Far East Journal of Mathematical Sciences (FJMS)

© 2017 Pushpa Publishing House, Allahabad, India

http://www.pphmj.com

http://dx.doi.org/10.17654/MS102091917

Volume 102, Number 9, 2017, Pages 1917-1923

ISSN: 0972-0871

DERIVATIONS OF PKU-ALGEBRAS

Chanwit Prabpayak

Faculty of Science and Technology Rajamangala University of Technology Phra Nakhon Thailand

Abstract

We introduce the notions of left and right derivations of PKU-algebras and investigate some derivative properties on PKU-algebras. Also, we introduce the notion of d-invariant on ideals of PKU-algebras and obtain certain related properties.

Introduction

Dudek and Zhang [1] introduced a new notion of ideals in BCC-algebras. They described the connection between ideals and congruences. Jun and Xin [2] applied the notion of derivations in ring and near-ring theories to BCI-algebras, and they introduced a new concept called a regular derivation in BCI-algebras. Later a pseudo KU-algebra was introduced by Leerawat and Prabpayak [3]. A pseudo KU-algebra is known as PKU-algebra, an extension of KU-algebra [5].

In this paper, we introduce the notions of left and right derivations of PKU-algebras. Then we investigate some derivative properties on PKU-algebras. We finally introduce the notion of d-invariant on ideals of PKU-algebras and investigate related properties.

Received: May 12, 2017; Accepted: September 9, 2017

2010 Mathematics Subject Classification: 03G25, 06F35.

Keywords and phrases: l-derivation, r-derivation, d-invariant.

Preliminaries

By a PKU-algebra, we mean an algebra $(G, \oplus, 0)$ of type (2, 0) with a binary operation \oplus and a constant $0 \in X$ satisfying the following identities: for all $x, y, z \in G$,

(1)
$$(x \oplus y) \oplus [(y \oplus z) \oplus (x \oplus z)] = 0$$
,

(2)
$$0 \oplus x = x$$
,

(3) if
$$x \oplus y = 0 = y \oplus x$$
, then $x = y$.

We define a binary relation \leq by $x \leq y$ if and only if $y \oplus x = 0$. Then (G, \leq) is a partially ordered set. A subset S of a PKU-algebra $(G, \oplus, 0)$ (for brevity, write G) is called a PKU-subalgebra if $x \oplus y \in S$ for all $x, y \in S$. For any PKU-algebra G the following properties hold: for all $x, y, z \in G$,

(1)
$$x \oplus x = 0$$
,

(2)
$$x \oplus [(x \oplus y) \oplus y] = 0$$
,

(3)
$$x \oplus (y \oplus z) = y \oplus (x \oplus z)$$
,

(4) if
$$x \le y$$
, then $y \oplus z \le x \oplus z$,

(5) if
$$x \le y$$
, then $z \oplus x \le z \oplus y$.

A non-empty subset A of a PKU-algebra G is called a PKU-ideal of G if it satisfies the following conditions:

(a)
$$0 \in A$$
,

(b) for all
$$x, y, z \in X$$
, $x \oplus (y \oplus z) \in A$ and $y \in A$ implies $x \oplus z \in A$.

For any PKU-ideal A of a PKU-algebra G, the following property holds: for all $x, y \in X$, $xy \in A$ and $x \in A$ implies $y \in A$. For more details, refer to [3].

Derivations of PKU-algebras

For any elements x and y in a PKU-algebra G, we denote $x \wedge y = (x \oplus y) \oplus y$.

Definition 1 [4]. Let G be a PKU-algebra, and let $d: G \to G$ be a map from G into G. d is a *left-derivation* (briefly, *l-derivation*) of G if $d(x \oplus y) = (d(x) \oplus y) \land (x \oplus d(y))$. d is a *right-derivation* (briefly, *r-derivation*) of G if $d(x \oplus y) = (x \oplus d(y)) \land (d(x) \oplus y)$. If d is both 1-derivation and r-derivation of G, then d is called a *derivation* of G.

Example. Let $G = \{0, 1, 2\}$ with a binary operation \oplus defined by the following Cayley table:

$$\begin{array}{c|ccccc} \oplus & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ \end{array}$$

Then G is a PKU-algebra (see [3]). Let us define a map $d: G \to G$ by

$$d(x) = \begin{cases} 0, & \text{if } x = 0, 2, \\ 1, & \text{if } x = 1. \end{cases}$$

One can easily check that d is both 1-derivation and r-derivation of G. So d is a derivation of G.

Definition 2 [2]. A map d of a PKU-algebra G is said to be *regular* if d(0) = 0.

In the previous example, d is regular.

Proposition 3. Let d be a regular map of a PKU-algebra G. Then

- (1) if d is an l-derivation of G, then $d(x) = x \wedge d(x)$ for all $x \in G$.
- (2) if d is an r-derivation of G, then $d(x) = d(x) \wedge x$ for all $x \in G$.

Proof. (1) Let d be an 1-derivation of G, and let $x \in G$. Then

$$d(x) = d(0 \oplus x)$$

$$= (d(0) \oplus x) \land (0 \oplus d(x))$$

$$= (0 \oplus x) \land d(x)$$

$$= x \land d(x).$$

(2) Let d be an r-derivation of G, and let $x \in G$. Then

$$d(x) = d(0 \oplus x)$$

$$= (0 \oplus d(x)) \land (d(0) \oplus x)$$

$$= d(x) \land (0 \oplus x)$$

$$= d(x) \land x.$$

Theorem 4. Let d be a regular derivation of a PKU-algebra G. Then

- (1) $0 \le x \oplus d(x)$ for all $x \in G$,
- (2) $0 \le d(x) \oplus x \text{ for all } x \in G$,
- (3) $0 \le d(x) \oplus d(d(x))$ for all $x \in G$,
- (4) $0 \le d(d(x)) \oplus d(x)$ for all $x \in G$.

