Far East Journal of Mathematical Sciences (FJMS)

FIXED POINT THEOREMS FOR THE MULTIVALUED CONTRACTION MAPPING IN THE QUASI αb-METRIC SPACE

Budi Nurwahyu
Department of Mathematics
Faculty of Mathematics and Natural Sciences
Hasanuddin University
Makassar 90245, Indonesia

Abstract

In this paper, we introduce the quasi αb-metric space which is a generalization of the quasi b-metric space and show an existence and uniqueness of the fixed point for the multivalued contraction mapping in the complete quasi αb-metric space.

1. Introduction

The notion of a b-metric was introduced by Bakhtin in 1989 [1]. Few years later, this concept was applied to generalize the Banach's fixed point theorem in b-metric space by Czerwik [2]. Furthermore, Nadler [3] introduced the fixed point for the multivalued contraction mappings in a metric space. Some authors have presented results for several generalized contractive multivalued functions in b-metric spaces [4-9]. While the quasi

Received: May 5, 2017; Revised: July 17, 2017; Accepted: August 7, 2017
2010 Mathematics Subject Classification: 47H10, 54C60, 58 C06.
Keywords and phrases: fixed point, b-metric space, αb-metric space, multivalued mapping, contraction mapping.
αb-metric space is an extension of the quasi b-metric space that has been introduced by Nurwahyu [10]. This study is motivated by authors who have been working on the fixed point for several multivalued contraction mappings in the quasi b-metric spaces. Therefore, the aim of this study is to establish and prove existence and uniqueness of fixed point theorem for the multivalued contraction mapping in the complete quasi αb-metric.

2. Preliminaries

Definition 2.1 [10]. Let X be a nonempty set and let $0 \leq \alpha<1$ and $b \geq 1$ be a given real number.

Let $d: X \times X \rightarrow[0, \infty)$ be a self mapping on X which satisfies the following conditions:
(1) $d(x, y)=d(y, x)=0$ if and only if $x=y$;
(2)

$$
\begin{equation*}
d(x, y) \leq \alpha d(y, x)+\frac{1}{2} b(d(x, z)+d(z, y)) \text { for all } x, y, z \in X . \tag{2.1}
\end{equation*}
$$

Then d is called a quasi αb-metric on X and (X, d) is called a quasi αb-metric space.

From the definition of the quasi b-metric, we show that every quasi b-metric is a quasi αb-metric, but the converse is not true.

Example 2.2 [10]. Let $X=\{0,1,2\}$. Define $d: X \times X \rightarrow R^{+} \cup\{0\}$ as follows: $d(0,0)=d(1,1)=d(2,2)=d(0,2)=d(2,1)=0, d(1,0)=4$, $d(2,0)=1, d(0,1)=2$ and $d(1,2)=3$.

It is clear that d is a quasi αb-metric with $\alpha=\frac{1}{2}$ and $b=4$. This is because $2=d(0,1) \leq \frac{1}{2} d(1,0)+2(d(0,2))+d(2,1)$. However, $2=d(0,1)$ $>c(d(0,2)+d(2,1))$ for every $c \geq 1, d$ is not a quasi b-metric.

Example 2.3 [10]. Let $X=R$ and define $d: X \times X \rightarrow R^{+}$as $d(x, y)$ $=\left\{\begin{array}{l}2 x^{2}+y^{2}, x \neq y, \\ 0, x=y\end{array}\right.$

As seen from the given function, it is clear that the first condition of a quasi b-metric is satisfied. However, the second condition has to be shown.

For $x \neq y$, and every $z \in X, d(x, y)$ can be written as

$$
\begin{aligned}
d(x, y) & =2 x^{2}+y^{2} \leq \frac{5}{2} x^{2}+2 y^{2}+3 z^{2} \\
& =\frac{1}{2}\left(2 y^{2}+x^{2}\right)+\left(\left(2 x^{2}+z^{2}\right)+\left(2 z^{2}+y^{2}\right)\right) \\
& =\frac{1}{2} d(y, x)+\frac{2}{2}(d(x, z)+d(z, y))
\end{aligned}
$$

This equation can be rewritten as

$$
d(x, y)=\frac{1}{2} d(y, x)+\frac{2}{2}(d(x, z)+d(z, y))
$$

Hence, d is clearly seen as a quasi αb-metric with $\alpha=\frac{1}{2}$ and $b=2$.
Definition 2.4 [3]. Let X and Y be nonempty sets, let 2^{Y} be the collection of all subsets of Y. A mapping $T: X \rightarrow 2^{Y}$ is said to be a multivalued function on X.

