
     

 

Far East Journal of Mathematical Sciences (FJMS) 
© 2017 Pushpa Publishing House, Allahabad, India 
http://www.pphmj.com 
http://dx.doi.org/10.17654/MS102061187 
Volume 102, Number 6, 2017, Pages 1187-1199 ISSN: 0972-0871  

Received: May 5, 2017;  Accepted: July 10, 2017 
2010 Mathematics Subject Classification: 53A04, 52A10, 26A30.  

Keywords and phrases: centroid, centroid of a curve, area, arc length, catenary. 

This research was supported by Basic Science Research Program through the National 
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2015R1D1A3A01020387). 

∗Corresponding author 

VARIOUS CENTROIDS AND SOME 
CHARACTERIZATIONS OF CATENARIES 

Dong-Soo Kim1, Seul Lee1 and Dae Won Yoon2,∗ 
1Department of Mathematics 
Chonnam National University 
Gwangju 61186, South Korea 

 
2Department of Mathematics Education and RINS 
Gyeongsang National University 
Jinju 52828, South Korea 
 

Abstract 

For every interval [ ],, ba  we denote by ( )AA yx ,  and ( )LL yx ,         

the geometric centroid of the area under a catenary curve =y  

( )( )kcxk −cosh  defined on this interval and the centroid of the 

curve itself, respectively. Then it is well-known that AL xx =  and 

.2 AL yy =  
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In this paper, we fix an end point, say 0, and we show that =LL xy  

AA xy2  for every interval with an end point 0 characterizes the family 

of catenaries among nonconstant positive 2C  functions. 

1. Introduction 

A well-known property of the catenary curve ( )( ),cosh kcxky −=  

0>k  is that the ratio of the area under the curve to the arc length of          
the curve is independent of the interval over which these quantities are 

concurrently measured. For a positive 1C  function ( )xf  defined on an 

interval I and an interval [ ] ,, Iba ⊂  we consider the area ( )baA ,  over the 

interval [ ]ba,  and the arc length ( )baL ,  of the graph of ( ).xf  Then the 

catenary curve ( )( ),cosh kcxky −=  0>k  satisfies for every interval 

[ ] ,, Iba ⊂  ( ) ( ).,, bakLbaA =  This property characterizes the family of 

catenaries ( )( )kcxky −= cosh  among nonconstant 2C  functions [14]. 

Thus, we have the following: 

Proposition 1.1. For a nonconstant positive 2C  function ( )xf  defined 

on an interval I, the following are equivalent: 

(1) There exists a positive constant k such that for every interval 
[ ] ,, Iba ⊂  ( ) ( ).,, bakLbaA =  

(2) The function ( )xf  satisfies ( ) ( ) ,1 2xykxf ′+=  where k is a 

positive constant. 

(3) For some 0>k  and ,R∈c  

( ) .cosh ⎟
⎠
⎞⎜

⎝
⎛ −= k

cxkxf  

Two higher dimensional generalizations of Proposition 1.1 were 

established in [2]. For a positive 1C  function ( )xf  defined on an interval I 
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and an interval [ ] ,, Iba ⊂  we denote by ( ) ( ) ( )( )baybaxyx AAAA ,,,, =  

and ( ) ( ) ( )( )baybaxyx LLLL ,,,, =  the geometric centroid of the area 

under the graph of ( )xf  defined on this interval and the centroid of the 

graph itself, respectively. Then, for a catenary curve, we have the following 
[14]: 

Proposition 1.2. A catenary curve ( )( )kcxky −= cosh  satisfies the 

following: 

(1) For every interval [ ] ( ) ( ).,,,, baxbaxIba AL =⊂  

(2) For every interval [ ] ( ) ( ).,2,,, baybayIba AL =⊂  

In this paper, we consider intervals with a fixed end point, say 0. For a 
nonzero real number x, we denote by xI  the interval defined by 

 
[ ]
[ ]⎩
⎨
⎧

<
>

=
.0if,0,
,0if,,0

xx
xx

Ix  (1.1) 

We also denote by ( ) ( ) ( ) ( )( )xyxxxLxA AA ,,,  and ( ) ( )( )xyxx LL ,  the area 

under the graph of ( ),xf  the arc length of the graph of ( ),xf  the geometric 

centroid of the area under the graph of ( )xf  and the centroid of the graph 

itself over the interval ,xI  respectively. 

Recently, the following characterization was established [5, 11]. See also 
the recent paper [1]. 

