Far East Journal of Mathematical Sciences (FIMS)

© 2017 Pushpa Publishing House, Allahabad, India

http://www.pphmj.com

http://dx.doi.org/10.17654/MS102092025

Volume 102, Number 9, 2017, Pages 2025-2052 ISSN: 0972-0871

ALAAED « INDIA

ON EMBEDDING AND EXTENDED SMOOTHNESS
OF SPLINE SPACES

Yu. K. Dem’yanovich

Saint-Petersburg State University
Saint-Petersburg
Russia

Abstract

This paper introduces the notion of extended smoothness (which
includes usual smoothness), constructs extended smooth splines,
defines the necessary and sufficient conditions for uniqueness and the
embedding of the spline spaces pointed out. Extended smoothness,
introduced here, also considers irregular splines. As an application of
the mentioned results, the necessary and sufficient conditions for the
embedding of spline spaces are obtained under given condition of
maximum smoothness (in the usual sense) for minimal B, -splines of

mth order. Here two sorts of spline spaces of the first order with
irregular generating functions are also analyzed.

1. Introduction

Smoothness of splines is important for the recovery of differentiable
functions, for the smoothing of discrete data and so on (see [1, 2, 4, 8, 9, 14,
17]). It is well known (see, for example, [2]) that the maximum smoothness
of polynomial splines of degree m (of which support of their basic splines
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consists of m+1 grid interval) is m —1. Maximum smoothness of non-
polynomial splines has only been discussed in a few papers (for instance, see

[8, 9]).

Another question is the embedding of the function spaces. It is very
important for construction of wavelet decomposition (see [3, 5-7, 10-17]).
There are well known investigations of embedding for spaces connected with
an equidistant grid (see [3, 5-7]). In the case of irregular grid the embedding
of polynomial splines was investigated earlier.

There are many difficulties for investigations of the embedding of non-
polynomial spline spaces (see [8, 9]). The conditions of embedding have
been investigated in some situations (see [14]). Specifically, the embedding
of spaces of smooth polynomial splines and the corresponding wavelet
decompositions on infinite embedded grids were studied in many works (cf.,
for example, [10-15] and the references therein). It is important to investigate
the embedding of spline spaces in the case of embedding of corresponding
spline grids. Such grids can be enlarged by removing grid points one at a
time (see [16-19]). Such considerations are based on approximate relations,
owing to which it is possible to obtain wavelet decompositions of spline
spaces with different level of smoothness and such that their approximate
properties are asymptotically optimal with respect to the N-width of standard
compact sets. The original numerical flow is regarded as a sequence of
coefficients of decomposition with respect to the coordinate splines in the
space constructed on the original (fine) grid (see [19-21]). This space is
projected onto the embedded spline space (on an enlarged grid). As a result,
we get a grid obtained by splitting the original numerical information flow
into basic flow (formed by coefficients of decomposition relative to the
coordinate splines of the embedded space) and wavelet numerical flow,
which can be used to restore original numerical flow.

For singular numerical flow (i.e. numerical flow with quick variability),
it is important to have irregular grid, non-polynomial approximation and
non-smooth spaces.

The aim of this paper is to formulate the notion of extended smoothness
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(which includes the usual smoothness), to construct extended smooth splines,
to define the necessary and sufficient conditions for uniqueness and
embedding of the spline spaces pointed out. Extended smoothness,
introduced here, let us consider irregular splines. As an application of the
mentioned results we obtain necessary and sufficient conditions for
embedding of spline spaces, and give such conditions of maximum
smoothness (in the usual sense) for minimal B, -splines of mth order. We

also analyze two sorts of spline spaces of the first order with irregular
generating functions.

2. Spaces (X, A, ¢)-spines of the Order m

We will now discuss sequence A of vector columns a; € RM+L: seguence

A of the vectors is called a chain (of the vectors a;, | € Z).

There are many enumerations of the vectors in chain A, they are
distinguished by a constant integer number and by the direction of
numbering; for example, if j, is a constant integer, then A & {aj'}j'ez for

i’ = —]J + Jo is another numeration of the same chain.

8

Chain A # {a;};_, is known as locally orthogonal to chain B &

{bj}jez, if such numeration exists, for which

biaj p =0, VieZ Vpelpy; (2.1)
here 1, < {1, 2, ..., m}.

Lemma 1. If chain A is locally orthogonal to chain B, then chain B is
locally orthogonal to chain A.

The proof is evident.

Thus, local orthogonality is symmetrical. Therefore in the discussed
situations, chains A and B can be called locally orthogonal (to each other).