Definition 2.5 [3]. A point $x \in X$ is said to be a fixed point of the multivalued mapping of T if $x \in T(x)$.

Definition 2.6. Let (X, d) be a quasi αb-metric space. Let $C B(X)$ be a collection of closed and bounded subsets of X. Define a Hausdorff metric on $C B(X)$ as follows:

$$
H(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

for all $A, B \in C B(X)$, where $d(a, B)=\inf \{d(a, x) \mid x \in B\}$ for all $a \in A$ and $d(B, a)=\inf \{d(x, a) \mid x \in B\}$ for all $a \in A$. Similarly,

$$
H(B, A)=\max \left\{\sup _{a \in A} d(B, a), \sup _{b \in B} d(A, b)\right\}
$$

for all $A, B \in C B(X)$, where $d(B, a)=\inf \{d(x, a) \mid x \in B\}$ for all $a \in A$ and $d(A, b)=\inf \{d(x, b) \mid x \in A\}$ for all $b \in B$.

In general, $H(A, B) \neq H(B, A)$.
Let $A=\{0,2\}, B=\{1\}$. Then

$$
d(0, B)=\inf _{x \in B}\{d(0, x)\}=\inf \{d(0,1)\}=2
$$

and

$$
d(2, B)=\inf _{x \in B}\{d(2, x)\}=\inf \{d(2,1)\}=0
$$

As a result, $\sup _{a \in A} d(a, B)=2$.
Similarly,

$$
d(1, A)=\inf _{x \in A} d(1, A)=\inf \{d(1,0), d(1,2)\}=3
$$

then $\sup _{b \in B} d(b, A)=3$.
Therefore, $H(A, B)$ gives

$$
H(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}=3
$$

Following a similar procedure to the previous one, $d(B, 0)$ and $d(B, 2)$ are given by

$$
\begin{aligned}
& d(B, 0)=\inf _{x \in B}\{d(x, 0)\}=\inf \{d(1,0)\}=4 \\
& d(B, 2)=\inf _{x \in B}\{d(x, 2)\}=\inf \{d(1,2)\}=3
\end{aligned}
$$

Hence, $\sup _{a \in A} d(B, a)=4$. Likewise,

$$
d(A, 1)=\inf _{x \in A}\{d(x, 1)\}=\inf \{d(0,1), d(2,1)\}=0
$$

and then $\sup _{b \in B} d(A, b)=0$ is obtained.
Since $H(A, B)=3$ and $H(B, A)$ is given by

$$
H(B, A)=\max \left\{\sup _{a \in A} d(B, a), \sup _{b \in B} d(A, b)\right\}=4
$$

it shows that $H(A, B) \neq H(B, A)$.
Lemma 2.7. Let (X, d) be a quasi αb-metric space. If $A, B \in C B(X)$ and $a \in A$, then for each $\varepsilon>0$, there exists $b \in B$ such that $d(a, b) \leq$ $H(A, B)+\varepsilon$.

Proof. Suppose that there exists $\varepsilon>0$ such that

$$
d(a, b)>H(A, B)+\varepsilon
$$

for every $b \in B$. So $H(A, B)+\varepsilon$ is a lower bound of $\{d(a, b) \mid b \in B\}$.

$$
d(a, B)=\inf _{b \in B}\{d(a, b)\}, \quad \text { then we have } d(a, B) \geq H(A, B)+\varepsilon
$$ However, from the definition of $H(A, B)$, we have

$$
H(A, B) \geq \sup _{a \in A} d(a, B) \geq d(a, B)
$$

for every $a \in A$.
Since $(a, b)>H(A, B)+\varepsilon$ for every $b \in B$, we can obtain

$$
H(A, B) \geq d(a, B) \geq H(A, B)+\varepsilon
$$

Here, we obtain $\varepsilon \leq 0$ which is a contradiction.
Lemma 2.8. Let (X, d) be a quasi αb-metric space. If $A, B \in C B(X)$ and $a \in A$, then for each $\varepsilon>0$, there exists $b \in B$ such that $d(b, a) \leq$ $H(B, A)+\varepsilon$.

