Far East Journal of Mathematical Sciences (FJMS)

VARIOUS CENTROIDS AND SOME CHARACTERIZATIONS OF CATENARIES

Dong-Soo Kim ${ }^{1}$, Seul Lee ${ }^{1}$ and Dae Won Yoon ${ }^{2, *}$
${ }^{1}$ Department of Mathematics
Chonnam National University
Gwangju 61186, South Korea
${ }^{2}$ Department of Mathematics Education and RINS
Gyeongsang National University
Jinju 52828, South Korea

Abstract

For every interval $[a, b]$, we denote by $\left(x_{A}, y_{A}\right)$ and $\left(x_{L}, y_{L}\right)$ the geometric centroid of the area under à catenary curve $\bar{y}=$ $k \cosh ((x-c) k)$ defined on this interval and the centroid of the curve itself, rdspectively. Then it is well-known that $x_{L}=x_{A}$ and $y_{L}=2 y_{A}$.

Received: May 5, 2017; Accepted: July 10, 2017
2010 Mathematics Subject Classification: 53A04, 52A10, 26A30.
Keywords and phrases: centroid, centroid of a curve, area, arc length, catenary.
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2015R1D1A3A01020387).
*Corresponding author

In this paper, we fix an end point, say 0 , and we show that $\bar{y}_{L} / \bar{x}_{L}=$ $2 \bar{y}_{A} / \bar{x}_{A}$ for every interval with an end point 0 characterizes the family of catenaries among nonconstant positive C^{2} functions.

1. Introduction

A well-known property of the catenary curve $y=k \cosh ((x-c) / k)$, $k>0$ is that the ratio of the area under the curve to the arc length of the curve is independent of the interval over which these quantities are concurrently measured. For a positive C^{1} function $f(x)$ defined on an interval I and an interval $[a, b] \subset I$, we consider the area $A(a, b)$ over the interval $[a, b]$ and the arc length $L(a, b)$ of the graph of $f(x)$. Then the catenary curve $y=k \cosh ((x-c) / k), k>0$ satisfies for every interval $[a, b] \subset I, \quad A(a, b)=k L(a, b)$. This property characterizes the family of catenaries $y=k \cosh ((x-c) / k)$ among nonconstant C^{2} functions [14]. Thus, we have the following:

Proposition 1.1. For a nonconstant positive C^{2} function $f(x)$ defined on an interval I, the following are equivalent:
(1) There exists a positive constant k such that for every interval $[a, b] \subset I, A(a, b)=k L(a, b)$.
(2) The function $f(x)$ satisfies $f(x)=k \sqrt{1+y^{\prime}(x)^{2}}$, where k is a positive constant.
(3) For some $k>0$ and $c \in \mathbb{R}$,

$$
f(x)=k \cosh \left(\frac{x-c}{k}\right) .
$$

Two higher dimensional generalizations of Proposition 1.1 were established in [2]. For a positive C^{1} function $f(x)$ defined on an interval I
and an interval $[a, b] \subset I$, we denote by $\left(\bar{x}_{A}, \bar{y}_{A}\right)=\left(\bar{x}_{A}(a, b), \bar{y}_{A}(a, b)\right)$ and $\left(\bar{x}_{L}, \bar{y}_{L}\right)=\left(\bar{x}_{L}(a, b), \bar{y}_{L}(a, b)\right)$ the geometric centroid of the area under the graph of $f(x)$ defined on this interval and the centroid of the graph itself, respectively. Then, for a catenary curve, we have the following [14]:

Proposition 1.2. A catenary curve $y=k \cosh ((x-c) / k)$ satisfies the following:
(1) For every interval $[a, b] \subset I, \bar{x}_{L}(a, b)=\bar{x}_{A}(a, b)$.
(2) For every interval $[a, b] \subset I, \bar{y}_{L}(a, b)=2 \bar{y}_{A}(a, b)$.

In this paper, we consider intervals with a fixed end point, say 0 . For a nonzero real number x, we denote by I_{X} the interval defined by

$$
I_{x}= \begin{cases}{[0, x],} & \text { if } x>0 \tag{1.1}\\ {[x, 0],} & \text { if } x<0\end{cases}
$$

We also denote by $A(x), L(x),\left(\bar{x}_{A}(x), \bar{y}_{A}(x)\right)$ and $\left(\bar{x}_{L}(x), \bar{y}_{L}(x)\right)$ the area under the graph of $f(x)$, the arc length of the graph of $f(x)$, the geometric centroid of the area under the graph of $f(x)$ and the centroid of the graph itself over the interval I_{X}, respectively.