The chain is called a singular chain if there is a zero vector among
vectors of the chain; the other chains are called nonsingular chains.
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Let Aj & (@j_m, @j_m+1, - @j—1, @j) be asquare matrix.
Chain A with property det A; = 0, Vj e Z is called a complete chain.

It is clear that the complete chain is nonsingular.

Let A be the class {A|det A; # 0, Vj e Z}.

Lemma 2. If chains A £ {aj};_; and B £ {bj};_, are locally

orthogonal and nonsingular, then chain A is complete if and only if chain B
is complete.

Proof. Suppose that chain B is complete. We prove that A is complete
with proof by contradiction. Thus if A is not complete, then there exists j
such that the representation aj = cjaj_y +Cpaj_p + -+ Cpaj_m IS trug;

here ¢, Co, ..., C € R, Taking into account (2.1), we obtain
bjaj =0. (2.2)
Using the condition of local orthogonality (2.1) once again, we have
T
bj+paj =0, p€|m. (23)
By relations (2.2) and (2.3), we get aj =0; the last one contradicts
completeness of chain A. O
Lemma 3. If chains A £ {aj};_; and B £ {b;};_;, are complete and
the relation (2.1) is true, then
T T
bjaj # 0, bj+m+1aj = 0. (24)

Proof. The first relation in (2.4) can be proved by contradiction: if the
number j exists, by which (2.2) is fulfilled, then taking into account the
formulae (2.3), we obtain aj = 0; the last one contradicts the completeness

of chain A. The proof of the second assertion can also be obtained by
contradiction. O

Lemma 4. For arbitrary complete chain A there exists the nonsingular
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chain B, which is locally orthogonal to A; the directions of vectors for the
last one are defined uniquely.

Proof. Let A = {aj}jeZ be a complete chain. Fixing the integer k, we

find vector by satisfying to conditions
bkax_p =0, pelp. (2.5)

The conditions (2.5) can be represented as a linear system as to unknown
vector by:
T
(@k—m» Ak—m+1 -+ Bk-1) bk = 0. (2.6)
Using the completeness of chain A, we see that vectors ay_p, ax_m+1,

..., a1 are linear independent. Consequently system (2.6) has the unique
(up to constant multiplier) solution by, which can be defined, for example,
by the identity

T

by x = det(ax_m, @k—ms1s - Ak_1s X)-

That concludes the proof. O

Corollary 1. For the arbitrary complete chain A, there exists chain B,
which is locally orthogonal to A; the vectors of chain B are defined up to
constant multipliers.

Proof. The assertion follows from Lemmas 2 and 4. O

We discuss grid X & {xj}jez,

X <Xq1<X<X<..; o gjin_]wxj, Bﬂjirﬂwxj

in the interval (o, B) with finite values o and .

Let U; be a linear space of functions defined on a real interval

(Xjs Xj+1), 1 €Z, letU be the direct production of the spaces U ;,

U«®U;.

jeZ
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By definition, put
M 2 Ujez (X)) Xj41) Sj £ [Xj, Xjamerh I 2 k=m, ..., k.
Let o(t) be m+1-component vector function (column vector) with
components ¢; = ¢j(t) belongingto U, i € {0, 1, 2, ..., m}.

If A € A, then the approximation relations
D ajop) =qt), vteM, ojt)=0forteS;, VjeZ (27)
j'eZ

uniquely define the functions o;(t), t € M, j € Z.

If t is a fixed number in an interval (Xy, Xx,1), then relations (2.7)

contain no more than m + 1 nonzero summands:

k

D ajoj(t) = o) (2.8)

j=k-m

under the aforementioned t the relations (2.8) are discussed as a system of
linear algebraic equations as to unknown e j (t).

Using Cramer’s rule and arbitrary fixing j € Z in relations (2.8), we

successively discuss k = j, j+1, j+ 2, ..., j +m; as aresult we have

det({@j}jey,, jrej Il @(1))

oj(t) = for t € (X, Xk41), K—=1J€JIm; (2.9)

here the columns of determinants for numerator and denominator are
uniformly ordered, and a symbol ||’j(p(t) is denoted that it is necessary to put

the column vector (t) instead of column vector aj.
Consider a linear space

Sm(X, A, @) « Clpﬁ{mj}jez,

where £ denotes the linear hull, and Cl, is closer in point-wise topology.
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The space Si, (X, A, o) is called the space of minimal (X, A, ¢)-splines

of the order m.

Suppose that a set of point-wise functionals in the point & is not empty
for arbitrary § € M this set is denoted by Ug.