Proof. (1) Since d is an 1-derivation of G, we have $d(x) = x \wedge d(x)$ by Proposition 3. So we have

$$d(x) = (x \oplus d(x)) \oplus d(x).$$

Since d is an r-derivation of G, $d(x) = d(x) \wedge x$ by Proposition 3. So we have

$$d(x) = (d(x) \oplus x) \oplus x$$
.

The above equations yield

$$(x \oplus d(x)) \oplus d(x) = (d(x) \oplus x) \oplus x,$$

$$d(x) \oplus [(x \oplus d(x)) \oplus d(x)] = d(x) \oplus [(d(x) \oplus x) \oplus x],$$

$$d(x) \oplus [(x \oplus d(x)) \oplus d(x)] = 0,$$

$$((x \oplus d(x))) \oplus (d(x) \oplus d(x)) = 0,$$

$$((x \oplus d(x))) 0 = 0.$$

Therefore $0 \le x \oplus d(x)$.

(2) From (1) we have

$$(d(x) \oplus x) \oplus x = (x \oplus d(x)) \oplus d(x),$$

$$x \oplus [(d(x) \oplus x) \oplus x] = x \oplus [(x \oplus d(x)) \oplus d(x)],$$

$$x \oplus [(d(x) \oplus x) \oplus x] = 0,$$

$$(d(x) \oplus x) \oplus (x \oplus x) = 0,$$

$$(d(x) \oplus x) \oplus 0 = 0.$$

Hence $0 \le d(x) \oplus x$.

(3) By Proposition 3, we obtain

$$d(d(x)) = (d(x) \oplus d(d(x))) \oplus d(d(x))$$

and

$$d(d(x)) = (d(d(x)) \oplus d(x)) \oplus d(x),$$

$$(d(x) \oplus d(d(x))) \oplus d(d(x)) = (d(d(x)) \oplus d(x)) \oplus d(x),$$

$$d(x(x)) \oplus [(d(x) \oplus d(d(x))) \oplus d(d(x))]$$

$$= d(d(x)) \oplus [(d(d(x)) \oplus d(x)) \oplus d(x)],$$

$$d(x(x)) \oplus [(d(x) \oplus d(d(x))) \oplus d(d(x))] = 0,$$

$$(d(x) \oplus d(d(x))) \oplus (d(x(x)) \oplus d(x(x))) = 0,$$

$$(d(x) \oplus d(d(x))) \oplus 0 = 0.$$

Thus $0 \le d(x) \oplus d(d(x))$.

(4) From (3) we have

$$(d(d(x)) \oplus d(x)) \oplus d(x) = (d(x) \oplus d(d(x))) \oplus d(d(x)),$$

$$d(x) \oplus [(d(d(x)) \oplus d(x)) \oplus d(x)] = d(x) \oplus [(d(x) \oplus d(d(x))) \oplus d(d(x))],$$

$$d(x) \oplus [(d(d(x)) \oplus d(x)) \oplus d(x)] = 0,$$

$$(d(d(x)) \oplus d(x)) \oplus (d(x) \oplus d(x)) = 0,$$

$$(d(d(x)) \oplus d(x)) \oplus 0.$$

Hence
$$0 \le d(d(x)) \oplus d(x)$$
.

Definition 5. Let A be a PKU-ideal of a PKU-algebra G. Let d be a regular derivation of G. We denote the set $d(A) = \{d(x) | x \in A\}$. Then A is said to be d-invariant if $d(A) \subset A$.

Example. From the previous example, let $A = \{0, 2\} \subset G$. It is easy to check that A is a PKU-ideal of G. A regular derivation d of G is defined by

$$d = \begin{cases} 0, & \text{if } x = 0, 2, \\ 1, & \text{if } x = 1. \end{cases}$$

Then $d(A) = \{0\}$ which is contained in A. Thus A is d-invariant.

Theorem 6. Let d be a regular derivation of a PKU-ideal G. Then a PKU-ideal A of G is d-invariant if $x \oplus d(x) = 0$ for all $x \in A$.

Proof. Let A be a PKU-ideal of G. Suppose that $x \in d(A)$. Then there exists an element $y \in A$ such that x = d(y). Then $y \oplus x = y \oplus d(y)$. By our assumption, we obtain $y \oplus x = 0 \in A$. Since A is a PKU-ideal of G, $x \in A$. Hence $d(A) \subset A$. Therefore, A is d-invariant.

Acknowledgements

This research was supported by Rajamangala University of Technology Phra Nakhon.

References

- [1] W. A. Dudek and X. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48(123) (1998), 21-29.
- [2] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167-176.
- [3] U. Leerawat and C. Prabpayak, Pseudo KU-algebras and their applications in topology, Global J. Pure Appl. Math. 11(4) (2015), 1793-1801.
- [4] S. M. Mostafa, R. A. K. Omar and A. Abd-Eldayem, Properties of derivations on KU-algebras, J. Adv. Math. 10(1) (2015), 3085-3097.
- [5] C. Prabpayak and U. Leerawat, On ideas and congruences in KU-algebras, Scientia Magna 5(1) (2009), 54-57.