Proposition 1.3. For a nonconstant positive 2C  function ( )xf  defined 

on an interval I containing 0, the following are equivalent: 

(1) For every nonzero real number ( ) ( )., xxxxIx AL =∈  

(2) For every nonzero real number ( ) ( ).2, xyxyIx AL =∈  

(3) For some 0>k  and ,R∈c  

( ) .cosh ⎟
⎠
⎞⎜

⎝
⎛ −= k

cxkxf  
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In Section 3, we prove the following characterization theorem for 
catenary curves: 

Theorem 1.4. For a nonconstant positive 2C  function ( )xfy =  

defined on an open interval I containing ,0 R∈  the following are equivalent: 

(1) For every nonzero real number ,Ix ∈  

( )
( )

( )
( ) .2 xx
xy

xx
xy

A
A

L
L =  

(2) For some 0>k  and ,R∈c  

( ) .cosh ⎟
⎠
⎞⎜

⎝
⎛ −= k

cxkxf  

Remark 1.5. Suppose that a continuous positive function ( )xfy =  

defined on an open interval I containing R∈0  satisfies the following for 
every nonzero real number :Ix ∈  

( )
( )

( )
( )

,
xx
xy

xx
xy

A

A

L

L λ=  

where λ is a constant. Then, for the function ( ) ( ) ,1 2xfxw ′+=  we have 

 
( )

( )

( ) ( )

( )
.2

0
2

0

0

0

∫
∫

∫
∫

=λ
x

x

x

x

dttf

dttwtf

dtttf

dtttw
 (1.2) 

By putting ,0→x  we get .2=λ  

In order to find the centroid of polygons, see [4]. For the perimeter 
centroid of a polygon, we refer [3]. In [12], mathematical definitions of 
centroid of planar bounded domains were given. For various centroids of 
higher dimensional simplexes, see [13]. The relationships between various 
centroids of a quadrangle were given in [7, 10]. 
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Archimedes proved the area properties of parabolic sections and then 
formulated the centroid of parabolic sections [15]. Some characterizations of 
parabolas using these properties were given in [6, 8, 9]. 

2. Some Lemmas 

In this section, we prove a lemma which is useful in the proof of 

Theorem 1.4 stated in Section 1. We consider a positive 2C  function ( )xf  

and a positive 1C  function ( )xw  which are defined on an interval I 

containing .0 R∈  We denote by ( )xk  and ( )xφ  the functions defined as 

follows: 

 ( ) ( )
( )xw
xfxk =  (2.1) 

and 

 ( ) ( ) ( ) ( ) ( )∫ ∫−=φ
x x

dtttwxldttftwx
0 0

,  (2.2) 

where ( ) ( ) xxfxl =  defined on the open set { }.0\0 II =  

Lemma 2.1. We consider a positive 2C  function ( )xf  and a positive 
1C  function ( )xw  which are defined on an interval I containing .0 R∈  

Suppose that ( )xf  and ( )xw  satisfy the following: 

( )

( )

( )

( ) ( )
.0,,

0

0
2

0

0 ≠∈=

∫
∫

∫
∫

xIx
dttftw

dttf

dtttw

dtttf

x

x

x

x

 (2.3) 

Then, on the open ( ) ( ){ },0,002 ≠φ≠′|∈= xxkIxI  we have ( ) .0=′ xl  

Proof. Suppose that ( )xf  and ( )xw  satisfy (2.3). Then, for all ,Ix ∈  

we get 
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 ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫=
x x x x

dttfdtttwdttftwdtttf
0 0 0 0

2 .  (2.4) 

By differentiating (2.4) with respect to the variable x, we obtain 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫+
x x

dtttfxfxwdttftwxxf
0 0

 

( ) ( ) ( ) ( )∫ ∫+=
x x

dtttwxfdttfxxw
0 0

22 .  (2.5) 

The function ( )xk  given in (2.1) is a 1C  function on the interval I. It follows 

from (2.5) that for the function ( ) ( ) xxfxl =  on the open set { },0\0 II =  

we have 

( ) ( ) ( ) ( ) ( )∫ ∫+
x x

dtttfxldttftwxk
0 0

 

( ) ( ) ( ) ( )∫ ∫+=
x x

dtttwxlxkdttf
0 0

2 .  (2.6) 

On the open set ,0I  differentiating (2.6) with respect to x gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )∫ ∫ ∫′=′+′
x x x

dtttwxlxkdtttfxldttftwxk
0 0 0

.  (2.7) 

Together with (2.1), this shows that 

 ( ) ( ) ( ),xxxk ψ=φ′  (2.8) 

where 

( ) ( ) ( ) ( ) ( )∫ ∫−=φ
x x

dtttwxldttftwx
0 0

,  

 ( ) ( ) ( ) ( ) ( ) ( )∫ ∫′−′=ψ
x x

dtttfxldtttwxlxkx
0 0

.  (2.9) 