Proof. The proof is similar to the proof of Lemma 2.7.
Definition 2.9 [10]. Let (X, d) be a quasi αb-metric space. A sequence $\left\{x_{n}\right\}$ in (X, d) converges to $x \in X$ if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)$ $=0$, we write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 2.10 [10]. Let $\left\{x_{n}\right\}$ be a sequence in a quasi αb-metric space (X, d). Then $\left\{x_{n}\right\}$ is called a Cauchy sequence if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)$ $=\lim _{n \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0$.

Definition 2.11 [10]. Let (X, d) be a quasi αb-metric space. Then (X, d) is called complete if every Cauchy sequence in X is convergent in X.

Definition 2.12 [3]. Let (X, d) be a metric space. Then a mapping $T: X \rightarrow C B(X)$ is said to be a multivalued contraction if there exists $0 \leq \lambda<1$ such that $H(T x, T y) \leq \lambda d(x, y)$, for all $x, y \in X$.

3. Main Results

Theorem 3.1. Let (X, d) be a quasi αb-metric space with $0 \leq \alpha<1$ and $b \geq 1$, let $\left\{x_{n}\right\}$ be a sequence in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 \tag{3.1}
\end{equation*}
$$

Then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Proof. Based on the second condition of Definition 2.1, $d\left(x_{n}, x_{n+2}\right)$ is given by

$$
\begin{aligned}
& d\left(x_{n}, x_{n+2}\right) \\
\leq & \alpha d\left(x_{n+2}, x_{n}\right)+\frac{b}{2}\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right) \\
\leq & \alpha\left[\alpha d\left(x_{n}, x_{n+2}\right)+\frac{b}{2}\left(d\left(x_{n+2}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)\right)\right] \\
& +\frac{b}{2}\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& d\left(x_{n}, x_{n+2}\right) \\
\leq & \frac{\frac{1}{2} \alpha b\left(d\left(x_{n+2}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)\right)+\frac{b}{2}\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right)}{1-\alpha^{2}}
\end{aligned}
$$

Making use of equation (3.1), it is clearly seen that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+2}\right)=0 . \tag{3.2}
\end{equation*}
$$

Following a similar procedure to later one, we also have

$$
\begin{aligned}
& d\left(x_{n+2}, x_{n}\right) \\
\leq & \frac{\frac{1}{2} \alpha b\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right)+\frac{b}{2}\left(d\left(x_{n+2}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)\right)}{1-\alpha^{2}}
\end{aligned}
$$

in which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+2}, x_{n}\right)=0 \tag{3.3}
\end{equation*}
$$

Repeating this procedure for $d\left(x_{n}, x_{n+3}\right)$, one will get the following:

$$
\begin{aligned}
& d\left(x_{n}, x_{n+3}\right) \\
\leq & \frac{\frac{1}{2} \alpha b\left(d\left(x_{n+3}, x_{n+2}\right)+d\left(x_{n+2}, x_{n}\right)\right)+\frac{b}{2}\left(d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)\right)}{1-\alpha^{2}}
\end{aligned}
$$

and hence using (3.2) and (3.3), we also get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+3}\right)=0 \tag{3.4}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
& d\left(x_{n+3}, x_{n}\right) \\
\leq & \frac{\frac{1}{2} \alpha b\left(d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n}, x_{n+2}\right)\right)+\frac{b}{2}\left(d\left(x_{n+2}, x_{n}\right)+d\left(x_{n+3}, x_{n+2}\right)\right)}{1-\alpha^{2}}
\end{aligned}
$$

which also yields the following result by using (3.2) and (3.4)

$$
\lim _{n \rightarrow \infty} d\left(x_{n+3}, x_{n}\right)=0
$$

Thus, by using induction, we have

$$
\begin{aligned}
& d\left(x_{n}, x_{n+k}\right) \\
\leq & \frac{\frac{1}{2} \alpha b\left(d\left(x_{n+k}, x_{n+k-1}\right)+d\left(x_{n+k-1}, x_{n}\right)\right)+\frac{b}{2}\left(d\left(x_{n}, x_{n+k-1}\right)+d\left(x_{n+k-1}, x_{n+k}\right)\right)}{1-\alpha^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& d\left(x_{n+k}, x_{n}\right) \\
\leq & \frac{\frac{1}{2} \alpha b\left(d\left(x_{n+k-1}, x_{n+k}\right)+d\left(x_{n}, x_{n+k-1}\right)\right)+\frac{b}{2}\left(d\left(x_{n+k-1}, x_{n}\right)+d\left(x_{n+k}, x_{n+k-1}\right)\right)}{1-\alpha^{2}} .
\end{aligned}
$$

