Far East Journal of Mathematical Sciences (FJMS)
© 2017 Pushpa Publishing House, Allahabad, India
http://www.pphmj.com
http://dx.doi.org/10.17654/MS102102189
Volume 102, Number 10, 2017, Pages 2189-2198
ISSN: 0972-0871

# CENTER OF THE SKEW POLYNOMIAL RING OVER QUATERNIONS 

Amir Kamal Amir, Jusriani Djuddin, Mawardi Bahri, Nur Erawaty and Nurul Mukhlisah Abdal<br>Department of Mathematics<br>Faculty of Mathematics and Natural Sciences<br>Hasanuddin University<br>Makassar, Indonesia


#### Abstract

We determine the center of a skew polynomial ring over quaternions.


## 1. Definitions and Notations

The form of centers and ideals of skew polynomial rings over commutative ring have been investigated during the last few years. In [1], center of skew polynomial ring over a domain, has been considered. In [2, 3, 5], invertible, maximal and prime ideals of skew polynomial ring over commutative Dedekind domain were considered. In this paper, the form of

Received: February 9, 2017; Revised: May 16, 2017; July 29, 2017
2010 Mathematics Subject Classification: 16 S36.
Keywords and phrases: center, endomorphism, noncommutative, polynomial, quaternion.
the center of the skew polynomial ring over the noncommutative ring which is quaternion is found.

Recall the set of quaternion

$$
\mathbb{H}=\left\{q=q_{0}+\boldsymbol{i} q_{1}+\boldsymbol{j} q_{2}+\boldsymbol{k} q_{3} \mid q_{0}, q_{1}, q_{2}, q_{3} \in \mathbb{R}\right\}
$$

where $\boldsymbol{i}, \boldsymbol{j}$ and $\boldsymbol{k}$ should satisfy Hamilton multiplication rule as follows:

$$
\boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=-1 ; \quad \boldsymbol{i} \boldsymbol{j}=-\boldsymbol{j} \boldsymbol{i}=\boldsymbol{k} ; \quad \boldsymbol{j} \boldsymbol{k}=-\boldsymbol{k} \boldsymbol{j}=\boldsymbol{i} ; \quad \boldsymbol{k} \boldsymbol{i}=-\boldsymbol{i} \boldsymbol{k}=\boldsymbol{j} .
$$

Then the maps $\sigma_{1}: \mathbb{H} \rightarrow \mathbb{H}$ and $\sigma_{2}: \mathbb{H} \rightarrow \mathbb{H}$ defined, respectively, by

$$
\sigma_{1}(a)=\sigma_{1}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right)=\left(a_{0}-a_{1} \mathbf{i}-a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right)
$$

and

$$
\sigma_{2}(a)=\sigma_{2}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \mathbf{k}\right)=\left(a_{0}+a_{2} \mathbf{i}+a_{3} \boldsymbol{j}-a_{1} \mathbf{k}\right)
$$

are endomorphisms.
Let $\sigma$ be an endomorphism over $\mathbb{H}$. Then the skew polynomial ring over quaternions with an unknown variable $x$, denoted by $\mathbb{H}[x ; \sigma]$, is a ring consisting of polynomials

$$
q(x)=q_{n} x^{n}+q_{n-1} x^{n-1}+\cdots+q_{2} x^{2}+q_{1} x+q_{0}
$$

with $q_{0}, q_{1}, q_{2}, q_{3} \in \mathbb{H}$ and the multiplication rule $x a=\sigma(a) x$, for each $a \in \mathbb{H}$.

## 2. The Main Results

In this part, we formulate the center's form of the skew polynomials ring over quaternion.

