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Abstract 

Auscultation is still the main procedure by the physician in 
determining the health condition of a person’s lungs. Auscultation 
heavily depends on the physician’s skill and experience. Electronics 
auscultation using computer assistance is used to identify 
abnormalities in lung sounds for reducing the subjectivity. One of the 
signal processing methods that is often used to determine the lung 
sounds is wavelet decomposition method. This study aimed to 
compare several methods of lung sound classification using wavelet 
analysis. Some methods combined wavelet decomposition techniques 
and features extraction to obtain a method that produces the highest 
accuracy with the fewest number of features. The results showed that 
the DWT order 7 with DB2 mother wavelet and 46 features produce 
the highest accuracy of 97.98%. This method was tested on five 
classes of lung sound data. 
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1. Introduction 

Lung sound is one of the information used by physicians to detect 
abnormalities in the heart. Lung sound is heard using a stethoscope based on 
the expertise of the doctor [1]. Although the currently available diagnostic 
techniques of various lung diseases are using X-ray, CT-scan, and MRI, lung 
auscultation remains the first choice because of the simplicity of the device 
and the procedure [2]. Various techniques are used by people to analyze lung 
sound automatically to reduce the subjectivity [1]. 

Various digital signal processing techniques have been developed to 
recognize the lung sound using a computer. Time domain signal processing 
techniques often used by people such as autoregressive-modeling [3], 
empirical mode decomposition (EMD) [4], and fractals [5]. Some researchers 
used frequency analysis to identify lung sounds such like quantile vector 
frequency [6] or power spectral density (PSD) [7, 8]. Lung sound analysis in 
the time-frequency domain was also the focus of many researchers due to the 
non-stationary nature of lung sound. The method used such as short-time 
Fourier transform (STFT) [9], Wigner-Ville distribution [10], and the 
Hilbert-Huang transform [11]. 

Kandaswamy et al. [12] used wavelet decomposition order of 7 and back 
propagation neural network (BP-NN) to classify lung sounds into six classes. 
Meanwhile, the same method with some additional features and multilayer 
perceptron (MLP) as a classifier was proposed by Hashemi et al. [13]. This 
method was used to distinguish between monophonic and polyphonic 
wheezing sound. The method in [12] was also used in [14] with support 
vector machine (SVM) as the classifier. A slightly different method was used 
by Rizal et al. [15] to recognize the lung sounds using adaptive resonance 
theory 2 (ART-2 NN) as a classifier. The study in [12, 13, 15] used almost 
the same wavelet decomposition techniques but using different data and 
classification techniques, so its performance could not be compared. 

In this study, a comparison of feature extraction technique in the three 
studies was presented using the same lung sound data and classifier. We used 
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the best parameter for wavelet decomposition method in each method. Due to 
the different sampling frequency, the feature extraction methods would also 
be performed at each sampling frequency. The results will be used as a 
recommendation for selecting the best wavelet decomposition method for 
lung sound feature extraction. 

2. Materials and Methods 

2.1. Lung sound data 

Lung sound is generated from the air flow into and out of the respiratory 
tract. Changes in lung sound indicate a change in the respiratory tract which 
is sometimes an indicator of lung disease. Lung sound was mostly laid in the 
frequency of 200-250 Hz because usually above 250 Hz its energy reduces 
significantly [16]. Usually, the frequency range used for analyzing lung 
sounds is 75-1200 Hz. 

In this study, we used 99 lung sound data recording consist of 22 normal 
data, 18 wheezing data, 21 crackles, 18 friction rub, and 20 stridor. Most of 
the lung sound data were used in a previous study [17, 18]. Wheezing is 
continuous adventitious lung sound with a duration > 250 ms. The dominant 
frequency of wheezing lies in the frequency of 400 Hz [16]. Crackle is an 
explosive and discontinuous adventitious lung sound. Crackle had very short 
duration and divided into fine and coarse crackle [19]. Stridor is a high-
pitched wheezing heard in the upper respiratory tract [20]. Meanwhile, 
friction rub is adventitious lung sound that is nonmusical, explosive, and 
often heard in the basal region. Friction rub is often associated with 
inflammation of the pleura [20]. The length of each data was one respiratory 
cycle with a sampling frequency of 8000 Hz. For methods that require data 
sampling frequency of 11025 Hz, we did a resample process. 
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(a) 

 
(b) 

Figure 1. (a) Normal bronchial sound, (b) wheeze sound. 