Foreach t € M we discuss a linear functional f(t), which is point-wise

one in the point t, thatis f(t) e U;".
Union of functionals {f(t)};. is a trajectory” in the space U .

Let u be an element of the space U; if f(t)u is a continuous function on
the intervals (xj, xj;1) and f(xj —0)u = f(x; +0)u, VjeZ, then we

write f(-)u € C(a, B).
By definition, put f(t)e = (f(t)eg, f ()1, ... T()om)" .
3. Limit Properties of Minimal Splines

Consider a trajectory of point-wise functionals f(t) in the space U™:
f(t)yeU™, t e M, with property f(-)¢; € C(a, B), Vi € {0, 1, ..., m}.

Discuss a possibility for continuous prolongation of the functions
f(t)oj (for jeZ, t e (X, X1) I, k € Z) ontheinterval (o, B).

Lemma 5. Let A be a complete chain; let a number k e Z and t, e

[Xi» Xi41] be fixed. The relation

li f(t)oj =0
ot ) )

is true if and only if the equality

Y1f U is the linear space C3(M), then we can discuss linear point-wise functional f(t)u &

u®)(t), t € M, so that we have the trajectory in the space (C5(M))*.
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det({ajfjcy,  jej I f(t.)g) =0
is fulfilled.
Proof. Follows from the formula (2.9). O
Lemma 6. Let A be a complete chain. If equalities

lim Mok =0 lim f)oyx =0 (3.1)

toxg— Xk +
are right, then the relations

t—lle—o fHo; = tJ'me ft)oj for jetk-m k-m+1 .., k-1 (3.2)

must be fulfilled. If in addition ay_,_; and a, are not collinear, then
relations (3.1) and (3.2) are equivalent.

Proof. Changing k with k — 1 in the relation (2.8), we have

k-1
D ajojt)= o), Vte (1 %) (3.3)
j=k—-m-1

hence under condition t — x, —0 and by the first supposition (3.1), we
obtain

k-

D ajf(x —00j = f(x)e. (3.4)

—-m

[EEN

]

Analogously by (2.8) and by the second supposition (3.1) for t — x, +0
we have

=~
|
LN

ajf(xk +0)0)j = f(Xk)(p. (35)

—-m

Il
=

]
Because the vectors ay_m, ak—m+1, --» akx—1 are linear independent, then the
relations (3.2) follow from (3.4)-(3.5). Thus, the necessity has been proved.

Now taking into account (3.3), we obtain
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k-1
Y. ajf(x —0oj = f(x)e, (3.6)
k—m

j=k—m-1

and from (2.8), we have
k
Z ajf(xk +0)(0J' = f(Xk)(p. (37)

Subtracting (3.7) from (3.6) and using relations (3.2), we deduce an equality
a_m_1f (X = 0)og_m_1 = ax f(x¢x + 0)oy; taking into account the linear
independence of vectors ay_,_; and ay, we get the equalities (3.1). O

Theorem 1. If A is a complete chain, then for the functions f(t)w;

(Vj e Z) to be continuous on the interval (o, B) it is necessary and sufficient
to have the zero limit of each of them on the boundary of their support.

Proof. Sufficiency. Taking into account the continuity of vector function
f(t)e, we see that it is sufficient to investigate the continuity of the

functions f(t)mj in the knots of grid X. If knot x, belongs to the boundary
of set §;, then the continuity of f(t)o; in the knot x, follows from the

conditions of the discussed theorem. If the knot x, belongs to the interior of
Sj, then the conditions of Lemma 6 are fulfilled, and therefore the relations

(3.2) are true. This completes the proof of sufficiency.
The necessity is obvious. O
By definition, put f;o < f(x;)e.

Theorem 2. A necessary and sufficient condition for the functions
f(t)oj (Vj e Z) to be continuously prolonged on the interval (a, B) is

that the relations
det(aj_m, aj_m+1, ey aj_l, fj(p) =0, VjeZ (3.8)

are true.
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Proof. First of all we show that the equalities (3.1) for k = |, Vj € Z are
equivalent to the condition (3.8).

Really, by (2.9) the equalities (3.8) are equivalent to the relations
f(XJ + O)O)J =0, Vj e Z; (39)
changing the index j in (3.8) with j + m + 1, we obtain
det(@ji1, @42, o joms fjems10) =0, VieZ (3.10)
Relations (2.9) and (3.10) are equivalent to
f(Xjimi1 —0wj =0, VjeZ (3.11)

Thus the equalities (3.8) are equivalent to the relations (3.9) and (3.11).
Usage of Theorem 1 completes the proof. O

Theorem 3. Suppose (p(s) e C(a, B), where s is a positive integer. A
necessary and sufficient condition for the functions m(f)(t) (VjeZ, teM)

to be prolonged to continuous functions on the interval (o, B) is that the
relations

det(aj_m, Aj_mels - A1, (p(s)(xj)) =0, VjeZ

be fulfilled.
Proof. By definition, put

U; = O, i) fOU 2u®),  fjo 2 ¢®(xj). (3.12)
Now it is sufficient to apply Theorem 2. O

4.0n B, F -splines

Discuss a case of relations (2.7) selecting the vector chain a; in a special
way.