Therefore, we obtain

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+k}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} d\left(x_{n+k}, x_{n}\right)=0 .
$$

Finally, for $m>n \geq 0$, we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0
$$

Hence, $\left\{x_{m}\right\}$ is a Cauchy sequence in X.
Theorem 3.2. Let (X, d) be a complete quasi αb-metric space with $0 \leq \alpha<1$ and $b \geq 1$ and let $C B(X)$ be a collection of closed and bounded subsets of X.

Let $T: X \rightarrow C B(X)$ be a map that satisfies the following condition:

$$
\begin{equation*}
H(T x, T y) \leq \frac{d(y, T y) d(T x, x)}{1+p(d(y, T y)+d(T x, x))} \tag{3.5}
\end{equation*}
$$

for $x, y \in X, p>2$.
Then T has a unique fixed point in X.

Proof. Let $x_{0} \in X$, and $x_{1} \in T x_{0}$. By Lemma 2.7, there exists $x_{2} \in T x_{1}$ such that

$$
d\left(x_{1}, x_{2}\right) \leq H\left(T x_{0}, T x_{1}\right)+\frac{1}{p^{2}} d\left(x_{0}, x_{1}\right)
$$

Then, using (3.5), we obtain

$$
\begin{aligned}
& d\left(x_{1}, x_{2}\right) \leq \frac{d\left(x_{1}, T x_{1}\right) d\left(T x_{0}, x_{0}\right)}{1+p\left(d\left(x_{1}, T x_{1}\right)+d\left(T x_{0}, x_{0}\right)\right)}+\frac{1}{p^{2}} d\left(x_{0}, x_{1}\right) \\
& d\left(x_{1}, x_{2}\right) \leq \frac{1}{p} d\left(x_{1}, x_{2}\right)+\frac{1}{p^{2}} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Simplifying this equation yields

$$
d\left(x_{1}, x_{2}\right) \leq \frac{1}{p(p-1)} d\left(x_{0}, x_{1}\right)
$$

Furthermore, based on Lemma 2.7, there exists $x_{3} \in T x_{2}$ such that

$$
d\left(x_{2}, x_{3}\right) \leq H\left(T x_{1}, T x_{2}\right)+\frac{1}{p^{2}} d\left(x_{1}, x_{2}\right)
$$

which gives

$$
\begin{aligned}
& d\left(x_{2}, x_{3}\right) \leq \frac{d\left(x_{2}, T x_{2}\right) d\left(T x_{1}, x_{1}\right)}{1+p\left(d\left(x_{2}, T x_{2}\right)+d\left(T x_{1}, x_{1}\right)\right)}+\frac{1}{p^{2}} d\left(x_{1}, x_{2}\right) \\
& d\left(x_{2}, x_{3}\right) \leq \frac{1}{p} d\left(x_{2}, x_{3}\right)+\frac{1}{p^{2}} d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

This equation can be rewritten as

$$
d\left(x_{2}, x_{2}\right) \leq \frac{1}{p(p-1)} d\left(x_{1}, x_{2}\right) \leq\left(\frac{1}{p(p-1)}\right)^{2} d\left(x_{0}, x_{1}\right)
$$

Continuing this process, we obtain a sequence $\left(x_{n}\right)$, where $x_{n+1} \in T x_{n}$ such that

$$
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{1}{p(p-1)}\right)^{n} d\left(x_{0}, x_{1}\right) .
$$

Since $p>2, p(p-1)>1$ which is equivalent to $0<\frac{1}{p(p-1)}<1$.
As a result, it is clearly seen that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 . \tag{3.6}
\end{equation*}
$$

Following a similar procedure to the previous one but making use of Lemma 2.8, $d\left(x_{2}, x_{1}\right)$ is given by

$$
d\left(x_{2}, x_{1}\right) \leq H\left(T x_{1}, T x_{0}\right)+\frac{1}{p^{2}} d\left(x_{1}, x_{0}\right) .
$$