Theorem 1. Let $\mathbb{H}\left[x ; \sigma_{1}\right]$ be a skew polynomial ring over quaternions, where $\sigma_{1}$ is defined by

$$
\sigma_{1}(a)=\sigma_{1}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right)=a_{0}-a_{1} \mathbf{i}-a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}
$$

Then its center is given by

$$
Z\left(\mathbb{H}\left[x ; \sigma_{1}\right]\right)=\left\{\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} k x^{2 n+1}\right) \mid p_{2 n}, p_{2 n+1} \in \mathbb{R}\right\} .
$$

Proof. First, we show that

$$
\left\{\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right) \mid p_{2 n}, p_{2 n+1} \in \mathbb{R}\right\} \subseteq \mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{1}\right]\right) .
$$

For this, choose

$$
\left.p(x) \in\left\{\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right) \mid p_{2 n}, p_{2 n+1} \in \mathbb{R}\right\}\right\} .
$$

We obtain that $p(x) q(x)=q(x) p(x), \forall q(x) \in \mathbb{H}\left[x ; \sigma_{1}\right]$. Without loss of generality, the proof is given for $q(x)=a$, where $a \in \mathbb{H}$ and for $q(x)=x$.

When $q(x)=a$, let

$$
p(x)=\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right), \quad p_{2 n}, p_{2 n+1} \in \mathbb{R}
$$

Then

$$
p(x) q(x)=\left[\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right)\right]\left[a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right] .
$$

Since $\sigma_{1}^{2 n}(a)=a=a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$ and $\sigma_{1}^{2 n+1}(a)=\sigma_{1}(a)=a_{0}-a_{1} \boldsymbol{i}$ $-a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$, we obtain

$$
\begin{align*}
& p(x) q(x) \\
= & {\left[\sum_{n=0}^{t}\left(p_{2 n}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) x^{2 n}+p_{2 n+1} \boldsymbol{k}\left(a_{0}-a_{1} \boldsymbol{i}-a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) x^{2 n+1}\right)\right] } \\
= & \sum_{n=0}^{t}\left[p_{2 n}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) x^{2 n}+p_{2 n+1}\left(-a_{3}+a_{2} \boldsymbol{i}-a_{1} \boldsymbol{j}+a_{0} \boldsymbol{k}\right) x^{2 n+1}\right] . \tag{1}
\end{align*}
$$

2192 A. K. Amir, J. Djuddin, M. Bahri, N. Erawaty and N. M. Abdal
Next,
$q(x) p(x)$
$=\left[a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right]\left[\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} \boldsymbol{x}^{2 n+1}\right)\right]$
$=\left[\sum_{n=0}^{t}\left(p_{2 n}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) x^{2 n}+p_{2 n+1}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) \boldsymbol{k} x^{2 n+1}\right)\right]$
$=\sum_{n=0}^{t}\left[p_{2 n}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) x^{2 n}+p_{2 n+1}\left(-a_{3}+a_{2} \boldsymbol{i}-a_{1} \boldsymbol{j}+a_{0} \boldsymbol{k}\right) x^{2 n+1}\right]$.

From equations (1) and (2), we see that $p(x) q(x)=q(x) p(x)$.
When $q(x)=x$, then

$$
\begin{align*}
p(x) q(x) & =\left[\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right)\right] x \\
& =\left[\sum_{n=0}^{t}\left(p_{2 n} x^{2 n+1}+p_{2 n+1} \boldsymbol{k} x^{2 n+2}\right)\right] . \tag{3}
\end{align*}
$$

On the other side,

$$
q(x) p(x)=x\left[\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right)\right] .
$$

Since $x p_{i}=p_{i} x$ and $x \boldsymbol{k}=\boldsymbol{k} x$, thus

$$
\begin{equation*}
q(x) p(x)=\left[\sum_{n=0}^{t}\left(p_{2 n} x^{2 n+1}+p_{2 n+1} \boldsymbol{k} x^{2 n+2}\right)\right] . \tag{4}
\end{equation*}
$$

From equations (3) and (4), we get $p(x) q(x)=q(x) p(x)$.