2.2. Preprocessing 

Preprocessing on lung sounds intended to eliminate amplitude variations 
due to different recording environments, removing the DC component due to 
DC-offset and eliminate the noise. The first preprocessing in this study was 
mean removal to remove the DC component. At the signal ( )is  along N, the 

process is given by: 

 ( ) ( ) ( )∑ =
=−=

N
i

NiisNisis
1

.,2,1,1 …  (1) 

The next process was the amplitude normalization: 

 ( ) ( )
( ) .max is

isis =  (2) 

By normalization process, the difference in the signal due to the 
recording process and zero shifting due to noise could be minimized. The 
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subsequent preprocessing was noise removal. One of the main noises that 
often occurs was the heart sound. The frequency range of heart sound was 
20-150 Hz occupied a significant overlap with the low-frequency component 
of the lung sound [21]. The simplest technique to eliminate heart sounds was 
using band pass filter (BPF) with a passband of 100-2000 Hz [22, 23]. In this 
study, we only used normalization in preprocessing stage because the data 
was clean of noise. 

2.3. Discrete wavelet transform 

In general, discrete wavelet transform (DWT) can be expressed as: 

 ( ) ( ) ,1, ∫
∞

∞−
⎟
⎠
⎞⎜

⎝
⎛ −= dtb

attx
b

baX Ψ  (3) 

where a is the time shift while b is the scale (often referred to as width 
modulation), while ( )tΨ  is called the mother wavelet [24]. Practical 

implementation of DWT can be seen in Figure 2. The signal is filtered 
through the LPF and HPF which splits the signal into half of the original 
frequency range. The output filter is downsampled so that the number of 
samples of signals become half. In DWT, only the output of LPF called the 
approximation to be decomposed further. Selection order of DWT is chosen 
by the needs. 

 

Figure 2. DWT order of 2. 

DWT order of 7 was proposed by Kandaswamy et al. [12] for lung sound 
decomposition. The same scheme was proposed by Hashemi et al. [13]. 
Because DWT was highly dependent on the sampling frequency, the 
frequency range of subband in both studies would be different as shown in 
Table 1. 
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Table 1. Frequency range of each subband for DWT order 7 using different 
sampling frequency 

Subband 
Kandaswamy 
Fs = 11025 Hz 

Hashemi 
Fs = 8000 Hz 

A7 0-43.07 0-31.25 
D7 43.07-86.13 31.25-62.5 
D6 86.13-172.26 62.5-125 
D5 172.26-344.53 125-250 
D4 344.53-689.06 250-500 
D3 689.06-1378.13 500-1000 
D2 1378.13-2756.25 1000-2000 
D1 2756.25-5512.50 2000-4000 

Some parameters of lung sound were calculated in each subband. In 
Kandaswamy’s method [12], the parameters were: 

(1) the average of the absolute value of each subband coefficient (μi), 

(2) the average power of each subband (Pi), 

(3) standard deviation of each subband coefficient (σi), 

(4) the ratio of the average absolute value of the adjacent subband 
),1( +μμ ii  

while the Hashemi’s method used the features (1)-(4) coupled with [13]: 

(5) skewness of subband coefficient (ski), 

(6) kurtosis of subband coefficient (kui). 

Because at Fs = 11025 Hz, the coefficient values in D1-D2 and A7 were 
close to zero, the subband was not used by Kandaswamy. Total features 
employed by Kandaswamy method were 19 [12]. Meanwhile, Hashemi 
method used the whole subband so that the total of features was 46 [13]. 

2.4. Wavelet packet decomposition 

Wavelet packet decomposition (WPD) is an extension of the DWT. At 
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WPD, the detail component was decomposed further as to the approximation 
component. WPD order n will generate 2n subband. WPD order of 5 was 
used for lung sound classification by Rizal et al. [15]. Subbands for lung 
sound feature extraction were selected according to the need. The energy of 
each subband was used as the lung sound’s features. The subband used in 
feature calculation is shown in Figure 2. The frequency range of each 
subband for Fs = 8000 Hz and Fs = 11025 Hz is shown in Table 2. The 
results obtained 15 features. 

 

Figure 3. Subband for feature extraction using WPD. 