Using again (3.5) yields

$$
\begin{aligned}
& d\left(x_{2}, x_{1}\right) \leq \frac{d\left(x_{0}, T x_{0}\right) d\left(T x_{1}, x_{1}\right)}{1+p\left(d\left(x_{0}, T x_{0}\right)+d\left(T x_{1}, x_{1}\right)\right)}+\frac{1}{p^{2}} d\left(x_{1}, x_{0}\right) \\
& d\left(x_{2}, x_{1}\right) \leq \frac{1}{p} d\left(T x_{1}, x_{1}\right)+\frac{1}{p^{2}} d\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

This equation can be written as

$$
d\left(x_{2}, x_{1}\right) \leq \frac{1}{p(p-1)} d\left(x_{1}, x_{0}\right) .
$$

Moreover, based on Lemma 2.8, there exists $x_{3} \in T x_{2}$ such that

$$
d\left(x_{3}, x_{2}\right) \leq H\left(T x_{2}, T x_{1}\right)+\frac{1}{p^{2}} d\left(x_{2}, x_{1}\right)
$$

which gives

$$
\begin{aligned}
& d\left(x_{3}, x_{2}\right) \leq \frac{d\left(x_{1}, T x_{1}\right) d\left(T x_{2}, x_{2}\right)}{1+p\left(d\left(x_{1}, T x_{1}\right)+d\left(T x_{1}, x_{1}\right)\right)}+\frac{1}{p^{2}} d\left(x_{2}, x_{1}\right) \\
& d\left(x_{3}, x_{2}\right) \leq \frac{1}{p} d\left(x_{3}, x_{2}\right)+\frac{1}{p^{2}} d\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Hence

$$
d\left(x_{3}, x_{2}\right) \leq \frac{1}{p(p-1)} d\left(x_{2}, x_{1}\right) \leq\left(\frac{1}{p(p-1)}\right)^{2} d\left(x_{1}, x_{2}\right) .
$$

Continuing this process, we obtain a sequence $\left(x_{n}\right)$, where $x_{n+1} \in T x_{n}$ such that

$$
d\left(x_{n+1}, x_{n}\right) \leq\left(\frac{1}{p(p-1)}\right)^{n} d\left(x_{1}, x_{0}\right) .
$$

Since $p>2$, we have $p(p-1)>1$ and hence $0<\frac{1}{p(p-1)}<1$.
It is clearly shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 \tag{3.7}
\end{equation*}
$$

which gives

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0
$$

Based on Theorem 3.1, we obtain $\left\{x_{n}\right\}$ which is a Cauchy sequence in complete X.

Therefore, we conclude that there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Furthermore, it will be shown that x^{*} is a fixed point of T, that is,

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) \leq & \alpha d\left(T x^{*}, x^{*}\right)+\frac{b}{2}\left(d\left(x^{*}, x_{n}\right)+d\left(x_{n}, T x^{*}\right)\right) \\
\leq & \alpha\left(\alpha d\left(x^{*}, T x^{*}\right)+\frac{b}{2}\left(d\left(T x^{*}, x_{n}\right)+d\left(x_{n}, x^{*}\right)\right)\right) \\
& +\frac{b}{2}\left(d\left(x^{*}, x_{n}\right)+d\left(x_{n}, T x^{*}\right)\right)
\end{aligned}
$$

which gives

$$
d\left(x^{*}, T x^{*}\right) \leq \frac{\frac{a b}{2}\left(d\left(T x^{*}, x_{n}\right)+d\left(x_{n}, x^{*}\right)\right)+\frac{b}{2}\left(d\left(x^{*}, x_{n}\right)+d\left(x_{n}, T x^{*}\right)\right)}{1-\alpha^{2}} .
$$