Now, we show that

$$
\mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{1}\right]\right) \subseteq\left\{\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right) \mid p_{2 n}, p_{2 n+1} \in \mathbb{R}\right\} .
$$

Let $r(x) \in \mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{1}\right]\right)$. Thus $r(x)$ satisfies $r(x) q(x)=q(x) r(x)$, $\forall q(x) \in \mathbb{H}\left[x ; \sigma_{1}\right]$.

Suppose

$$
r(x)=r_{0}+r_{1} x+\cdots+r_{t} x^{t}=\sum_{n=0}^{t} r_{n} c^{n}, \quad r_{n} \in \mathbb{H} .
$$

For $q(x)=\boldsymbol{i}$,

$$
r(x) q(x)=r(x) \boldsymbol{i}=\boldsymbol{i r}(x)=q(x) r(x) .
$$

Since $\sigma_{1}^{2 n}(\boldsymbol{i})=\boldsymbol{i}$ and $\sigma_{1}^{2 n+1}(\boldsymbol{i})=-\boldsymbol{i}$,

$$
\begin{equation*}
r(x) \boldsymbol{i}=\left[\sum_{n=0}^{t} r_{n} x^{n}\right] \boldsymbol{i}=\sum_{n=0}^{t}(-1)^{n} r_{n} \boldsymbol{i x} x^{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{i r}(x)=\boldsymbol{i}\left[\sum_{n=0}^{t} r_{n} x^{n}\right]=\left[\sum_{n=0}^{t} \boldsymbol{i}_{n} x^{n}\right] \tag{6}
\end{equation*}
$$

Since $r(x) \boldsymbol{i}=\boldsymbol{i r}(x)$, from equations (5) and (6), we obtain $r_{2 n} \boldsymbol{i}=\boldsymbol{i} r_{2 n}$ and $-r_{2 n+1} \boldsymbol{i}=\boldsymbol{i} r_{2 n+1}$. Then, suppose that $r_{2 n}=a_{0 n}+a_{1 n} \boldsymbol{i}+a_{2 n} \boldsymbol{j}+a_{3 n} \boldsymbol{k}$, from the equality of $r_{2 n} \boldsymbol{i}=\boldsymbol{i} r_{2 n}$, we get $a_{2 n}=a_{3 n}=0$, thus $r_{2 n}=$ $a_{0 n}+a_{1 n} \boldsymbol{i}$. Furthermore, let $r_{2 n+1}=b_{0 n}+b_{1 n} \boldsymbol{i}+b_{2 n} \boldsymbol{j}+b_{3 n} \boldsymbol{k}$, from the equality of $-r_{2 n+1} \boldsymbol{i}=\boldsymbol{i} r_{2 n+1}$, we obviously obtain $b_{0 n}=b_{1 n}=0$. Then $r_{2 n+1}=b_{2 n} \boldsymbol{j}+b_{3 n} \boldsymbol{k}$. Therefore, $r(x)$ can be written as

$$
r(x)=\sum_{n=0}^{t}\left(r_{2 n} x^{2 n}+r_{2 n+1} x^{2 n+1}\right)=\sum_{n=0}^{t}\left(\left(h_{n 0}+h_{n 1} \mathbf{i}\right) x^{2 n}+\left(h_{n 2} \boldsymbol{j}+h_{n 3} \boldsymbol{k}\right) x^{2 n+1}\right),
$$

where $h_{u v} \in \mathbb{R}$.

2194 A. K. Amir, J. Djuddin, M. Bahri, N. Erawaty and N. M. Abdal
Next, choose $q(x)=\boldsymbol{j}$,

$$
\begin{aligned}
r(x) g(x) & =r(x) \boldsymbol{j} \\
& =\left[\sum_{n=0}^{t}\left(\left(h_{n 0}+h_{n 1} \mathbf{i}\right) x^{2 n}+\left(h_{n 2} \boldsymbol{j}+h_{n 3} \boldsymbol{k}\right) x^{2 n+1}\right)\right] \boldsymbol{j} \\
& =\left[\sum_{n=0}^{t}\left(\left(h_{n 0}+h_{n 1} \mathbf{i}\right) \sigma_{1}^{2 n}(\boldsymbol{j}) x^{2 n}+\left(h_{n 2} \boldsymbol{j}+h_{n 3} \boldsymbol{k}\right) \sigma_{1}^{2 n+1}(\boldsymbol{j}) x^{2 n+1}\right)\right] .
\end{aligned}
$$