2.5. Classifier 

Many researchers chose artificial neural network (ANN) to be a 
classifier. Kandaswamy et al. used BP-ANN, Hashemi et al. used MLP, 
while Rizal et al. used adaptive resonance theory-2 (ART-2NN) as a 
classifier [12, 13, 15]. BP-ANN, MLP and ART-2 NN differed regarding 
their training process. BP-ANN and MLP included in supervised learning 
while ART-2 NN included in unsupervised learning. In this study, we used 
MLP as a classifier because in previous work very high lung sound 
classification was obtained [13]. In this experiment, we used MLP with            
N-40-5 configuration, where N was the number of input feature as used in 
[13]. 
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Table 2. Frequency range of selected subband for WPD using different 
sampling frequency 

Subband Fs = 11025 Hz Fs = 8000 Hz 
A5 0-172.27 Hz 0-125 Hz 
D5 172.27-344.53 Hz 125-250 Hz 

AD4 344.53-516.8 Hz 250-375 Hz 
DD4 516.8-689.96 Hz 375-500 Hz 

AAD3 689.96-861.33 Hz 500-625 Hz 
DAD3 861.33-1033.6 Hz 626-750 Hz 
ADD3 1033.6-1205.86 Hz 750-875 Hz 
DDD3 1205.86-1378.125 Hz 875-1000 Hz 
AAD2 1378.125-1607.81 Hz 1000-1250 Hz 
DAD2 1607.81-1837.5 Hz 1250-1500 Hz 
ADD2 1837.5-2067.19 Hz 1500-1750 Hz 
DDD2 2067.19-2756.25 Hz 1750-2000 Hz 
AAD1 2756.25-3445.31 Hz 2000-2500 Hz 
DAD1 3445.31-4134.38 Hz 2500-3000 Hz 
DD1 4134.38-5512.5 Hz 3000-4000 Hz 

2.6. Cross validation 

Cross validation (CV) is used to see if the model of ANN is working 
properly. A standard technique is used to divide the data into the training and 
testing data. This method produces a very high variation accuracy value 
depending on the distribution of the data [26]. N-fold CV is used to solve the 
problem. In the N-fold CV, the data is divided into N data sets, with one data 
set becomes testing data while N-1 is used as training data. This process is 
repeated N times with the final accuracy is the average of N measurement 
accuracy. We used 3-fold CV as in [12]. The parameters used for the 
performance assessment is the accuracy as described below: 

 ( ) .% dataTotal
dataclassifiedcorrecctlyofNumberAccuracy =  (4) 
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3. Result and Discussion 

3.1. Combination of wavelet decomposition and feature extraction 
method 

In this research, we performed a combination of wavelet decomposition 
method and feature extraction techniques used in studies mentioned 
previously [12, 13, 15]. The important parameters used in three studies are 
shown in Table 3. The parameters were included wavelet decomposition 
method, the feature parameter, Fs, and mother wavelet. 

Table 3. Parameter comparison of each method 
Feature extraction 

method 
Data Fs (Hz) Decomposition 

Mother 
wavelet 

Features 

Rizal et al. 
[15] 

324, 20 classes 8000 WPD Db2 15 on WPD 

Kandaswamy et al. 
[12] 

120, 6 classes 11025 DWT Db8 19 on DWT 

Hashemi et al. 
[13] 

140, 2 classes 8000 DWT Bior1.5 46 on DWT 

3.2. Lung sound feature extraction using DWT 

In this section, DWT order of 7 was performed on lung sounds to 
produce eight subbands. Thus Rizal’s method generated eight features, fewer 
than when used WPD. The accuracy of each feature extraction method is 
shown in Table 4. 

Table 4 shows that Hashemi’s method produced the highest accuracy of 
97.98% in Fs = 8000 Hz and Db2 or Bior1.5. Meanwhile, Kandaswamy’s 
method produced the highest accuracy of 94.95% at Db8 and Rizal’s method 
yielded 95.96% accuracy in Db2. All the highest accuracy of each method 
were obtained at Fs = 8000 Hz. This result showed that Fs = 8000 Hz 
generated appropriated subband for DWT so that it generated higher 
accuracy compared with Fs = 11025 Hz. 
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Table 4. Accuracy of each feature extraction method using DWT order of 7, 
three-fold validation, 40 nodes hidden layer of MLP 

Fs = 8000 Hz Fs = 11025 Hz Feature 
extraction 

method 

Number 
of 

features Db2 Db28 Bior1.5 Db2 Db8 Bior1.5 

Rizal et al. 
[15] 