Since $x_{n} \in T x_{n-1}$, we get the following equations:

$$
d\left(T x^{*}, x_{n}\right) \leq H\left(T x^{*}, T x_{n-1}\right) \leq \frac{d\left(x_{n-1}, T x_{n-1}\right) d\left(T x^{*}, x^{*}\right)}{1+p\left(d\left(x_{n-1}, T x_{n-1}\right)+d\left(T x^{*}, x^{*}\right)\right)} \leq \frac{d\left(x_{n-1}, T x_{n-1}\right)}{p}
$$

and

$$
d\left(x_{n}, T x^{*}\right) \leq H\left(T x_{n-1}, T x^{*}\right) \leq \frac{d\left(T x_{n-1}, x_{n-1}\right) d\left(x^{*}, T x^{*}\right)}{1+p\left(d\left(T x_{n-1}, x_{n-1}\right)+d\left(x^{*}, T x^{*}\right)\right)} \leq \frac{d\left(T x_{n-1}, x n_{-1}\right)}{p} .
$$

Substituting these equations into the previous one, we then get

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) & \leq \frac{\frac{\alpha b}{2}\left(H\left(T x^{*}, T x_{n-1}\right)+d\left(x_{n}, x^{*}\right)\right)+\frac{b}{2}\left(d\left(x^{*}, x_{n}\right)+H\left(T x_{n-1}, T x^{*}\right)\right.}{1-\alpha^{2}} \\
& \leq \frac{\frac{\alpha b}{2}\left(\frac{d\left(x_{n-1}, T x_{n-1}\right)}{p}+d\left(x_{n}, x^{*}\right)\right)+\frac{b}{2}\left(d\left(x^{*}, x_{n}\right)+\frac{d\left(T x_{n-1}, x_{n-1}\right)}{p}\right)}{1-\alpha^{2}} .
\end{aligned}
$$

Moreover, since $x_{n} \in T x_{n-1}$, we have

$$
d\left(x_{n-1}, T x_{n-1}\right) \leq d\left(x_{n-1}, x_{n}\right) \quad \text { and } \quad d\left(T x_{n-1}, x_{n-1}\right) \leq d\left(x_{n}, x_{n-1}\right) .
$$

Finally, $d\left(x^{*}, T x^{*}\right)$ can be written as

$$
d\left(x^{*}, T x^{*}\right) \leq \frac{\frac{\alpha b}{2}\left(\frac{d\left(x_{n-1}, x_{n}\right)}{p}+d\left(x_{n}, x^{*}\right)\right)+\frac{b}{2}\left(d\left(x^{*}, x_{n}\right)+\frac{d\left(x_{n}, x_{n-1}\right)}{p}\right)}{1-\alpha^{2}}
$$

In addition, since $\lim _{n \rightarrow \infty} x_{n}=x^{*}$, we obtain $\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=$
$\lim _{n \rightarrow \infty} d\left(x^{*}, x_{n}\right)=0$. From (3.6) and (3.7) and $n \rightarrow \infty$, we get

$$
d\left(x^{*}, T x^{*}\right)=0
$$

and also

$$
d\left(T x^{*}, x^{*}\right)=0
$$

which is only possible if $x^{*} \in T x^{*}$.
Now we have to show that for every $y \in X$ and $y \in T x^{*}, y=x^{*}$.
Suppose that there exists $y \in X$ such that $y \in T x^{*}$.
Since $x^{*} \in T x^{*}$ and $y \in T x^{*}$, using Lemma 2.7 and taking $\varepsilon=d\left(y, x^{*}\right)$, there exists $z \in T y$ such that

$$
d\left(x^{*}, z\right) \leq H\left(T x^{*}, T y\right)+d\left(y, x^{*}\right) \leq \frac{d(y, T y) d\left(T x^{*}, x^{*}\right)}{1+p\left(d(y, T y)+d\left(T x^{*}, x^{*}\right)\right)}+d\left(y, x^{*}\right)
$$

and

$$
d(z, y) \leq H\left(T y, T x^{*}\right)+d\left(y, x^{*}\right) \leq \frac{d\left(x^{*}, T x^{*}\right) d(T t y, y)}{1+p\left(d\left(x^{*}, T x^{*}\right)+d(T y, y)\right)}+d\left(y, x^{*}\right) .
$$

