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Abstract 

In this article, we give the solution of the wave equation with the 

Morse potential in closed explicit form. As applications, we obtain the 

solutions of the wave equation with constant potential, the telegraph 

equation and the wave equation on the Lobacheviskii plane in closed 

explicit forms. 

1. Introduction 

Consider the following Cauchy problem for the wave equation associated 

to the Schrödinger operator with the Morse potential: 
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is the Schrödinger operator with Morse diatomic molecular potential on the 
real line .R  The purpose of this paper is to give the solution of the Cauchy 
problem ( )kWM  in closed explicit form and by using this explicit solution 

we give three applications that is to give in closed explicit form the solutions 
of the Cauchy problems for the wave equation with constant potential, for the 
telegraph equation and for the wave equation on Lobacheviskii plane. 

The Schrödinger operator with the Morse diatomic molecular potential 
kΛ−  is self-adjoint positive definite and has an absolute continuous 

spectrum. The importance of the Morse potential for both theory and 
application in mathematics and physics may be found in literature (Ikeda and 
Matsumoto [5]). For example, the purely vibrational levels of diatomic 
molecules with angular momentum 0=l  have been described by the Morse 
potential for long time (Tasseli [9]). Another application is in string theory: 
the wave equation with the Morse potential is the equation of motion for a re-
scaled tachyon field and is nothing but Wheeler-de Wit equation satisfied by 
the macroscopic loop (Li [8]). To use numerical method for a simple 
modeling of some diatomic molecules like HCl, H2 and O2 in MATLAB 
(Fidiani [3]), see information and new results on the Morse potential 
(Hassanabadi and Zare [4]) and (Znojil [10]). 

2. Wave Equation with the Morse Potential 

In this section, we give the solution of the Cauchy problem ( )kWM  for 

the wave equation with the Morse potential. We begin with the following 
lemma: 
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Lemma 2.1. For ,,,, R∈XXtk  set: 

 ( )( ) ,coshcosh2 XXtekZ XX ′−−= ′+  (2.1) 

then  

( ) ,sinh2
1 12 −′+ ′−−=

∂
∂ ZXXekZX
Z XX  (2.2) 

( ) ,sinh4
1 32224122

2

2
−′+− ′−−−=

∂

∂ ZXXekZekZ
X

Z XXX  (2.3) 

,sinh 12 −′+=
∂
∂ tZekt
Z XX  (2.4) 

.sinhcosh 3222412
2

2
−′+−′+ −=

∂

∂ tZektZek
t
Z XXXX  (2.5) 

The proof of this lemma is straightforward calculation and in 
consequence is left to the reader. 

Proposition 2.2. The general solution of the wave equation in ( )kWM  is 

given by: 

( ) ( ( )( ))XXtekaJXXtW XX
k ′−−=′ ′+ coshcosh2,, 0  

( ( )( )),coshcosh20 XXtekbY XX ′−−+ ′+  

where C∈ba,  and 00, YJ  are Bessel functions of the first and second 

kind, respectively. 

Proof. Let 

 ( ) ( ),,, ZXXtW Φ=′  (2.6) 
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where Z is as in (2.1). Then we have 
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Using the formulas (2.2)-(2.5), we obtain 

( )⎢
⎣

⎡ ′−−= ′+ XXekZD XX sinh4
1 22  

[ ( ) ] ( )ZZtXXek XX Φ ′′⎥
⎦

⎤
−′−+ −′+ 222224 sinhsinh  

⎢⎣

⎡ −−+ −′+− 12122 cosh4
1 tZekZekZ XXX  

[ ( )] ( ).sinhsinh 322224 ZZXXtek XX Φ′⎥
⎦

⎤′−−+ −′+  (2.8) 

From the Bessel equation (Lebedev [7, p. 98]) 

( ) ( ) ( ) ( ) 0222 =Φν−+Φ′+Φ ′′ ZZZZZZ  

for 0=ν  and ,0≠Z  we have 

( ) ( ) ( ).1 ZZZZ Φ−Φ′−=Φ ′′ −  

Replacing in (2.8), we obtain 

( )( )⎢⎣

⎡ +′−−= −′+ 122 coshcosh4
1 ZtXXekZD XX  

( ( ) ) ( )ZZtXXek XX Φ′⎥
⎦

⎤
×−′−− −′+ 322224 sinhsinh  
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( )( )⎢
⎣