It follows from (2.8) that on the open set 1I  defined by { ∈= xI1  

( ) },00 ≠φ| xI  ( )xk′  is given by ( ) ( ) ( ),xxxk φψ=′  and hence on the open 
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set ( )xkI ′,1  is a 1C  function. That is, ( )xk  is a 2C  function on the open set 

.1I  

First, suppose that the open set 2I  defined by ( ){ }012 ≠′|∈= xkIxI  is 

nonempty. Then, on the open set ,2I  from (2.7), we get 

 ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫δ=η+
x x x

dtttwxdtttfxdttftw
0 0 0

,  (2.10) 

where we put 

 ( ) ( )
( ) ( ) ( ) ( )( )

( ) ., xk
xlxkxxk

xlx ′

′
=δ′

′
=η  (2.11) 

Note that ( )xη  and ( )xδ  are 1C  functions on .2I  By differentiating (2.10) 

with respect to x, we obtain 

 ( ) ( ) ( ) ( )∫ ∫ ∈δ′=η′
x x

Ixdtttwxdtttfx
0 0 2.,  (2.12) 

Next, suppose that the open set 3I  defined by ( ){ }023 ≠η′|∈= xIxI  

is nonempty. Then, on the open set ,3I  from (2.12), we get 

 ( ) ( ) ( )∫ ∫=
x x

dtttwxhdtttf
0 0

,  (2.13) 

where 

 ( ) ( )
( ) .x
xxh

η′
δ′=  (2.14) 

It follows from (2.13) that the function ( )xh  is a 2C  function on the open 

set .3I  Differentiating (2.13) with respect to x shows that 

 ( ) ( ) ( ) ( ) ( )∫′=−
x

dtttwxhxwxxhxxf
0

.  (2.15) 
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Finally, suppose that the open set 4I  defined by =4I  

( ){ }03 ≠′|∈ xhIx  is nonempty. Then, on the open set ,4I  from (2.15), we 

get 

 ( ) ( )( ) ( ),xxwxwxxj =′  (2.16) 

where we put 

 ( ) ( ) ( )
( ) .xh

xhxkxj ′
−=  (2.17) 

It follows from (2.15) that the function ( )xj  is a 1C  function on the open set 

.4I  

On the other hand, together with (2.13), (2.3) implies 

 ( ) ( ) ( ) ( )∫ ∫ ∈=
x x

Ixdttftwxhdttf
0 0 3

2 ,,  (2.18) 

where ( )xh  is given in (2.14). Differentiating (2.18) with respect to x gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫′=−
x

dttftwxhxfxwxhxf
0

2 .  (2.19) 

Hence, as in the discussions above, on the open set ,4I  from (2.19), we 

obtain 

 ( ) ( ) ( )( ) ( ) ( ),xfxwxfxwxj =′  (2.20) 

where ( )xj  is defined in (2.17) and we use (2.1). 

On the open set ,4I  it follows from (2.16) and (2.20) that for the 

function ( ) ( ) ,xxfxl =  

 ( ) ( ) ( ) ( )( ) ,0=−′ xlxfxwxj  (2.21) 

and hence we have from ( ) ,0>xw  

 ( ) ( ) ( )( ) .0=−′ xlxfxj  (2.22) 
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Since ( ) ( ) ( ),xlxxlxf ′=−′  it follows from (2.22) that 

 ( ) ( ) .0=′ xlxj  (2.23) 

Now, we claim that the derivative ( )xl′  of the function ( )xl  vanishes on 

.4I  Otherwise, on a nonempty open set 5I  contained in ,4I  the function 

( )xj  vanishes. Then it follows from (2.20) that on ( ) ( ) ,0,5 =xfxwI  which 

is a contradiction. This contradiction completes the proof of the claim. Since 
( )xl′  vanishes on ,4I  (2.11) implies that ( ) 0=η x  on ,4I  which contradicts 

to the hypothesis on .3I  This contradiction shows that 4I  must be empty, 

that is, ( )xh′  vanishes on the open set .3I  

Since ( ) 0=′ xh  on the open set ,3I  it follows from (2.1) and (2.15) that 

,hk =  and hence ( )xk′  also vanishes on .3I  This contradiction shows that 

the open set 3I  must be empty, that is, ( )xη′  vanishes on the open set .2I  

Together with (2.12), the vanishing of ( )xη′  on the open set 2I  shows 

that on any fixed connected component 0
2I  of the open set ( ) axI =η,2  and 

( ) bx =δ  for some constants a and b. Hence, (2.11) yields that on the 

connected component 0
2I  for some constants c and d, 

 ( ) ( ) ( ) ( ) ( ) ., dxbkxlxkcxakxl +=+=  (2.24) 

