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Abstract 

In this paper, we introduce the quasi αb-metric space which is a 
generalization of the quasi b-metric space and show an existence and 
uniqueness of the fixed point for the multivalued contraction mapping 
in the complete quasi αb-metric space. 

1. Introduction 

The notion of a b-metric was introduced by Bakhtin in 1989 [1].         
Few years later, this concept was applied to generalize the Banach’s            
fixed point theorem in b-metric space by Czerwik [2]. Furthermore, Nadler           
[3] introduced the fixed point for the multivalued contraction mappings in      
a metric space. Some authors have presented results for several generalized 
contractive multivalued functions in b-metric spaces [4-9]. While the quasi 
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αb-metric space is an extension of the quasi b-metric space that has been 
introduced by Nurwahyu [10]. This study is motivated by authors who       
have been working on the fixed point for several multivalued contraction 
mappings in the quasi b-metric spaces. Therefore, the aim of this study is         
to establish and prove existence and uniqueness of fixed point theorem for 
the multivalued contraction mapping in the complete quasi αb-metric. 

2. Preliminaries 

Definition 2.1 [10]. Let X be a nonempty set and let 10 <α≤  and 
1≥b  be a given real number. 

Let [ )∞→× ,0: XXd  be a self mapping on X which satisfies the  

following conditions: 

(1) ( ) ( ) 0,, == xydyxd  if and only if ;yx =  

(2) 

( ) ( ) ( ) ( )( )yzdzxdbxydyxd ,,2
1,, ++α≤  for all .,, Xzyx ∈  (2.1) 

Then d is called a quasi αb-metric on X and ( )dX ,  is called a quasi          

αb-metric space. 

From the definition of the quasi b-metric, we show that every quasi           
b-metric is a quasi αb-metric, but the converse is not true. 

Example 2.2 [10]. Let { }.2,1,0=X  Define { }0: ∪+→× RXXd   

as follows: ( ) ( ) ( ) ( ) ( ) ,01,22,02,21,10,0 ===== ddddd  ( ) ,40,1 =d  

( ) ( ) 21,0,10,2 == dd  and ( ) .32,1 =d  

It is clear that d is a quasi αb-metric with 2
1=α  and .4=b  This is 

because ( ) ( ) ( )( ) ( ).1,22,020,12
11,02 dddd ++≤=  However, ( )1,02 d=  

( ) ( )( )1,22,0 ddc +>  for every ,1≥c  d is not a quasi b-metric. 
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Example 2.3 [10]. Let RX =  and define +→× RXXd :  as ( )yxd ,   

⎩
⎨
⎧

=
≠+=

.,0
,,2 22

yx
yxyx  

As seen from the given function, it is clear that the first condition of a 
quasi b-metric is satisfied. However, the second condition has to be shown. 

For ,yx ≠  and every ( )yxdXz ,,∈  can be written as 

( ) 22222 322
52, zyxyxyxd ++≤+=  

( ) (( ) ( ))222222 2222
1 yzzxxy +++++=  

( ) ( ) ( )( ).,,2
2,2

1 yzdzxdxyd ++=  

This equation can be rewritten as 

( ) ( ) ( ) ( )( ).,,2
2,2

1, yzdzxdxydyxd ++=  

Hence, d is clearly seen as a quasi αb-metric with 2
1=α  and .2=b  

Definition 2.4 [3]. Let X and Y be nonempty sets, let Y2  be the 

collection of all subsets of Y. A mapping YXT 2: →  is said to be a 
multivalued function on X. 

Definition 2.5 [3]. A point Xx ∈  is said to be a fixed point of the 
multivalued mapping of T if ( ).xTx ∈  

Definition 2.6. Let ( )dX ,  be a quasi αb-metric space. Let ( )XCB  be a 

collection of closed and bounded subsets of X. Define a Hausdorff metric on 
( )XCB  as follows: 

( ) { ( ) ( )}AbdBadBAH
BbAa

,sup,,supmax,
∈∈

=  
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for all ( ),, XCBBA ∈  where ( ) ( ){ }BxxadBad ∈|= ,inf,  for all Aa ∈  

and ( ) ( ){ }BxaxdaBd ∈|= ,inf,  for all .Aa ∈  Similarly, 

( ) { ( ) ( )}bAdaBdABH
BbAa

,sup,,supmax,
∈∈

=  

for all ( ),, XCBBA ∈  where ( ) ( ){ }BxaxdaBd ∈|= ,inf,  for all Aa ∈  

and ( ) ( ){ }AxbxdbAd ∈|= ,inf,  for all .Bb ∈  

In general, ( ) ( ).,, ABHBAH ≠   

Let { } { }.1,2,0 == BA  Then 

( ) ( ){ } ( ){ } 21,0inf,0inf,0 ===
∈

dxdBd
Bx

 

and 

( ) ( ){ } ( ){ } .01,2inf,2inf,2 ===
∈

dxdBd
Bx

 

