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Abstract 

Villacorta and Chaudhary [10] introduced two new theta function 
identities. In this sequel, we aim to give representations for these theta 
function identities in terms of combinatorial partition identities. 

1. Introduction and Definitions 

For ( ),1,, <∈μλ qq C  the basic (or q-) shifted factorial ( )μλ q;  is 

defined by (see, for example, [1], [7] and [8] dealing with the q-analysis) 
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Here and in the following, let C  and N  be the sets of complex numbers 
and positive integers, respectively. For convenience, we write 

( ) ( ) ( ) ( ) ( )nknnnnk qaqaqaqaqaaaa ;;;;;...,,,, 321321 =  (1.4) 

and 

( ) ( ) ( ) ( ) ( ) .;;;;;...,,,, 321321 ∞∞∞∞∞ = qaqaqaqaqaaaa kk  (1.5) 

In Chapter 16 of his celebrated Notebooks, Ramanujan defined the 
general theta function ( )baf ,  as follows (see [1, p. 31, equation (18.1)]): 
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so that, if n is an integer, then we have 
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Ramanujan also rediscovered Jacobi’s famous triple-product identity         
(see [1, p. 35, Entry 19]): 

( ) ( ) ( ) ( ) ,;;;, ∞∞∞ −−= abababbababaf  (1.8) 

which was, in fact, first proved by Gauss. 
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Several q-series identities emerging from Jacobi’s triple-products 
identity (8) are worthy of note here (see [1, pp. 36-37, Entry 22]): 
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and 
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Equation (11) is known as Euler’s Pentagonal Number Theorem. The 
following q-series identity: 
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provides the analytic equivalent of Euler’s famous theorem. 

The number of partitions of a positive integer n into distinct parts is 
equal to the number of partitions of n into odd parts. 

We now recall the Rogers-Ramanujan continued fraction ( ),qR  which is 

given by 
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in terms of the following widely investigated Roger-Ramanujan identities: 
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where the functions ( )baf ,  and ( )qf −  are defined by (1.6) and (1.11), 

respectively. For a detailed historical account of (and for various 
investigating developments stunning from) the Rogers-Ramanujan continued 
fraction (1.13) and identities (1.14) and (1.15), the reader may be referred to 
the work [1, p. 77]. 

The following continued fraction was reported in [7] from an earlier 
work cited therein: 
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Finally, we turn to the recent investigation by Andrews et al. [2], 
involving combinatorial partition identities associated with the following 
general family: 

( ) ( ) ( ),;,,,:,,,,,
0

2∑
∞

=

+=
n

tnns nwvulrqwvultsR  (1.17) 

where 

( ) ( )
( ) ( )

( ) ( )
.

;;
1:;,,,

0

2

∑






= −

−+
−=

u
n

j j
uvuv

ujn

julwjuv
j

qqqq
qnwvulr  (1.18) 

In particular, we recall the following combinatorial partition identities          
[2, p. 106, Th. 3]: 

( ) ( ) ,;2,2,1,1,1,2 2
∞−= qqR  (1.19) 
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∞−= qqR  (1.20) 

( )
( )
( )

.
;

;
2,1,1,1,, 2

22

∞

∞= mm

mm

qq

qq
mmR  (1.21) 

The outline of this paper is as follows. In Section 2, we record a set of 
known results which are required in this paper. In Section 3, we state and 
prove our main results associated with the family ( )wvultsR ,,,,,  defined 

by (1.17), which depict representations of certain theta function identities in 
terms of combinatorial partition identities. 

2. A Set of Preliminary Results 

The following identities will be required in proving our main results in 
Section 3 (see [10]): 

( ) ( ) ( ) ( ) ( )qqqqqqf φψ−φψ=− 1829232  (2.1) 
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and 

( ) ( ( ) ( )) ( ) ( ),9693 qqfqqqqf −φ−=ψ−ψ−  (2.2) 

where all the symbols having their usual meanings. 

3. The Main Results 

We state our main results. 

Theorem 1. Each of the following identities holds true: 
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Proof. With the help of (1.9) and (1.10), we can compute the values for 

( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,,,, 18929 qqqqqqq ψψψψ−φφφ  respectively. Further, using 

these results into (2.1) and (2.2), and applying results (1.19) and (1.21), by 
little algebra, we get (3.1) and (3.2). Again, squaring on both the sides of 
(3.2) and using (3.1), we obtain (3.3). 
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