Suppose there is a set F & {f<i>(t)|Vt e(a,B),i=0,12..,m} of
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linear point-wise functionals f<i>(t), such that functions f<i>(-)(pj e C(a, B),

Vi, je{0,1 2, .., m}, and
1det(f O ), 1P (t)g, ... M (t)p)[=c>0, Vte(o B). (A1)

By definition, put {*¢ 2 f((x;)p, s=0,1 2, .., m 1. We define
column vectors d; by identity
df x = det( %, 1.0, 1%, .., £{M Vo %), wxeR™!, viez
(4.2)

Taking into account the property (4.1), we can conclude that chain {d;};_,, is

nonsingular.

Let the vectors aj be defined by a symbolic determinant

0 1 m-1

% fie - i e

T 0 T 1 T -1
dj+2fj<+>1(P dj+2fj<+>1‘P dj+2fj<r+nl >(P

def 0 1 -1 .
aj «detl dl.of %0 dlafe o dlaf Y| @3)

T (0 T L T ¢(m-1
dj+mfj<+>1(P dj+mfj<+>1(l) dj+mfj<+1 >(P

the symbolic determinant should be expanded with the first row.

Lemma 7. The vector af is defined by values fi<0>(p, fi<1>(p, fi<m_1>(p,

where i=j+1 j+2, ..., j+m.

Proof. It is clear to see that the vectors d; for j+2 <i< j+m take

part in the relations (4.3). According to definition (4.2), each vector d; is

defined by the vectors fi<0>(p, fi<1>(P’ fi<2>(p, fi<m_1>

¢. To complete the
proof, it is sufficient to use the representation (4.3). This concludes the proof.

O
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By definition, put A* = A*(X, ¢, F) & {af}jez.
Theorem 4. The chains of vectors {dE}jeZ and {aj"};_, are locally
orthogonal:
dj,pal =0, VieZ pelp. (4.4)

Proof. Consider relation deaf; according to (4.3) it can be

represented in the form

T 0 T 1 T m-1

dj+pfj<+>1‘P dj+pfj<+>1‘P dJ+pfi<+1 >

T (0 T (1 T _¢(m-1

dj+2fj<+>1(l) dj+2fj<+>1(l) dj+2fj<+1 >(P
T def T 0 T 1 T -1
dj,paj = detl d].3f %0 dlaffe o dlafiT e |

T 0 T 1 T m-1

dlimfie  dimfiie o djmfih Ve

By formula (4.2) for p =1, the first row of this determinant is zero row, and
for p=2,3,..., m, we obtain two identical rows in the discussed determinant;
therefore relations (4.4) have been established. This completes the proof. [

Suppose A* € A; now by mf denote splines obtained with (2.8), where
aj =aj.
Theorem 5. If A* e A, then the formulae f<5>(-)oaf e C(a, B), Vj € Z,

vs=0,1 .., m-1 areright.

Proof. The relations (4.4) can be rewritten in the form dj L af_i,

i € Iy, the last one is equivalent to

dj L L@j_m, @j—ms1r -+ j—2, @j-1). (4.5)
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On the other hand, according to formula (4.2), we have
0 1 2 -1

dj L &(f{%, 1%, %, ... 1" V). (4.6)

By (4.5) and (4.6), it follows
0 1 2 -1
L(af_m, af_erl, . af_z, a’}_l) = L(fj< >(p, f >(p, f >(p, ey F{m >(p),

whence

50 L@l @l mit, o aj g @l )
fors=0,1 2, .. m-1 thus

det(@f_m, @_ms1 - @_2, @71, ) = 0.

Now use Theorem 2. O

Consider the linear space Sy, (X, ¢, F) & CIpL{mf}jeZ.

Space Sy (X, ¢, F) is called the space of B, F -splines.
We discuss the set of spaces
Sm(X, 0) £ {Spn(X, A, ¢)| VA e A}.

Next we use the subspace Cg of space U:

Ce #fuluecU, f®()ueClop)¥s=012..,m-1.
Theorem 6. In the set S,(X, @) there exists the unique space, which
belongs to Cg; the mentioned space is Sy, (X, ).