As a result, ( ) .2,sup =∈ BadAa  

Similarly, 

( ) ( ) ( ) ( ){ } ,32,1,0,1inf,1inf,1 ===
∈

ddAdAd
Ax

 

then ( ) .3,sup =∈ AbdBb  

Therefore, ( )BAH ,  gives 

( ) { ( ) ( )} .3,sup,,supmax, ==
∈∈

AbdBadBAH
BbAa

 

Following a similar procedure to the previous one, ( )0,Bd  and ( )2,Bd  

are given by 

( ) ( ){ } ( ){ } ,40,1inf0,inf0, ===
∈

dxdBd
Bx

 

( ) ( ){ } ( ){ } .32,1inf2,inf2, ===
∈

dxdBd
Bx
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Hence, ( ) .4,sup =∈ aBdAa  Likewise, 

( ) ( ){ } ( ) ( ){ } 01,2,1,0inf1,inf1, ===
∈

ddxdAd
Ax

 

and then ( ) 0,sup =∈ bAdBb  is obtained. 

Since ( ) 3, =BAH  and ( )ABH ,  is given by 

( ) { ( ) ( )} ,4,sup,,supmax, ==
∈∈

bAdaBdABH
BbAa

 

it shows that ( ) ( ).,, ABHBAH ≠  

Lemma 2.7. Let ( )dX ,  be a quasi αb-metric space. If ( )XCBBA ∈,  

and ,Aa ∈  then for each ,0>ε  there exists Bb ∈  such that ( ) ≤bad ,  

( ) ., ε+BAH  

Proof. Suppose that there exists 0>ε  such that 

( ) ( ) ε+> BAHbad ,,  

for every .Bb ∈  So ( ) ε+BAH ,  is a lower bound of ( ){ }., Bbbad ∈|  

( ) ( ){ },,inf, badBad Bb∈=  then we have ( ) ( ) .,, ε+≥ BAHBad  

However, from the definition of ( ),, BAH  we have 

( ) ( ) ( ),,,sup, BadBadBAH
Aa

≥≥
∈

 

for every .Aa ∈  

Since ( ) ( ) ε+> BAHba ,,  for every ,Bb ∈  we can obtain 

( ) ( ) ( ) .,,, ε+≥≥ BAHBadBAH  

Here, we obtain 0≤ε  which is a contradiction. 

Lemma 2.8. Let ( )dX ,  be a quasi αb-metric space. If ( )XCBBA ∈,  

and ,Aa ∈  then for each ,0>ε  there exists Bb ∈  such that ( ) ≤abd ,  

( ) ., ε+ABH  
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Proof. The proof is similar to the proof of Lemma 2.7. 

Definition 2.9 [10]. Let ( )dX ,  be a quasi αb-metric space. A sequence 

{ }nx  in ( )dX ,  converges to Xx∈  if ( ) ( )nnnn xxdxxd ,lim,lim ∞→∞→ =  

,0=  we write .lim xxnn =∞→  

Definition 2.10 [10]. Let { }nx  be a sequence in a quasi αb-metric space 

( )., dX  Then { }nx  is called a Cauchy sequence if ( )mnmn xxd ,lim , ∞→  

( ) .0,lim == ∞→ nmn xxd  

Definition 2.11 [10]. Let ( )dX ,  be a quasi αb-metric space. Then 

( )dX ,  is called complete if every Cauchy sequence in X is convergent in X. 

Definition 2.12 [3]. Let ( )dX ,  be a metric space. Then a mapping 

( )XCBXT →:  is said to be a multivalued contraction if there exists 

10 <≤ λ  such that ( ) ( ),,, yxdTyTxH λ≤  for all ., Xyx ∈  

3. Main Results 

Theorem 3.1. Let ( )dX ,  be a quasi αb-metric space with 10 <≤ α  

and ,1≥b  let { }nx  be a sequence in X such that 

 ( ) ( ) .0,lim,lim 11 == +∞→+∞→ nnnnnn xxdxxd  (3.1) 

Then { }nx  is a Cauchy sequence in X. 