Since $x^{*} \in T x^{*}$, we have $d\left(T x^{*}, x^{*}\right)=d\left(x^{*}, T x^{*}\right)=0$ which implies that

$$
d\left(x^{*}, z\right) \leq d\left(y, x^{*}\right)
$$

and

$$
d(z, y) \leq d\left(y, x^{*}\right) .
$$

Now, by using (2.1), we have

$$
d\left(x^{*}, y\right) \leq \alpha d\left(y, x^{*}\right)+\frac{1}{2} b\left(d\left(x^{*}, z\right)+d(z, y)\right)
$$

which can be written as:

$$
d\left(x^{*}, y\right) \leq \alpha d\left(y, x^{*}\right)+\frac{1}{2} b\left(d\left(y, x^{*}\right)+d\left(y, x^{*}\right)\right)=\alpha d\left(y, x^{*}\right)+b d\left(y, x^{*}\right)
$$

yielding

$$
\begin{equation*}
d\left(x^{*}, y\right) \leq(\alpha+b) d\left(y, x^{*}\right) . \tag{3.8}
\end{equation*}
$$

Now from $x^{*} \in T x^{*}$ and $y \in T x^{*}$, by using Lemma 2.8 and taking $\varepsilon=$ $d\left(x^{*}, y\right)$, there exists $w \in T y$ such that
$d\left(w, x^{*}\right) \leq H\left(T y, T x^{*}\right)+d\left(x^{*}, y\right) \leq \frac{d\left(x^{*}, T x^{*}\right) d(T y, y)}{1+p\left(d\left(x^{*}, T x^{*}\right)+d(T y, y)\right)}+d\left(x^{*}, y\right)$
and

$$
d(y, w) \leq H\left(T x^{*}, T y\right)+d\left(x^{*}, y\right) \leq \frac{d(T y, y) d\left(T x^{*}, x^{*}\right)}{1+p\left(d(T y, y)+d\left(T x^{*}, x^{*}\right)\right)}+d\left(x^{*}, y\right)
$$

Since $x^{*} \in T x^{*}$, we have $d\left(T x^{*}, y\right)=d\left(x^{*}, T x^{*}\right)=0$ which gives

$$
d\left(w, x^{*}\right) \leq d\left(x^{*}, y\right)
$$

and

$$
d(y, w) \leq d\left(x^{*}, y\right) .
$$

Now using (2.1), thus

$$
\begin{aligned}
d\left(y, x^{*}\right) & \leq \alpha d\left(x^{*}, y\right)+\frac{1}{2} b\left(d(y, w)+d\left(w, x^{*}\right)\right) \\
& \leq \alpha d\left(x^{*}, y\right)+\frac{1}{2} b\left(d\left(x^{*}, y\right)+d\left(x^{*}, y\right)\right)
\end{aligned}
$$

yields

$$
\begin{equation*}
d\left(y, x^{*}\right) \leq(\alpha+b) d\left(x^{*}, y\right) . \tag{3.9}
\end{equation*}
$$

From (3.8) and (3.9), we get

$$
d\left(x^{*}, y\right)=d\left(y, x^{*}\right)=0
$$

which implies that $y=x^{*}$.

Since $x^{*} \in T x^{*}$ and y is arbitrary element in X and $y \in T x^{*}$, we obtain $T x^{*}=\left\{x^{*}\right\}$ which shows that T has a unique fixed point in X.

Acknowledgement

The author thanks to all colleagues of metric space research group at Department of Mathematics, Hasanuddin University, and the anonymous referees for their valuable suggestions and comments.

References

[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, functional analysis, Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk 30 (1989), 26-37 (in Russian).
[2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1995), 5-11.
[3] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[4] J. M. Joseph and E. Ramganesh, Fixed point theorem on multivalued mappings, Int. J. Anal. Appl. 1 (2013), 127-132.
[5] J. M. Joseph, D. D. Roselin and M. Marudai, Fixed Point Theorems on Multivalued Mappings in b-metric Spaces, Springer Plus 5 (2016), 217.
[6] C. Chifu and G. Petrusel, Fixed points for multivalued contractions in b-metric spaces with applications to fractals, Taiwanese J. Math. 18 (2014), 1365-1375.
[7] R. Miculescu and A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Appl. 19(3) (2017), 2153-2163.
[8] H. Aydi, M. F. Bota, E. Karapinar and S. Mitrovi'c, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012 (2012), 88.
[9] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ. Babes-Bolyai Math. LIV(3) (2009), 1-14.
[10] B. Nurwahyu, Fixed point theorems for generalized contraction mappings in quasi $a b$-metric space, Far East J. Math. Sci. (FJMS) 101(8) (2017), 1813-1832.