Since $\sigma_{1}^{2 n}(\boldsymbol{j})=\boldsymbol{j}$ and $\sigma_{1}^{2 n+1}(\boldsymbol{j})=-\boldsymbol{j}$,

$$
\begin{align*}
r(x) q(x) & =\left[\sum_{n=0}^{t}\left(\left(h_{n 0}+h_{n 1} \mathbf{i}\right)(\boldsymbol{j}) x^{2 n}+\left(h_{n 2} \boldsymbol{j}+h_{n 3} \boldsymbol{k}\right)(-\boldsymbol{j}) x^{2 n+1}\right)\right] \\
& =\left[\sum_{n=0}^{t}\left(\left(h_{n 0} \boldsymbol{j}+h_{n 1} \mathbf{k}\right) x^{2 n}+\left(h_{n 2}+h_{n 3} \boldsymbol{i}\right) x^{2 n+1}\right)\right],  \tag{7}\\
q(x) r(x) & =(\boldsymbol{j})\left[\sum_{n=0}^{t}\left(\left(h_{n 0}+h_{n 1} \mathbf{i}\right) x^{2 n}+\left(h_{n 2} \boldsymbol{j}+h_{n 3} \boldsymbol{k}\right) x^{2 n+1}\right)\right] \\
& =\sum_{n=0}^{t}\left(\left(h_{n 0} \boldsymbol{j}-h_{n 1} \boldsymbol{k}\right) x^{2 n}+\left(-h_{n 2}+h_{n 3} \boldsymbol{i}\right) x^{2 n+1}\right) . \tag{8}
\end{align*}
$$

Since $r(x) q(x)=q(x) r(x)$, from equations (7) and (8), we obtain $h_{n 1}=$ $h_{n 2}=0$, so

$$
r(x)=\sum_{n=0}^{t}\left(h_{n 0} x^{2 n}+h_{n 3} \boldsymbol{k} x^{2 n+1}\right)
$$

Since $h_{n 0}, h_{n 3} \in \mathbb{R}$, it can be written in general form as

$$
r(x)=\sum_{n=0}^{t}\left(h_{2 n} x^{2 n}+h_{2 n+1} \boldsymbol{k} x^{2 n+1}\right), \text { where } h_{2 n}, h_{2 n+1} \in \mathbb{R}
$$

Accordingly, $\quad r(x) \in\left\{\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right) \mid p_{2 n}, p_{2 n+1} \in \mathbb{R}\right\}$, it is shown that

$$
\begin{aligned}
& \mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{1}\right]\right) \\
\subseteq & \left\{p(x)=\sum_{n=0}^{t}\left(p_{2 n} x^{2 n}+p_{2 n+1} \boldsymbol{k} x^{2 n+1}\right) \mid p_{2 n}, p_{2 n+1} \in \mathbb{R}, t \in \mathbb{Z}_{+}\right\} .
\end{aligned}
$$

Theorem 2. Let $\mathbb{H}\left[x ; \sigma_{2}\right]$ be a skew polynomial ring over quaternions, $\sigma_{2}$ be an endomorphism such that

$$
\sigma_{2}(a)=\sigma_{2}\left(a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right)=a_{0}+a_{2} \boldsymbol{i}+a_{3} \boldsymbol{j}+a_{1} \boldsymbol{k}
$$

for each $a_{0}+a_{1} \mathbf{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k} \in \mathbb{H}$. The center of ring $\mathbb{H}\left[x ; \sigma_{2}\right]$ is

$$
\begin{aligned}
\mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{2}\right]\right)=\left\{\sum_{n=0}^{t}( \right. & p_{3 n} x^{3 n}+p_{3 n+1}(1+\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}) x^{3 n+1} \\
& \left.\left.+p_{3 n+2}(1-\boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}) x^{3 n+2}\right) \mid p_{i} \in \mathbb{R}\right\} .
\end{aligned}
$$