Proof. Based on the second condition of Definition 2.1, ( )2, +nn xxd  is 

given by 

( )2, +nn xxd  

( ) ( ) ( )( )2112 ,,2, ++++ ++α≤ nnnnnn xxdxxdbxxd  

( ) ( ) ( )( )⎥⎦
⎤

⎢⎣
⎡ ++αα≤ ++++ nnnnnn xxdxxdbxxd ,,2, 1122  

( ) ( )( )211 ,,2 +++ ++ nnnn xxdxxdb  
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( )2, +nn xxd  

( ) ( )( ) ( ) ( )( )
.

1

,,2,,2
1

2
211112

α−

+++α
≤

++++++ nnnnnnnn xxdxxdbxxdxxdb
 

Making use of equation (3.1), it is clearly seen that 

 ( ) .0,lim 2 =+∞→ nnn xxd  (3.2) 

Following a similar procedure to later one, we also have 

( )nn xxd ,2+  

( ) ( )( ) ( ) ( )( )
2

112211

1

,,2,,2
1

α−

+++α
≤

++++++ nnnnnnnn xxdxxdbxxdxxdb
 

in which 

 ( ) .0,lim 2 =+∞→ nnn xxd  (3.3) 

Repeating this procedure for ( ),, 3+nn xxd  one will get the following: 

( )3, +nn xxd  

( ) ( )( ) ( ) ( )( )
2

322223

1

,,2,,2
1

α−

+++α
≤

++++++ nnnnnnnn xxdxxdbxxdxxdb
 

and hence using (3.2) and (3.3), we also get 

 ( ) .0,lim 3 =+∞→ nnn xxd  (3.4) 

Moreover, 

( )nn xxd ,3+  

( ) ( )( ) ( ) ( )( )
2

232232

1

,,2,,2
1

α−

+++α
≤

++++++ nnnnnnnn xxdxxdbxxdxxdb
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which also yields the following result by using (3.2) and (3.4) 

( ) .0,lim 3 =+
∞→

nn
n

xxd  

Thus, by using induction, we have 

( )knn xxd +,  

( ) ( )( ) ( ) ( )( )
2

1111

1

,,2,,2
1

α−

+++α
≤

+−+−+−+−++ knknknnnknknkn xxdxxdbxxdxxdb
 

and 

( )nkn xxd ,+  

( ) ( )( ) ( ) ( )( )
.

1

,,2,,2
1

2
1111

α−

+++α
≤

−++−+−++−+ knknnknknnknkn xxdxxdbxxdxxdb
 

Therefore, we obtain 

( ) 0,lim =+∞→ knnn xxd    and   ( ) .0,lim =+∞→ nknn xxd  

Finally, for ,0≥> nm  we have 

( ) 0,lim =∞→ mnn xxd    and   ( ) .0,lim =∞→ nmn xxd  

Hence, { }mx  is a Cauchy sequence in X. 

Theorem 3.2. Let ( )dX ,  be a complete quasi αb-metric space with 

10 <α≤  and 1≥b  and let ( )XCB  be a collection of closed and bounded 

subsets of X. 

Let ( )XCBXT →:  be a map that satisfies the following condition: 

 ( ) ( ) ( )
( ) ( )( )xTxdTyydp

xTxdTyydTyTxH ,,1
,,,

++
≤  (3.5) 

for .2,, >∈ pXyx  

Then T has a unique fixed point in X. 
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Proof. Let ,0 Xx ∈  and .01 Txx ∈  By Lemma 2.7, there exists 12 Txx ∈  

such that 

( ) ( ) ( ).,1,, 1021021 xxd
p

TxTxHxxd +≤  

Then, using (3.5), we obtain 

( ) ( ) ( )
( ) ( )( ) ( )1020011

0011
21 ,1

,,1
,,, xxd

pxTxdTxxdp
xTxdTxxdxxd +

++
≤  

( ) ( ) ( ).,1,1, 1022121 xxd
p

xxdpxxd +≤  

Simplifying this equation yields 

( ) ( ) ( ).,1
1, 1021 xxdppxxd
−

≤  

Furthermore, based on Lemma 2.7, there exists 23 Txx ∈  such that 

( ) ( ) ( )2122132 ,1,, xxd
p

TxTxHxxd +≤  

which gives 

( ) ( ) ( )
( ) ( )( ) ( )2121122

1122
32 ,1

,,1
,,, xxd

pxTxdTxxdp
xTxdTxxdxxd +

++
≤  

( ) ( ) ( ).,1,1, 2123232 xxd
p

xxdpxxd +≤  

This equation can be rewritten as 

( ) ( ) ( ) ( ) ( ).,1
1,1

1, 10
2

2122 xxdppxxdppxxd ⎟
⎠
⎞⎜

⎝
⎛

−
≤

−
≤  

Continuing this process, we obtain a sequence ( ),nx  where nn Txx ∈+1  such 

that 
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( ) ( ) ( ).,1
1, 101 xxdppxxd