Proof. The existence of the space, which belongs to Cg, follows from

Theorem 5. Now we will prove its uniqueness.

According to Theorem 3, for the functions w; to be in space Cg it is

necessary and sufficient to have the true relations (3.8) for f & f<s>, S =
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0,1 2, .., m—1. Suppose chain {aj}jeZ satisfies the condition

det(@j_m, @j_ms1s - @j_2, Aj1, fj<s>(p) =0, VjeZ, (4.7)
s=012,.. m-1
We are going to show that vectors a; differ from vectors af with a

nonzero multiplier.

Let chain b be locally orthogonal to chain {a} ;.

bJ 1 L{aj_m, aj_m+1, veey aj_z, aj_l};
according to Lemma 4 such a chain exists and is defined uniquely up to

nonzero constant multipliers. By (4.7), we have

fj<s>(p IS L{aj_m, aj_m+1, ey aj_z, aj_l}, $s=0,12..,m-1
whence bj L fj<s>(p, s=0,12, .. m-1 it follows

bj L o{f%%, Y, .. £{" V).

By the condition (4.1), the vectors fj<0>(p, fj<l>(p, fj<m_l>cp are linear

independent, and therefore (taking into account that all discussed vectors are
m +1-dimensional) the relations b = c;dj are true (see definition (4.2) of

. H *
vectors d;); here c; are nonzero constants. The chains {aj};_, and {aj};

are locally biorthogonal to chains {b ; }jeZ and {d; }J-eZ accordingly and they

differ only in nonzero constants: aj = cjaj. It follows oj = o] /c} (see
Lemma 4). This completes the proof. O
Let us multiply the relation

k

Y Aol )=o), Ve (X, Xe) (48)
i=k—-m
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on the left by the vector rows de for j=k-mk-m+1 .., k-1 k.
Taking into account the local orthogonality of the chains {de} jez and

{ai*}iGZ, we obtain m + 1 scalar equations, which can be written in the form

dl—maﬁ—m d-IE—maE—mH d-IE—ma;—l d?(-—maf:
0 dk-met@k mer -~ Okmadkg  dk_maak
0 0 o dRaakg dksak
0 0 0 dlaf
@k —_m(t) dk_mo(t)
@E—m+l(t) d-ll<-—m+1(P(t)
x = . (4.9
@k (t) dk_10(t)
ok (t) do(t)

Analogously, multiplying equation (4.8) on the left by vector rows de for

j=k+L k+2 ..,k+m k+m+1 and using local orthogonality of

chains {de} jez and {af}j; with each other, we have another system of

relations
T *
dk+1ak_m 0 0 0
T * T *
dyio8Kk—m dgiok-me1 - 0 0
T * T * T *
dk mak-m diimdk-ms1 - dkymd@k-1 0
T * T * T * T *
dism+t@k-m  Akem+@k-m+1 ° Akem+@k-1 dkeme1dk
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Ok _m(t) df410(t)
Ok-ma®)| | dki20()
x = . (4.10)
of_a(t) dkemo(t)
of (t) A m10(t)

The relations (4.9) and (4.10) are discussed as systems of linear algebraic
equations with respect to unknowns oo"lf (t), Jj € Ji. Triangular matrices of

these equations are nonsingular because the diagonal elements are nonzero
(according to Lemma 3).

By definition, put I%) “{-p,—-p+1 .., m} IFZ) “fm+1 -m+2, ..,

m+1- p}, where p=0,1,2, .., m

Lemma 8. The functions mﬁ_p(t), p=0,12 .., m oninterval t e

(Xk, Xk41) are only defined by values of the vector function ¢(t) on the

mentioned interval, complemented by values of components of vectors
), s€{0,1, .., m—1}, inthe knots t = x,;, Vi e 5.

Proof. The vector d; is defined by vectors fj<s>(p, se{0,1,2,..,m-1}
(see formulae (4.2)), and according to Lemma 7 the vector a’j* is defined by

vectors fi<s>(p, sef0,1,2 ..m=-1ie{j+1 j+2 .., j+m.

Taking into account the system (4.9), we see that the function wj (t) is
defined by the values of the vector function ¢(t) for t € (x, X,1) and by
vectors dy, aﬁ. The last ones are defined by the vectors fi<s>(p, where s e

{0,,2,...,m-1ie{k,k+1L k+2 .., k+m}

Analogously we define dependence of function wj_;(t) on the values of
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vector function o(t) for t e (X, X41) and on the vectors dy, dy_1, ai, ax_1;

the last ones are defined by vectors fi<s>(p, where s € {0,1,2,...m-1}, i e
(k-1 kK, ... k+m}.