Proof. It is easily shown that

$$
\begin{equation*}
\sigma_{2}^{3 n}(a)=a, \quad \sigma_{2}^{3 n+1}(a)=\sigma_{2}(a) \quad \text { and } \quad \sigma_{2}^{3 n+2}(a)=\sigma_{2}^{2}(a) . \tag{9}
\end{equation*}
$$

Further, the proof process is divided into two parts:
(a) We will show that

$$
\begin{aligned}
& \left\{\sum _ { n = 0 } ^ { t } \left(p_{3 n} x^{3 n}+p_{3 n+1}(1+\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}) x^{3 n+1}\right.\right. \\
& \\
& \left.\left.\quad+p_{3 n+2}(1-\boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}) x^{3 n+2}\right) \mid p_{i} \in \mathbb{R}\right\} \subseteq \mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{2}\right]\right) .
\end{aligned}
$$

Let

$$
\begin{aligned}
& r(x) \in\left\{\sum _ { n = 0 } ^ { t } \left(p_{3 n} x^{3 n}+p_{3 n+1}(1+\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}) x^{3 n+1}\right.\right. \\
&\left.\left.+p_{3 n+2}(1-\boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}) x^{3 n+2}\right) \mid p_{i} \in \mathbb{R}\right\}
\end{aligned}
$$

We will show that $r(x) q(x)=q(x) r(x), \forall q(x) \in \mathbb{H}\left[x ; \sigma_{2}\right]$.

2196 A. K. Amir, J. Djuddin, M. Bahri, N. Erawaty and N. M. Abdal
Without loss of generality, the proof will be done just for two types of $q(x)$. Firstly, for $q(x)=a$, where $a \in \mathbb{H}$ and secondly, for $q(x)=x$.

With methods similar to the proof of Theorem 1, we get

$$
q(x) r(x)=r(x) q(x) .
$$

(b) We will show that

$$
\begin{aligned}
& \mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{2}\right]\right) \\
\subseteq & \left\{\sum_{n=0}^{t}\left(p_{3 n} x^{3 n}+p_{3 n+1}(1+\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}) x^{3 n+1}+p_{3 n+2}(1-\boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}) x^{3 n+2}\right) \mid p_{i} \in \mathbb{R}\right\} .
\end{aligned}
$$

Let $r(x) \in \mathbf{Z}\left(\mathbb{H}\left[x ; \sigma_{1}\right]\right)$. It means that $r(x)$ satisfies $r(x) q(x)=$ $q(x) p(x), \forall q(x) \in \mathbb{H}\left[x ; \sigma_{1}\right]$. Let $r(x)=\sum_{n=0}^{t} r_{n} x^{n}, r_{n} \in \mathbb{H}$.

When $q(x)=\boldsymbol{i}$,

$$
r(x) q(x)=r(x) \boldsymbol{i}=\boldsymbol{i r}(x)=q(x) r(x) .
$$

Since $\quad \sigma_{2}^{3 n}(\boldsymbol{i})=\boldsymbol{i}, \quad \sigma_{2}^{3 n+1}(\boldsymbol{i})=\boldsymbol{k} \quad$ and $\quad \sigma_{2}^{3 n+2}(\boldsymbol{i})=\boldsymbol{j}, \quad$ with a simple calculation, we obtain