This implies that ( )xk  is a root of the quadratic polynomial ( ) += 2attq  

( ) .dtbc −−  If the quadratic polynomial ( )tq  is nontrivial, then the ratio 

( )xk  must be constant on the connected component ( ).0
2I  This contradiction 

shows that ( )tq  is trivial. That is, we have cba == ,0  and ,0=d  and 

hence from (2.24), we see that on any fixed connected component 0
2I  of the 

open set 2I  the function ( )xl  is constant. This shows that on the open set 

( )xlI ′,2  vanishes. This completes the proof of Lemma 2.1. ~ 
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3. Proof of Theorem 1.4 

In this section, with the help of Lemma 2.1 in Section 2, we prove 
Theorem 1.4 stated in Section 1. 

Suppose that a nonconstant positive 2C  function ( )xf  defined on an 

interval I containing R∈0  satisfies for every nonzero real number ,Ix ∈  

 ( )
( )

( )
( ) .2 xx
xy

xx
xy

A
A

L
L =  (3.1) 

Then for all { },0\0 IIx =∈  we have 

 
( ) ( )

( )

( )

( )
,

0

0
2

0

0

∫
∫

∫
∫

= x

x

x

x

dtttf

dttf

dtttw

dttwtf
 (3.2) 

where we put 

 ( ) ( ) .1 2xfxw ′+=  (3.3) 

For the ratio ( ) ( ) ( ),xwxfxk =  the function ( )xφ  is given by 

 ( ) ( ) ( ) ( ) ( )∫ ∫−=φ
x x

dtttwxldttftwx
0 0

,  (3.4) 

where ( ) ( ) xxfxl =  for ,0Ix ∈  we consider the following open set: 

 ( ) ( ){ }.0,002 ≠φ≠′|∈= xxkIxI  (3.5) 

Suppose that the open set 2I  is nonempty. Then it follows from Lemma 

2.1 that on the open set ,2I  we have ( ) .0=′ xl  Hence, on any fixed 

connected component 0
2I  of the open set ,2I  we have for some constant a, 

 ( ) ( ) ( ) .1,, 2axwaxxfaxl +===  (3.6) 
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Furthermore, together with (2.11), this implies that ( ) 0=η x  and ( ) .ax =δ  

Hence, we get from (2.10) that 

 ( ) ( ) ( )∫ ∫=
x x

dtttwadttftw
0 0

.  (3.7) 

This shows that on the connected component ( ) ,0,0
2 =φ xI  which contradicts 

to the definition of .2I  This contradiction shows that the open set 2I  must 

be empty. That is, on the open set ( ){ },0≠′|∈= xkIxJ  the function ( )xφ  

vanishes. 

We consider two cases as follows: 

Case 1. J is empty. Then, on the whole interval I, the ratio ( )xk              

is constant. Hence, for some constant ,R∈k  we have ( ) ( ).xkwxf =  

Therefore, Proposition 1.1 implies that for some ,R∈c  

 ( ) .cosh ⎟
⎠
⎞⎜

⎝
⎛ −= k

cxkxf  (3.8) 

Case 2. J is nonempty. Then, it follows from the discussions above, we 
see that on J, ( )xφ  vanishes. Differentiating ( )xφ  in (3.4) shows that on the 

open set J, ( )xl′  vanishes. Hence, on any fixed connected component 0J  of 

J, ( ) axf =′  for some nonzero constant a. In particular, on J, ( )xf ′′  

vanishes. 

Suppose that the complement cJ  of the open set J has nonempty interior 
K. Then, on the nonempty interior K, ( )xk′  vanishes. Hence, on any fixed 

connected component 0K  of the nonempty interior K, Proposition 1.1 shows 
that the function ( )xf  is a constant or a function given by (3.8) for some 

constants 0>k  and c. This yields that on K, ( )xf  satisfies either ( ) 0=′ xf  

or ( ) ,01 >≥′′ kxf  which contradicts to the properties of f on J because 

( )xf  is a 2C  function. This contradiction shows that the complement cJ  of 
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the open set J has empty interior. That is, the open set J is an open dense set 
contained in the domain I. 

Since ( )xl′  vanishes on J and J is dense in the domain I, we see that on 

the whole interval I, the derivative ( )xl′  vanishes. Hence, for some constant 

,R∈k  we have ( ) .kxxf =  But, such function cannot be positive on the 

open interval I containing .0 R∈  This contradiction shows that J must be 
nonempty. 

Combining the above two cases completes the proof of (1) ⇒ (2). 

Conversely, it follows from Proposition 1.2 that (2) ⇒ (1). This 
completes the proof of Theorem 1.4. 
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