8 95.96% 91.92% 89.90% 91.92% 94.95% 89.90% 

Kandaswamy 
et al. [12] 

19 90.91% 94.95% 90.91% 90.91% 90.91% 86.87% 

Hashemi 
et al. [13] 

46 97.98% 96.97% 97.98% 96.97% 96.97% 96.97% 

Table 5. Accuracy of each feature extraction method using WPD order of 5, 
three-fold validation, 40 node hidden Layer of MLP 

Fs = 8000 Hz Fs = 11025 Hz Feature 
extraction 

method 

Number 
of 

features Db2 Db28 Bior1.5 Db2 Db8 Bior1.5 

Rizal et al. 
[15] 

15 91.92% 96.97% 92.93% 96.97% 93.94% 95.96% 

Kandaswamy 
et al. [12] 

59 97.98% 97.98% 95.96% 97.98% 97.98% 97.98% 

Hashemi 
et al. [13] 

89 95.96% 96.97% 95.96% 94.95% 94.95% 95.96% 

3.3. Lung sound feature extraction using WPD 

The WPD scenario was designed to produce 15 subbands. This method 
would change the number of features produced by Kandaswamy’s method 
and Hashemi’s method. The number of subbands was more than reported in 
the preliminary study. The accuracy of each method of feature extraction on 
the WPD is shown in Table 5. 

Table 5 demonstrates that the Kandaswamy’s method produced the 
highest accuracy of 97.98%. The Kandaswamy’s method was superior to the 
Hashemi’s method due to fewer features. Meanwhile, Rizal’s method 
produced the highest accuracy of 96.97% for the mother wavelet DB2 and        
Fs = 11025 Hz using 15 features. 
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3.4. Discussion 

The selection criteria for the better methods were the accuracy and the 
number of features. If the accuracy had the same value, the method that had 
the least amount of features was chosen. In Table 4, even though the 
Hashemi’s method was originally only intended to distinguish the 
monophonic and polyphonic wheeze sound but was able to distinguish five 
classes of data. In this case, although the Kandaswamy’s method had fewer 
features but generated lower accuracy. This result showed that the skewness 
and kurtosis in each subband, A7, D2, and D1 subbands had a contribution to 
the classification accuracy. 

In Table 4, with a sampling frequency of 11025 Hz, Hashemi’s method 
produces the highest accuracy of 96.97%. Eliminate skewness and kurtosis in 
each subband were shown to reduce the accuracy significantly. The energy of 
subband as features was only capable of producing up to 94.95% accuracy. 

Table 5 showed that Kandaswamy’s method was better than the 
Hashemi’s method. Kandaswamy’s method produced a classification 
accuracy of 97.98% with fewer features than the Hashemi’s method. These 
results were not influenced by the mother wavelet and the sampling 
frequency selection. 

Based on the criteria mentioned earlier, we recommended that the best 
method was DWT order of 7 with the mother wavelet Db2 and Fs = 8000 Hz 
as in Table 4. The parameters used in the method proposed by Hashemi with 
a different mother wavelet. Although the accuracy was 97.98%, similar to 
that produced by the Kandaswamy’s method in Table 5, the Hashemi’s 
method used 46 features, less than Kandaswamy’s method on WPD. 

The same signal decomposition using DWT and WPD method were used 
in [27]. Modified gray level difference matrix (GLDM) was used as features 
[28]. In the study reported up to 100% accuracy for 81 lung sound data in 
five classes. Testing with the same lung sound data with this research 
resulted in 98.99% accuracy using 40 features DWT while the accuracy of 
98.99% for WPD using the 15 features. These results indicate that using 
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appropriate feature extraction method, DWT and WPD methods proposed in 
[12, 13, 15] could be improved in their performance for classification of lung 
sounds. Research using another classifier and bigger lung sound database can 
be done in future studies. 

4. Conclusion 

In this study, we presented a comparison of the three wavelet 
decomposition and feature extraction methods for lung sound classification. 
The results showed that combination of DWT order of 7 and feature 
extraction method proposed by Hashemi et al. provided the highest accuracy 
and fewest features. Testing using larger lung sound database is planned to 
be done in the next study. Various studies on lung sound analysis are still in 
progress. Researchers are trying for better methods to increase the accuracy 
and reduce computation time for lung sound analysis for automatic 
pulmonary lung disease diagnosis. 
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