$$
\begin{aligned}
r(x)= & \sum_{n=0}^{t}\left(r_{3 n} x^{3 n}+r_{3 n+1} x^{3 n+1}+r_{3 n+2} x^{3 n+2}\right) \\
= & \sum_{n=0}^{t}\left(\left(c_{3 n}^{0}+c_{3 n}^{1} \boldsymbol{i}\right) x^{3 n}+\left(c_{3 n+1}^{0}+c_{3 n+1}^{1} \boldsymbol{i}+c_{3 n+1}^{0} \boldsymbol{j}+c_{3 n+1}^{1} \boldsymbol{k}\right) x^{3 n+1}\right) \\
& +\left(c_{3 n+2}^{0}+c_{3 n+2}^{1} \boldsymbol{i}+c_{3 n+2}^{1} \boldsymbol{j}-c_{3 n+2}^{0} \boldsymbol{k}\right) x^{3 n+2}
\end{aligned}
$$

with $c_{i}^{j} \in \mathbb{R}$.

Next, when $q(x)=\boldsymbol{j}$, we have

$$
\begin{aligned}
r(x) q(x)= & r(x) \boldsymbol{j} \\
= & {\left[\sum _ { n = 0 } ^ { t } \left(\left(c_{3 n}^{0}+c_{3 n}^{1} \mathbf{i}\right) x^{3 n}+\left(c_{3 n+1}^{0}+c_{3 n+1}^{1} \mathbf{i}+c_{3 n+1}^{0} \boldsymbol{j}+c_{3 n+1}^{1} \boldsymbol{k}\right) x^{3 n+1}\right.\right.} \\
& \left.\left.+\left(c_{3 n+2}^{0}+c_{3 n+2}^{1} \mathbf{i}+c_{3 n+2}^{1} \boldsymbol{j}-c_{3 n+2}^{0} \boldsymbol{k}\right) x^{3 n+2}\right)\right] \boldsymbol{j} .
\end{aligned}
$$

Since $r(x) \boldsymbol{j}=\boldsymbol{j} r(x)$, with a simple calculation, we get

$$
c_{3 n}^{1}=0, \quad c_{3 n+1}^{0}=c_{3 n+1}^{1} \quad \text { and } \quad c_{3 n+2}^{0}=-c_{3 n+2}^{1}
$$

So,

$$
r(x)=\sum_{n=0}^{t}\left[c_{3 n}^{0} x^{3 n}+c_{3 n+1}^{0}(1+\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}) x^{3 n+1}+\left(c_{3 n+2}^{0}(1-\mathbf{i}-\boldsymbol{j}-\boldsymbol{k}) x^{3 n+2}\right]\right.
$$

Thus, we have

$$
\begin{aligned}
& r(x) \\
\in & \left\{\sum_{n=0}^{t}\left(p_{3 n} x^{3 n}+p_{3 n+1}(1+\mathbf{i}+\boldsymbol{j}+\boldsymbol{k}) x^{3 n+1}+p_{3 n+2}(1-\boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}) x^{3 n+2}\right) \mid p_{i} \in \mathbb{R}\right\} .
\end{aligned}
$$

## Acknowledgement

The authors would like to thank the anonymous referees for their several valuable suggestions.

## References

[1] A. K. Amir, On center of skew polynomial ring over a domain, Far East J. Math. Sci. (FJMS) 102(6) (2017), 1243-1249.
[2] A. K. Amir, On maximal ideal of skew polynomial ring over a Dedekind domain, Far East J. Math. Sci. (FJMS) 78(1) (2013), 85-91.

2198 A. K. Amir, J. Djuddin, M. Bahri, N. Erawaty and N. M. Abdal
[3] A. K. Amir, Invertible ideal and $v$-ideal of Ore extension over a commutative Dedekind domain, Far East J. Math. Sci. (FJMS) 67(1) (2012), 111-119.
[4] J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley Publishing Company Inc., New York, 2003.
[5] K. R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras, J. Algebra 150(2) (1992), 324-377.
[6] O. Ore, Theory of non-commutative polynomials, Annals of Math. 34 (1993), 480-508.