Continuing such reasons, at last we find that the function oj_p,(t) is

defined by the values of o(t) for (x., Xc,1) and by vectors dy, dy_4, ...,
dy_m. @k, ag_1, .- ak_m; the vectors defined by the other vectors: they are

t0)p, where s €{0,1, 2, .. m-1iefk—-mk-m+1, .. k+m}. O

Lemma 9. The functions mﬁ_p(t), p=0,12, .., mon interval t e
(X, Xk,1) are defined by the values of vector function ¢(t) on discussed
interval and complemented by values of component of vectors f<s>(t)(p, Se

. . 2
{0, .., m-1} inknots x,j, Vie lp.

Proof. According to formulae (4.2), vectors d; depend on the values of

vectors fj<s>(p, se{0,1 2, ..,m-1}, and by Lemma 7 the vector a’j* is

defined by vectors fi<s>(p, s€{0,1,2,..m-1}ie{j+1 j+2 .., j+m

Using the system (4.10) for the definition of the function wj_p(t), we

see that the function is defined by the vector function ¢(t) on the interval
(X, Xk4+1) and by vectors dy_.q, ax_m. The last ones are defined by the

vectors fi<s>(p, wherese{0,1,2,..m-1}ie{k—m+Lk-m+2, .., k+1.

By the system (4.10), we deduce that the function of_p1(t) is defined
by the values of o(t) for t e (X, X,1) and by the vectors dy,q, dy.o,

ak_m» Ak_m+1, conversely the last ones defined by vectors fi<s>(p, where

se{0,4,2,..m-1,ietk-m+L k-m+2, .., k+2}
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Analogously we define the dependence of the functions mﬁ_p(t), p=
m-2,m-3, ..,1 0, onthe vectors f%q.

At the end (for p = 0) we see that the function wj (t) is defined by the
values of ¢(t) fort € (xy, Xi41) and by the vectors dy .1, dy 42, -y Agimats

ak_m» Ak—_m+1, - ak; the vectors are defined by fi<s>(p, where s e
{0,,2,...m=-1iek-m+Lk-m+2 .., k+m+1}.

This completes the proof. O

We discuss the next condition:

(A) The functionals fi<s>, se{0,1,2 .., m-1, ieZ, are linear
independent.

In what follows we suppose that the condition (A) is valid.

Lemma 10. The functions wy_p(t), p=0,1, 2, .., m, fort € (xy, X41)
are defined by values of the vector function ¢(t) on the interval (X, Xy41)

and by values of fj<s>(p, Vi, j-kelp Nl

Proof. The proof follows from Lemma 8 and Lemma 9 because the

values of functionals fi<s>u, se{0,1,2,..,m-1}, i e Z, forueU canbe

unrestricted. O

Theorem 7. The function wj(t) is defined by the values of vector

function ¢(t), and the values of vectors fi<s>(p, se{0,1 2, .., m-1}, are

also used, namely:

(A) if function j(t) is calculated for te (xj, xj;1), then vectors

fj<i>i(p, i=0,1 2 .., m, are required,
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(B) if t € (Xjiks Xjaks1)s K =12,.., m=1 then fj@l(p i=01 2

.., m, m+1, are required,
(C) finally, if t € (Xjim, Xj+ms+1), then we are required to calculate

fj<i>i(p, i=12 .., mm+1.

Proof. If we successively put k = j, j+1,..., j+m—=1 j+ m and use
Lemma 10, then we obtain the desired result. O

Theorem 8. For the definition of function j(t) it is sufficient to know
the values of the vector function ¢(t) on the interval (Xj — &, Xjim41 +€)

for arbitrary € > 0.

Proof. According to Theorem 7, all values of function cof (t) are defined

by the values of vector function ¢(t) in the points of interval [xj, xj+m+1]

and by the values of the functions f<s>(t)q) in the points xj,j, where i e
{0,1,2,..,m+1}, se{0,1, .., m-1}. Taking into account the definition

of point functionals f <S>(t), we conclude that e-neighborhood of the interval

(Xj» Xj+m+1) is sufficient for the calculation of mentioned functionals. [

5. Calibration Relations

Here we discuss an enlargement of grid X by removal of knot X : we
put

ijZXijijk, ijZXj_,_lfOI'jZk-f-l.
Thus X g{ij}jeZl

X1 <X3<Xg<X<...
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By definition, put f~j<5>(p gl f<s>(§j)(p, se{0,1 2, .., m-1}. Letus denote

a}-x = det( f~j<0>(p, f~j<1>(p, vy ﬂ(m—l)(P, x), VxeRM (5.2)

