograph [5], it was shown that the scalar equation 

 ,2 λϕ=ϕ+ϕ′′− x  (5) 

with ,12 +=λ n  has a solution ( ) ( ) ,2exp
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If in equation (2), one has ( ) ( ) ,,0 2xxvxU ==  then in the case of           

m-dimensional Hilbert space matrix equation (1) splits into scalar equations 
of the form (5). The matrix solution ( )λΦ ,x  in this case appears to be 

diagonal. Denote by ( )λϕ ,x  the diagonal elements of the matrix ( )., λΦ x  

Then by virtue (4), the solution ( )λϕ ,x  has the following asymptotics              
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 In particular, with =λ  

,12 +n  this allows one to derive a solution which is a scalar multiple of 

( ).xnϕ  

4. Conclusion 

In this paper, the asymptotics of solutions of the auxiliary scalar 
differential equation is obtained using the asymptotics of the fundamental 
system of solutions of differential equation with block-triangular operator 
potential. 
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