⎡
+′−+ ′+ tXXek XX coshcosh2

1 2  

( ( ) ) ( ) ( ),sinhsinh 22222224 ZekZZtXXek XXX Φ+Φ⎥
⎦

⎤
−′−− −′+  

that is, we have 

 ( )[ ( ) ( )] ( )ZekZZZXXtAD XΦ+Φ+Φ′′= − 2212,,  (2.9) 

with 

( ) ( )( )tXXekXXtA XX coshcosh
2
1,, 2 +′−−=′ ′+  

( ( ) ) .sinhsinh 222224 −′+ −′−− ZtXXek XX  

Taking into account (2.1) and the formula −=− yzy 222 coshsinhsinh  

,cosh2 z  we obtain ( ) ,0,, =′XXtA  and the proof of the proposition is 

finished. 

Theorem 2.3. The Cauchy problem ( )kWM  for the wave equation with 

the Morse potential has the unique solution given by: 

( )XtU ,  

 ( ( )( )) ( ) .coshcosh20∫ <′−

′+ ′′′−−=
tXX

XX XdXfXXtekJ  (2.10) 

Proof. By Proposition 2.2 and the fact that the uniqueness of the solution 
of the problem ( )kWM  is a consequence of the classical theory of hyperbolic 

operator, the proof of the theorem will be finished by showing limit 

conditions. For this, set 2sinh2sinh tzXX =⎟
⎠
⎞⎜

⎝
⎛ ′−  to get 
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It is not hard to see the limit conditions from (2.11) and the formula 
(Lebedev [7, p. 134]) 

 ( )
( )

.0,
12

→
ν+Γ

≈
ν

ν
xxxJv  (2.12) 

3. The Wave Equation with Constant Potential and 
the Telegraph Equation 

In this section, we give two applications of Theorem 2.3, the explicit 
solutions to the wave equation with constant potential on R  and the 
telegraph equation 

Corollary 3.1. The Cauchy problem for the wave equation with constant 
potential 
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has the unique solution given by 

( ) ( ( ( ) )) ( )∫ <′−
′′′−−=

tXX
XdXfXXtkJXtU ,, 22

0  (3.1) 

where 0J  is the Bessel function of the first kind and of order 0. 
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Proof. Replacing k by Xk ,
λ

 by λX and t by λt and letting 0→λ  in the 

formula (2.10), we get the solution (3.1) of the Cauchy problem for the wave 
equation with constant potential: 

Note that the telegraph equation satisfied by the voltage or the current v 
as a function of the time t and the position X along the cable from initial 
point; 
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can be reduced to the wave equation with constant potential, where 

( ) ;4

2β−α=k  by introducing ( )( ) veU t2β+α=  (Courant and Hilbert                   

[1, pp. 192-193; 695]). 

4. Wave Equation on the Lobacheviskii Plane 

Let { }0,2 >∈+== yiyxz CH  be the hyperbolic Poincaré half plane, 

endowed with the usual hyperbolic metric 

 2

22
2

y
dydxds +=  (4.1) 

with the hyperbolic surface form ( ):zdμ  

 ( ) ,2y
dxdyzd =μ  (4.2) 

the hyperbolic distance ( )zzd ′,  is given by 

 ( ) ( )
yy

yyxxzzd ′
′++′−=′

2,cosh
222

 (4.3) 
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with the Laplace-Beltrami operator 
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In this section, we use Theorem 2.3 to give the solution of the          
Cauchy problem for the wave equation on Lobacheviskii plane associated to 
modified Laplacian 

 .
4
1

+Δ=L  (4.5) 

Corollary 4.1 (See Intissar and Ould Moustapha [6]). The Cauchy 
problem for the wave equation on the Lobacheviskii plane 
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has the unique solution given by 
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where ( )zzd ′,  is the geodesic distance on 2H  given by (4.3). 

Proof. The Fourier transform with respect to the variable x transforms 

the Cauchy problems ( )kW 2H  to the following Cauchy problem: 
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In the above problem, we get 
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Using Theorem 2.3, we get 

( )XktU ,,  

( ( )( )) ( ) .,ˆcoshcosh2 20∫ <′−

′
′
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tXX

X
X
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From (4.7), we obtain 
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and hence by the formula (Ditkine and Prudnikov [2, 7.165, p. 182]) 

( ) ( )∫
∞ −
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⎪
⎨
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>
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0
2
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0
,0

,if,cos
au
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and the formulas (4.2) and (4.3), we get the proof of the corollary. 
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