Now we introduce the vectors with symbolic determinant

£(0) PAEY P
fi7e fi"e fj7o joe
~T (0 =a =2 ~T  T(m-1
d-}—-erj< >(P d-}—+2fj< >(P d}—+2fj< >(P d}—+2fj<m >(P
K def 1 (0 3 =1 q (2 3 r -1
aredet dlaf % dlafYe  dlafiPe o dlafi™ Ve .
ST (0 rZ e 0 =T T(m-1
d1J-+m fj< >(P d-lj-+m fJ >(P d]'-+m fj< >(P d1J-+m fJ<m >(P
(5.2)

Suppose A*%{éf}jEZeA. We define splines oj(t) by the

approximation relations

D Eait) =) VieM, oj®)=0forteS; VjieZ (53)
jeZ

where M & UjeZ (ij, ij+1)’ Sj gt [ij, ij+m+1]-
Consider the space of B, ¢ -splines according to the new grid
Sm(X, @) & CIpL{E'of}jGZ.

Theorem 9. Under the discussed conditions, the space of B, ¢ -splines

constructed for grid X contains the space of B, ¢ -splines for the X:

Sm(X, ) € Sp(X, ¢). (5.4)

Proof. By the formulae (5.1)-(5.3), it is easy to obtain relations
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®j(t) = 0jt), aj =ajfor j<k-m-1, (5.5)

o} (t) = 0](t), af =ajyq for j>k+1. (5.6)
From (2.7) and (5.3), it follows

> a@ait) = Y ajeit), vte (o p),

J'eZ JeZ

whence by annihilation of identical summands, defined by relations (5.5)-
(5.6), we obtain

A _mOK—m (1) + 8 _m 10k —m41(t) + ... + A1k 1 (1) + ag ok (1)

= af_m®k—m(t) + Ak _ma0k—ms1(t) + ... + 8k 10k 1 (1)
+agok () + ag g0k (t), Vte (o, p). (5.7)
Considering the relation (5.7) as a system of linear algebraic equations with
respect to unknown functions ®f_m(t), Ok _ms1(t), ., Ok_2(t), Ok_1(t),
o (t), and taking into account that matrix of the system is nonsingular

(because the chain A* s complete), we express aforementioned functions
through of (1), of_ma (), .. 0f_o(t), 0F_1(t), 0f (1), wfsa(t).

By relations (5.5)-(5.7) we see that basic functions Eaf(t) of the space
Sk (X, @) can be expressed with basic functions ®j(t) of the space
Sm(X, @). The inclusion (5.4) has been proved. O

The relations, which express coordinate splines on an enlargement grid
through the coordinate splines on the original grid are called calibration
relations.

Let X'=Xgc Xy Xy c...c X, =X be sequence embedded

grids, let A" be a chain (of vectors) which is relevant to grid X;. Suppose
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that chain A;" is constructed by scheme (5.2) and A" € A. By (4.1) system

{f(s)(t)(p|s =0,12,..,m-1te X;} is linear independent system of
vectors, i =0, 1, 2, ..., n; therefore

Sm(X', 0) = SH(X, ) = CE.
6. Applications
6.1. Minimal splines with maximum smoothness
By definition, put U; & C™(xi, xi,1), TV (®u = ui(t), t € M. In the
discussed case the suppositions f<i>(-)(pj eC(a,B), i, j€{0,1 2, .., m},

are equivalent to implication ¢ € C™(a, B), and the condition (4.1) may be
represented in the form

| det(p, ¢, ¢, ... 9™)(®)] 2 ¢ >0, Vtel(o )

*

The vectors aj are defined by relations (4.3), where d; satisfies identity
d?x = det(oj, ¢f, ¢, ..., (pi(m_l), X), VXxe Rm+l, VieZ;
here ¢ £ o(x), o £ (%), s=1,2, .., m.
Analogously we get the chain {aj*}jez-
If the derivatives (p(i)(t) are uniformly bounded on the interval (o, ) for
i €1{0,1 ..., m}, and parameter h & sup ;7 (X — Xj) is sufficiently small,
then the chains {af}jeZ and {5}‘}j€Z are complete (it is possible to prove by

the Taylor formula).

As a result we obtain B, -splines (see [15]). We denote the spaces of

B, -splines for grids X and X by S;(X, ¢) and Sy (X, ), respectively.
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Considering Cg Cm_l((x, B) and applying Theorem 1 and Theorem 9, we
obtain the next assertions.

