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Abstract

In this article, we give the solution of the wave equation with the
Morse potential in closed explicit form. As applications, we obtain the
solutions of the wave equation with constant potential, the telegraph
equation and the wave equation on the Lobacheviskii plane in closed

explicit forms.
1. Introduction

Consider the following Cauchy problem for the wave equation associated

to the Schrodinger operator with the Morse potential:
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2 2
[a——kzeszU(t, X) =a—2U(t, X), (t, X) e RY xR,

ox 2 ot (WM ),
U(0, X)=0,U;(0, X)=U{(X), U, € CJ(R),
where for k € R,
2
Ap = 2 k22X (1.1)

X2

is the Schrodinger operator with Morse diatomic molecular potential on the
real line R. The purpose of this paper is to give the solution of the Cauchy

problem (WM ), in closed explicit form and by using this explicit solution

we give three applications that is to give in closed explicit form the solutions
of the Cauchy problems for the wave equation with constant potential, for the
telegraph equation and for the wave equation on Lobacheviskii plane.

The Schrodinger operator with the Morse diatomic molecular potential

AR s self-adjoint positive definite and has an absolute continuous

spectrum. The importance of the Morse potential for both theory and
application in mathematics and physics may be found in literature (Ikeda and
Matsumoto [5]). For example, the purely vibrational levels of diatomic
molecules with angular momentum | = 0 have been described by the Morse
potential for long time (Tasseli [9]). Another application is in string theory:
the wave equation with the Morse potential is the equation of motion for a re-
scaled tachyon field and is nothing but Wheeler-de Wit equation satisfied by
the macroscopic loop (Li [8]). To use numerical method for a simple
modeling of some diatomic molecules like HCI, H2 and O2 in MATLAB
(Fidiani [3]), see information and new results on the Morse potential
(Hassanabadi and Zare [4]) and (Znojil [10]).

2. Wave Equation with the Morse Potential

In this section, we give the solution of the Cauchy problem (WM ), for

the wave equation with the Morse potential. We begin with the following
lemma:
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Lemma 2.1. For k, t, X, X € R, set:

Z = ky2eX "X (cosht — cosh(X — X)), @.1)
then

2_)Z< - %z —k2X X sinh(X - X271, 2.2)
o’z 1 22X 5—1 4. 2X+2X" . 12 N7 -3
_2:ZZ_ke Z7 —k’e sinh“(X — X")Z27°, (2.3)
oX
% = k2eX* X sinhtz 7!, (2.4)
0’2 o xax' 1 A 2X 42X 1253
— = k<e coshtZz™ —k"e sinh“tZ ™", (2.5)
ot

The proof of this lemma is straightforward calculation and in

consequence is left to the reader.

Proposition 2.2. The general solution of the wave equation in (WM), is

given by:

Wi (t, X, X') =adg( k |\/2ex+x'(cosht —cosh(X = X")))

+bYy(| k |\/2ex+xy(cosht —cosh(X — X"))),

where a,b e C and Jy, Y, are Bessel functions of the first and second
kind, respectively.

Proof. Let

W(t, X, X') = ®(2), (2.6)
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where Z is as in (2.1). Then we have

o .. PW(t X, X)Wt X, X)
' ox? ot

(87 3 o [25-Z

Using the formulas (2.2)-(2.5), we obtain

D= sz — k2eX X sinh(X - X")
+ k*2X*+2X [sinh? (X - X') - sinhzt]Z_z}CD"(Z)

+ Hz k22X 771 _k2eX+ X coghtz !

+ k*2X+2X [sinh? t — sinh?(X — X')]Z_ﬂd)'(z).

From the Bessel equation (Lebedev [7, p. 98])
2 , 2 2 _
Z2°®"(2)+ ZD'(2)+ (27 —v°)®(Z)=0
for v=0 and Z # 0, we have
®"(Z2)=-2"'0'(2) - 0(2).

Replacing in (2.8), we obtain

D= [%Zz - kzex+xl(cosh(X — X')+cosht)Z !