Recently, the following characterization was established [5, 11]. See also the recent paper [1].

Proposition 1.3. For a nonconstant positive C^{2} function $f(x)$ defined on an interval I containing 0 , the following are equivalent:
(1) For every nonzero real number $x \in I, \bar{x}_{L}(x)=\bar{x}_{A}(x)$.
(2) For every nonzero real number $x \in I, \bar{y}_{L}(x)=2 \bar{y}_{A}(x)$.
(3) For some $k>0$ and $c \in \mathbb{R}$,

$$
f(x)=k \cosh \left(\frac{x-c}{k}\right) .
$$

In Section 3, we prove the following characterization theorem for catenary curves:

Theorem 1.4. For a nonconstant positive C^{2} function $y=f(x)$ defined on an open interval I containing $0 \in \mathbb{R}$, the following are equivalent:
(1) For every nonzero real number $x \in I$,

$$
\frac{\bar{y}_{L}(x)}{\bar{x}_{L}(x)}=2 \frac{\bar{y}_{A}(x)}{\bar{x}_{A}(x)} .
$$

(2) For some $k>0$ and $c \in \mathbb{R}$,

$$
f(x)=k \cosh \left(\frac{x-c}{k}\right) .
$$

Remark 1.5. Suppose that a continuous positive function $y=f(x)$ defined on an open interval I containing $0 \in \mathbb{R}$ satisfies the following for every nonzero real number $x \in I$:

$$
\frac{\bar{y}_{L}(x)}{\bar{x}_{L}(x)}=\lambda \frac{\bar{y}_{A}(x)}{\bar{x}_{A}(x)},
$$

where λ is a constant. Then, for the function $w(x)=\sqrt{1+f^{\prime}(x)^{2}}$, we have

$$
\begin{equation*}
\frac{\lambda}{2} \frac{\int_{0}^{x} t w(t) d t}{\int_{0}^{x} t f(t) d t}=\frac{\int_{0}^{x} f(t) w(t) d t}{\int_{0}^{x} f(t)^{2} d t} \tag{1.2}
\end{equation*}
$$

By putting $x \rightarrow 0$, we get $\lambda=2$.
In order to find the centroid of polygons, see [4]. For the perimeter centroid of a polygon, we refer [3]. In [12], mathematical definitions of centroid of planar bounded domains were given. For various centroids of higher dimensional simplexes, see [13]. The relationships between various centroids of a quadrangle were given in $[7,10]$.

Archimedes proved the area properties of parabolic sections and then formulated the centroid of parabolic sections [15]. Some characterizations of parabolas using these properties were given in $[6,8,9]$.

2. Some Lemmas

In this section, we prove a lemma which is useful in the proof of Theorem 1.4 stated in Section 1. We consider a positive C^{2} function $f(x)$ and a positive C^{1} function $w(x)$ which are defined on an interval I containing $0 \in \mathbb{R}$. We denote by $k(x)$ and $\phi(x)$ the functions defined as follows:

$$
\begin{equation*}
k(x)=\frac{f(x)}{w(x)} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(x)=\int_{0}^{x} w(t) f(t) d t-l(x) \int_{0}^{x} t w(t) d t, \tag{2.2}
\end{equation*}
$$

where $l(x)=f(x) / x$ defined on the open set $I_{0}=I \backslash\{0\}$.
Lemma 2.1. We consider a positive C^{2} function $f(x)$ and a positive C^{1} function $w(x)$ which are defined on an interval I containing $0 \in \mathbb{R}$. Suppose that $f(x)$ and $w(x)$ satisfy the following:

$$
\begin{equation*}
\frac{\int_{0}^{x} t f(t) d t}{\int_{0}^{x} t w(t) d t}=\frac{\int_{0}^{x} f(t)^{2} d t}{\int_{0}^{x} w(t) f(t) d t}, \quad x \in I, \quad x \neq 0 \tag{2.3}
\end{equation*}
$$