Theorem 10. In set &,(X, @) there exists a unique space, which
belongs to C™(a, B); the mentioned space is SE(X, ¢).
Theorem 11. Under the discussed conditions, the space of B, -splines

constructed for grid X contains the space of B, -splines for the X:

Sm(X, 0) = SH(X, 0).
6.2. Minimal splines with discontinuous derivative of generating function
Discuss the case of m=1 ¢(t) & (1, yw(t))', where y e C(a, B).
Suppose that t* e (o, B), and there exists continuous derivative '(t) in
intervals (a, t*) and (t*, B) with property | y'(t)| > ¢; > 0. We also suppose

that finite limits a = y'(t* — 0), b = y/(t* + 0) exist, and a = b, ab = 0.
Consider function

1afor t e (a, t*),

Xa,b(t) = {]/b for t e (t*, B),

and introduce the functionals f<0>(t) and f<1>(t) by formulae
fOmu =),  FY0u = p0ut).

It is clear to see that f <0>(t)cp and f <1>(t)(p are continuous vector-

functions on the interval (a., B),

|det(FO )9, T (00) | = | a W) |2 ¢ >0,
where c is a positive constant.

According to the formulae (4.2) and (5.2), we have
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£(0 £(0 £(0) T
aT = fj<+>l(p = (fj<+>l(p0' fj<+>1(p1) '
. . T. ~
so that in the discussed case we have af = (1 w(Xj41)) ; analogously aj* =

(1, w(Xj,1))". Hence

det(@j_1, aj) = w(xjy1) —w(xj),  det(@j_y, @j) = w(Xju1) — w(X)).
If the function w(t) is strongly monotone on the interval (a, B), then the
chains of vectors {aj}; ., and {aj};_; are complete. In this case, by
relations (2.8) and (5.3) we have splines ©j and ®F; let SF(X, ¢) and
él* ()Z , ¢) be the spaces of the mentioned splines, respectively.

Next, we use the space
Cr “ {ulueU, f<0>(-)u e C(a, B)}.
By Theorem 6 and Theorem 9, we make the following assertions.

Theorem 12. In the set &1(X, @) there exists a unique space, which

belongs to Cf; the mentioned space is Sf(x, o).

Theorem 13. Under the discussed conditions, the space of splines
constructed for grid X contains the space of splines for the X:

Sh(X, @) = SH(X, o).
6.3. Minimal splines with discontinuous generating function

Consider differential operator Lw & w" + %W' + w, and discuss Bessel’s

differential equation

Lw(t) = w'(t) + %W'(t) Fw(t)=0 for t e (L 0)U (0, —L).
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Let Jo(t) and Yp(t) be the linear independent solutions of the equation

with the next asymptotic behavior
2 t
T =1 Yolt)~ E(Ing ' y) for t — 0,

where v is Euler’s constant (y = 0.577215...).

Suppose that m =1, o(t) & (@g(t), o(t)", where

Po(t) = o) +1,  @y(t) = Yp(t) + t°.
Consider functionals
fOMu & Lu@e), FRu = Lu() for t e (1, 0)U (0, -1).
Because
_ _ 42 2 _ 2 )

L(po(t) =1 L(pl(t) =t° + 4, L (po(t) =1 L (p]_(t) =1+ 8,

we have

Log(t)  L%o(t)

=4,
Loy(t)  LPi(t)

det( O (t)g, TY(t)p) =

Thus, the vector functions f<0>(t)(p, f<1>(t)(p are continuous on the

interval (-1, 1), and determinant det( f % (t)o, ™ (t)e) is not zero.
In the discussed case, we obtain
aj = (Loo(xjs1) Lor(xja))' = (L x§p0)',
A} = (Loo(%j). Lor(Xja))' = (@ %0
therefore

2 2 = =
det(aj_q, aj) = X§i1 — X§, det(aj_1, aj) = Xj1 — X
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If 0 e X, then the chains of vectors {aj}jez and {aj} .z, are complete.
The relations (2.7) and (5.3) give us the splines ®} and ®7; in this case the

spaces of the discussed splines are denoted by S;(X, ¢) and by Sl*o? , 0),
respectively.

Next, we use the space
Ce #{uluecu, f90uec(a p)
Using Theorem 6 and Theorem 9, we can deduce the next statements.
Theorem 14. In set S;(X, o) there exists a unique space, which belongs
to Cg: the mentioned space is S; (X, ¢).

Theorem 15. Under the discussed conditions the space of splines

constructed for grid X contains the space of splines for X:
ST (X, 9) = S{(X, o).
Acknowledgements
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