— k*2X*2X (sinh?(X — X') — sinh? t) x z—-”}cp'(Z)

2.7)

(2.8)
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+ {% kzex+x'(cosh(x — X') + cosht)

— k*¥X*2X (sinh?(X - X') - sinh? t)Z‘ﬂcD(Z) +k2eX@(2),

that 1s, we have
D = A, X, X)[2Z27'®'(2) + ®(2)] + k*e** ®(2) (2.9)

with
1 .
Alt, X, X') = -5 k2eX+X (cosh(X — X') + cosht)

— k*2X+2X (sinh?(X - X") - sinh? t)2 2.

Taking into account (2.1) and the formula sinh? y — sinh? z = cosh? y —

cosh? z, we obtain A(t, X, X") =0, and the proof of the proposition is
finished.

Theorem 2.3. The Cauchy problem (WM), for the wave equation with

the Morse potential has the unique solution given by:

u(t, X)

= [ e J00KIN2X 7 cosht—cosh (X = X)) 1(X )X (2.10)

Proof. By Proposition 2.2 and the fact that the uniqueness of the solution
of the problem (WM ), is a consequence of the classical theory of hyperbolic

operator, the proof of the theorem will be finished by showing limit

—X )z Zsinh% to get

.. . . X
conditions. For this, set smh(
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1 ’
U(t, X)= IO J0(2| k |sinh%\/ex+x (- 22))
X [f(x + 2arg sinh(z sinh %D + f(X —2arg sinh(z sinh %D}

.ot
h—
sinh =

« dz. @.11)
\/(1 + 72 sinh? %)

It is not hard to see the limit conditions from (2.11) and the formula
(Lebedev [7, p. 134))

XV

() x ————, x>0 (2.12)
2YT(1 + v)

3. The Wave Equation with Constant Potential and
the Telegraph Equation

In this section, we give two applications of Theorem 2.3, the explicit
solutions to the wave equation with constant potential on R and the

telegraph equation

Corollary 3.1. The Cauchy problem for the wave equation with constant
potential

) o "
—2—k U(t,X)ZEU(t,X),(t,X)€R+XR,

oX (WC),
U(0, X)=0,U(0, X)=U;(X),U; € C*(R)
has the unique solution given by
U )= (K = (X = X 2)TXAX, ()
| X=X"|<t

where J, is the Bessel function of the first kind and of order 0.
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Proof. Replacing k by %, X by AX and t by At and letting A — 0 in the

formula (2.10), we get the solution (3.1) of the Cauchy problem for the wave

equation with constant potential:

Note that the telegraph equation satisfied by the voltage or the current v
as a function of the time t and the position X along the cable from initial

point;

oX 2
v(0, X) =0, v(0, X)=v{(X), vy e C*(R)

i X):(i+(a+ﬁ)g+aBJv(t X), (t, X) € R* xR
’ ot ot I T WR),

can be reduced to the wave equation with constant potential, where
CR) . - (@+p)/2)t ~
k = g by introducing U =e vV (Courant and Hilbert

[1, pp. 192-193; 695]).

4. Wave Equation on the Lobacheviskii Plane

Let H? = {z=x+1iy e C, y > 0} be the hyperbolic Poincaré half plane,

endowed with the usual hyperbolic metric

2 2
ds? = u 4.1)
y
with the hyperbolic surface form du(z):
dxd
du(2) = =, (4.2)
y
the hyperbolic distance d(z, z) is given by
VLAY 2 2
coshd(z, z') = (x=x)" + }/ Yy (4.3)

2yy
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with the Laplace-Beltrami operator
2 2
A=y25—2+a—2. (4.4)
OX oy

In this section, we use Theorem 2.3 to give the solution of the
Cauchy problem for the wave equation on Lobacheviskii plane associated to
modified Laplacian

1
L=A+—. 4.5
1 (4.5)

Corollary 4.1 (See Intissar and Ould Moustapha [6]). The Cauchy
problem for the wave equation on the Lobacheviskii plane