n
nn ⎟

⎠
⎞⎜

⎝
⎛

−
≤+  

Since ,2>p  ( ) 11 >−pp  which is equivalent to ( ) .11
10 <
−

< pp  

As a result, it is clearly seen that 

 ( ) .0,lim 1 =+∞→ nnn xxd  (3.6) 

Following a similar procedure to the previous one but making use of 
Lemma 2.8, ( )12, xxd  is given by 

( ) ( ) ( ).,1,, 0120112 xxd
p

TxTxHxxd +≤  

Using again (3.5) yields 

( ) ( ) ( )
( ) ( )( ) ( )0121100

1100
12 ,1

,,1
,,, xxd

pxTxdTxxdp
xTxdTxxdxxd +

++
≤  

( ) ( ) ( ).,1,1, 0121112 xxd
p

xTxdpxxd +≤  

This equation can be written as 

( ) ( ) ( ).,1
1, 0112 xxdppxxd
−

≤  

Moreover, based on Lemma 2.8, there exists 23 Txx ∈  such that 

( ) ( ) ( )1221223 ,1,, xxd
p

TxTxHxxd +≤  

which gives 

( ) ( ) ( )
( ) ( )( ) ( )1221111

2211
23 ,1

,,1
,,, xxd

pxTxdTxxdp
xTxdTxxdxxd +

++
≤  

( ) ( ) ( ).,1,1, 2122323 xxd
p

xxdpxxd +≤  
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Hence 

( ) ( ) ( ) ( ) ( ).,1
1,1

1, 21
2

1223 xxdppxxdppxxd ⎟
⎠
⎞⎜

⎝
⎛

−
≤

−
≤  

Continuing this process, we obtain a sequence ( ),nx  where nn Txx ∈+1  such 

that 

( ) ( ) ( ).,1
1, 011 xxdppxxd

n
nn ⎟

⎠
⎞⎜

⎝
⎛

−
≤+  

Since ,2>p  we have ( ) 11 >−pp  and hence ( ) .11
10 <
−

< pp  

It is clearly shown that 

 ( ) 0,lim 1 =+∞→ nnn xxd  (3.7) 

which gives 

( ) ( ) .0,lim,lim 11 == +
∞→

+
∞→

nn
n

nn
n

xxdxxd  

Based on Theorem 3.1, we obtain { }nx  which is a Cauchy sequence in 

complete X. 

Therefore, we conclude that there exists Xx ∈∗  such that 

.lim ∗
∞→ = xxnn  

Furthermore, it will be shown that ∗x  is a fixed point of T, that is, 

( ) ( ) ( ( ) ( ))∗∗∗∗∗∗ ++α≤ TxxdxxdbxTxdTxxd nn ,,2,,  

( ) ( ( ) ( ))⎟
⎠
⎞⎜

⎝
⎛ ++αα≤ ∗∗∗∗ xxdxTxdbTxxd nn ,,2,  

( ( ) ( ))∗∗ ++ Txxdxxdb
nn ,,2  
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which gives 

( )
( ( ) ( )) ( ( ) ( ))

.
1

,,2,,2, 2α−

+++
≤

∗∗∗∗
∗∗

TxxdxxdbxxdxTxdab
Txxd

nnnn
 

Since ,1−∈ nn Txx  we get the following equations: 

( ) ( ) ( ) ( )
( ( ) ( ))

( )
p
Txxd

xTxdTxxdp
xTxdTxxdTxTxHxTxd nn

nn

nn
nn

11

11

11
1

,
,,1

,,,, −−
∗∗

−−

∗∗
−−

−
∗∗ ≤

++
≤≤  

and 

( ) ( ) ( ) ( )
( ( ) ( ))

( ) .,
,,1

,,,, 11

11

11
1 p

xnTxd
TxxdxTxdp

TxxdxTxdTxTxHTxxd n

nn

nn
nn

−−
∗∗

−−

∗∗
−−∗

−
∗ ≤

++
≤≤  

Substituting these equations into the previous one, we then get 

( )
( ( ) ( )) ( ( ) ( )

2
11

1

,,2,,2,
α−

+++α

≤
∗

−
∗∗

−
∗

∗∗
TxTxHxxdbxxdTxTxHb

Txxd
nnnn

 