Then, on the open $I_{2}=\left\{x \in I_{0} \mid k^{\prime}(x) \neq 0, \phi(x) \neq 0\right\}$, we have $l^{\prime}(x)=0$.
Proof. Suppose that $f(x)$ and $w(x)$ satisfy (2.3). Then, for all $x \in I$, we get

$$
\begin{equation*}
\int_{0}^{x} t f(t) d t \int_{0}^{x} w(t) f(t) d t=\int_{0}^{x} t w(t) d t \int_{0}^{x} f(t)^{2} d t \tag{2.4}
\end{equation*}
$$

By differentiating (2.4) with respect to the variable x, we obtain

$$
\begin{align*}
& x f(x) \int_{0}^{x} w(t) f(t) d t+w(x) f(x) \int_{0}^{x} t f(t) d t \\
= & x w(x) \int_{0}^{x} f(t)^{2} d t+f(x)^{2} \int_{0}^{x} t w(t) d t . \tag{2.5}
\end{align*}
$$

The function $k(x)$ given in (2.1) is a C^{1} function on the interval I. It follows from (2.5) that for the function $l(x)=f(x) / x$ on the open set $I_{0}=I \backslash\{0\}$, we have

$$
\begin{align*}
& k(x) \int_{0}^{x} w(t) f(t) d t+l(x) \int_{0}^{x} t f(t) d t \\
= & \int_{0}^{x} f(t)^{2} d t+k(x) l(x) \int_{0}^{x} t w(t) d t \tag{2.6}
\end{align*}
$$

On the open set I_{0}, differentiating (2.6) with respect to x gives

$$
\begin{equation*}
k^{\prime}(x) \int_{0}^{x} w(t) f(t) d t+l^{\prime}(x) \int_{0}^{x} t f(t) d t=(k(x) l(x))^{\prime} \int_{0}^{x} t w(t) d t \tag{2.7}
\end{equation*}
$$

Together with (2.1), this shows that

$$
\begin{equation*}
k^{\prime}(x) \phi(x)=\psi(x) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi(x)=\int_{0}^{x} w(t) f(t) d t-l(x) \int_{0}^{x} t w(t) d t \\
& \psi(x)=k(x) l^{\prime}(x) \int_{0}^{x} t w(t) d t-l^{\prime}(x) \int_{0}^{x} t f(t) d t \tag{2.9}
\end{align*}
$$

It follows from (2.8) that on the open set I_{1} defined by $I_{1}=\{x \in$ $\left.I_{0} \mid \phi(x) \neq 0\right\}, \quad k^{\prime}(x)$ is given by $k^{\prime}(x)=\psi(x) / \phi(x)$, and hence on the open
set $I_{1}, k^{\prime}(x)$ is a C^{1} function. That is, $k(x)$ is a C^{2} function on the open set I_{1}.

First, suppose that the open set I_{2} defined by $I_{2}=\left\{x \in I_{1} \mid k^{\prime}(x) \neq 0\right\}$ is nonempty. Then, on the open set I_{2}, from (2.7), we get

$$
\begin{equation*}
\int_{0}^{x} w(t) f(t) d t+\eta(x) \int_{0}^{x} t f(t) d t=\delta(x) \int_{0}^{x} t w(t) d t, \tag{2.10}
\end{equation*}
$$

where we put

$$
\begin{equation*}
\eta(x)=\frac{l^{\prime}(x)}{k^{\prime}(x)}, \quad \delta(x)=\frac{(k(x) l(x))^{\prime}}{k^{\prime}(x)} \tag{2.11}
\end{equation*}
$$

Note that $\eta(x)$ and $\delta(x)$ are C^{1} functions on I_{2}. By differentiating (2.10) with respect to x, we obtain

$$
\begin{equation*}
\eta^{\prime}(x) \int_{0}^{x} t f(t) d t=\delta^{\prime}(x) \int_{0}^{x} t w(t) d t, \quad x \in I_{2} . \tag{2.12}
\end{equation*}
$$

Next, suppose that the open set I_{3} defined by $I_{3}=\left\{x \in I_{2} \mid \eta^{\prime}(x) \neq 0\right\}$ is nonempty. Then, on the open set I_{3}, from (2.12), we get

$$
\begin{equation*}
\int_{0}^{x} t f(t) d t=h(x) \int_{0}^{x} t w(t) d t, \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x)=\frac{\delta^{\prime}(x)}{\eta^{\prime}(x)} . \tag{2.14}
\end{equation*}
$$