0° .
Lu(t, X, y)=—=u(t, X, ¥), (t, X, y) e R, xR,
(t, %, y) " (t,x, ), (t, x, y)e Ry wiz?),

U(O’ X, y) = 0’ Ut(O, X, y) = UI(X, y)’ u e COO(R)

has the unique solution given by

= 1 ’ —l i i
u(t, z)—Ejd(z,z/)d(cosht—coshd(z, )73 E(Z)du@),  (4.6)

where d(z, z') is the geodesic distance on H? given by (4.3).

Proof. The Fourier transform with respect to the variable X transforms

the Cauchy problems (W]H[z)k to the following Cauchy problem:

2 2
|:y2 (32 _k2y2 +%}G(t, K, y):%}y),(t, K, Y)ERj- x R,
ot
oy (WR),5
000,k y) =0, 2D fy) f ecq ),

Set

1
Gtk y) = y2u(t. k, y), y=eX, vtk y)=U(tk X). 4.7
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In the above problem, we get

(82 —kZe ZXJU(t K, X)_at_U(t k, X), (t, k, X) e R* xR,

2
oX (WM ),

X
U0, k, X)=0,U(0,k, X)=e 2 f(k,e*), f e C*(R).

Using Theorem 2.3, we get
u(t, k, X)

’

X
= J xx 1 0l k W2eX X (cosht — cosh(X — X)))e 2 f(k, eX)dX"
- <

From (4.7), we obtain

t,z)= ” a-ik(x=x)
U( Z) hl% <t-[—w
X ‘]0(|k|\/2yy'cosht— y'z))dkf(x y)d;(/dy
u(t, z) = I cosk(x — x")
xJ (k\/Zyy cosht —y '2))dkf(x y)dxdy
y’?

and hence by the formula (Ditkine and Prudnikov [2, 7.165, p. 182])

1
*® 22— .
J cosutdy(at)dt = (@ -u")2, ifu<a,
‘ 0, u>a

and the formulas (4.2) and (4.3), we get the proof of the corollary.
Acknowledgement

The authors thank the anonymous referees for their valuable suggestions
and comments.



1532

[1]

(2]

(3]

[4]

(3]

[6]

(7]

(8]

(]

[10]

Y. O. Mohamed Abdelhaye et al.

References

R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume II,
Interscience Publisher, 1962.

V. Ditkine and A. Proudnikov, Transformations intégrales et calcul opérationnel,
Editions, Mir, Moscow, 1978.

E. Fidiani, Modeling of diatomic molecule using the Morse potential and the
Verlet algorithm, AIP Conferences Proceedings 1719 (2016), 030001.
DOI: 10.1063/1.4943696.

H. Hassanabadi and S. Zare, Investigation of quasi-Morse potential in position-
dependent mass formalism, Eur. Phys. J. Plus 132 (2017), 49.
DOI: 10.1140/epjp/i2017-11319-x.

N. Ikeda and H. Matsumoto, Brownian motion one the hyperbolic plane and
Selberg trace formula, J. Funct. Anal. 163 (1999), 63-110.

A. Intissar and M. V. Ould Moustapha, Solution explicite de 1’équation des ondes
dans I’espace symétrique de type non compact de rang 1, C. R. Acad. Sci. Paris
Sér. I Math. 321 (1995), 77-80.

N. N. Lebedev; Special Functions and their Applications, Dover Publications,
Inc., New York, 1972.

Miao Li, Some remarks on tachyon action in 2d string theory;
arXiv:hep:th/9212061vl, 9 Dec. 1992.

H. Taseli, Exact solutions for vibrational levels of Morse potential, J. Phys. A
31 (1998), 779-788.

M. Znojil, Morse potential, symmetric Morse potential and bracketed bound-states
energies, Mod. Phys. Letter A 31 (2016), 34.
DOI: http://dx.doi.org/10.1142/S0217732316500887.