( ) ( ) ( ) ( )

.
1

,,2,,
2

2

1111

α−

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +α

≤

−−∗∗−−
p

xTxdxxdbxxdp
Txxdb nn

nn
nn

 

Moreover, since ,1−∈ nn Txx  we have 

( ) ( )nnnn xxdTxxd ,, 111 −−− ≤    and   ( ) ( ).,, 111 −−− ≤ nnnn xxdxTxd  

Finally, ( )∗∗ Txxd ,  can be written as 

( )

( ) ( ) ( ) ( )

.
1

,,2,,
2, 2

11

α−

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +α

≤

−∗∗−
∗∗ p

xxdxxdbxxdp
xxdb

Txxd
nn

nn
nn

 

In addition, since ,lim ∗
∞→ = xxnn  we obtain ( ) =∗

∞→
xxd n

n
,lim  

( ) .0,lim =∗

∞→
n

n
xxd  From (3.6) and (3.7) and ,∞→n  we get 

( ) 0, * =∗ Txxd  
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and also 

( ) 0, * =∗ xTxd  

which is only possible if .∗∗ ∈ Txx  

Now we have to show that for every Xy ∈  and ,∗∈ Txy  .∗= xy  

Suppose that there exists Xy ∈  such that .∗∈ Txy  

Since ∗∗ ∈Txx  and ,∗∈ Txy  using Lemma 2.7 and taking ( ),, ∗=ε xyd  

there exists Tyz ∈  such that 

( ) ( ) ( ) ( ) ( )
( ( ) ( ))

( )∗∗∗

∗∗
∗∗∗ +

++
≤+≤ xyd

xTxdTyydp
xTxdTyydxydTyTxHzxd ,

,,1
,,,,,  

and 

( ) ( ) ( ) ( ) ( )
( ( ) ( ))

( ).,
,,1

,,,,, ∗
∗∗

∗∗
∗∗ +

++
≤+≤ xyd

yTydTxxdp
yTtydTxxdxydTxTyHyzd  

Since ,∗∗ ∈ Txx  we have ( ) ( ) 0,, == ∗∗∗∗ TxxdxTxd  which implies that 

( ) ( )∗∗ ≤ xydzxd ,,  

and 

( ) ( ).,, ∗≤ xydyzd  

Now, by using (2.1), we have 

( ) ( ) ( ( ) ( ))yzdzxdbxydyxd ,,2
1,, ++α≤ ∗∗∗  

which can be written as: 

( ) ( ) ( ( ) ( )) ( ) ( )∗∗∗∗∗∗ +α=++α≤ xybdxydxydxydbxydyxd ,,,,2
1,,  
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yielding 

 ( ) ( ) ( ).,, ∗∗ +α≤ xydbyxd  (3.8) 

Now from ∗∗ ∈ Txx  and ,∗∈ Txy  by using Lemma 2.8 and taking =ε  

( ),, yxd ∗  there exists Tyw ∈  such that 

( ) ( ) ( ) ( ) ( )
( ( ) ( ))

( )yxd
yTydTxxdp

yTydTxxdyxdTxTyHxwd ,
,,1

,,,,, ∗
∗∗

∗∗
∗∗∗ +

++
≤+≤  

and 

( ) ( ) ( ) ( ) ( )
( ( ) ( ))

( ).,
,,1

,,,,, yxd
xTxdyTydp

xTxdyTydyxdTyTxHwyd ∗
∗∗

∗∗
∗∗ +

++
≤+≤  

Since ,∗∗ ∈ Txx  we have ( ) ( ) 0,, == ∗∗∗ TxxdyTxd  which gives 

( ) ( )yxdxwd ,, ∗∗ ≤  

and 

( ) ( ).,, yxdwyd ∗≤  

Now using (2.1), thus 

( ) ( ) ( ( ) ( ))∗∗∗ ++α≤ xwdwydbyxdxyd ,,2
1,,  

( ) ( ( ) ( ))yxdyxdbyxd ,,2
1, ∗∗∗ ++α≤  

yields 

 ( ) ( ) ( ).,, yxdbxyd ∗∗ +α≤  (3.9) 

From (3.8) and (3.9), we get 

( ) ( ) 0,, == ∗∗ xydyxd  

which implies that .∗= xy  
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Since ∗∗ ∈ Txx  and y is arbitrary element in X and ,∗∈ Txy  we obtain 

{ }∗∗ = xTx  which shows that T has a unique fixed point in X. 
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