It follows from (2.13) that the function $h(x)$ is a C^{2} function on the open set I_{3}. Differentiating (2.13) with respect to x shows that

$$
\begin{equation*}
x f(x)-x h(x) w(x)=h^{\prime}(x) \int_{0}^{x} t w(t) d t . \tag{2.15}
\end{equation*}
$$

Finally, suppose that the open set I_{4} defined by $I_{4}=$ $\left\{x \in I_{3} \mid h^{\prime}(x) \neq 0\right\}$ is nonempty. Then, on the open set I_{4}, from (2.15), we get

$$
\begin{equation*}
(x j(x) w(x))^{\prime}=x w(x) \tag{2.16}
\end{equation*}
$$

where we put

$$
\begin{equation*}
j(x)=\frac{k(x)-h(x)}{h^{\prime}(x)} . \tag{2.17}
\end{equation*}
$$

It follows from (2.15) that the function $j(x)$ is a C^{1} function on the open set I_{4}.

On the other hand, together with (2.13), (2.3) implies

$$
\begin{equation*}
\int_{0}^{x} f(t)^{2} d t=h(x) \int_{0}^{x} w(t) f(t) d t, \quad x \in I_{3}, \tag{2.18}
\end{equation*}
$$

where $h(x)$ is given in (2.14). Differentiating (2.18) with respect to x gives

$$
\begin{equation*}
f(x)^{2}-h(x) w(x) f(x)=h^{\prime}(x) \int_{0}^{x} w(t) f(t) d t . \tag{2.19}
\end{equation*}
$$

Hence, as in the discussions above, on the open set I_{4}, from (2.19), we obtain

$$
\begin{equation*}
(j(x) w(x) f(x))^{\prime}=w(x) f(x) \tag{2.20}
\end{equation*}
$$

where $j(x)$ is defined in (2.17) and we use (2.1).
On the open set I_{4}, it follows from (2.16) and (2.20) that for the function $l(x)=f(x) / x$,

$$
\begin{equation*}
j(x) w(x)\left(f^{\prime}(x)-l(x)\right)=0, \tag{2.21}
\end{equation*}
$$

and hence we have from $w(x)>0$,

$$
\begin{equation*}
j(x)\left(f^{\prime}(x)-l(x)\right)=0 . \tag{2.22}
\end{equation*}
$$

Since $f^{\prime}(x)-l(x)=x l^{\prime}(x)$, it follows from (2.22) that

$$
\begin{equation*}
j(x) l^{\prime}(x)=0 . \tag{2.23}
\end{equation*}
$$

Now, we claim that the derivative $l^{\prime}(x)$ of the function $l(x)$ vanishes on I_{4}. Otherwise, on a nonempty open set I_{5} contained in I_{4}, the function $j(x)$ vanishes. Then it follows from (2.20) that on $I_{5}, w(x) f(x)=0$, which is a contradiction. This contradiction completes the proof of the claim. Since $I^{\prime}(x)$ vanishes on I_{4}, (2.11) implies that $\eta(x)=0$ on I_{4}, which contradicts to the hypothesis on I_{3}. This contradiction shows that I_{4} must be empty, that is, $h^{\prime}(x)$ vanishes on the open set I_{3}.

Since $h^{\prime}(x)=0$ on the open set I_{3}, it follows from (2.1) and (2.15) that $k=h$, and hence $k^{\prime}(x)$ also vanishes on I_{3}. This contradiction shows that the open set I_{3} must be empty, that is, $\eta^{\prime}(x)$ vanishes on the open set I_{2}.

Together with (2.12), the vanishing of $\eta^{\prime}(x)$ on the open set I_{2} shows that on any fixed connected component I_{2}^{0} of the open set $I_{2}, \eta(x)=a$ and $\delta(x)=b$ for some constants a and b. Hence, (2.11) yields that on the connected component I_{2}^{0} for some constants c and d,

$$
\begin{equation*}
l(x)=a k(x)+c, \quad k(x) l(x)=b k(x)+d . \tag{2.24}
\end{equation*}
$$

This implies that $k(x)$ is a root of the quadratic polynomial $q(t)=a t^{2}+$ $(c-b) t-d$. If the quadratic polynomial $q(t)$ is nontrivial, then the ratio $k(x)$ must be constant on the connected component $I_{2}^{(0)}$. This contradiction shows that $q(t)$ is trivial. That is, we have $a=0, b=c$ and $d=0$, and hence from (2.24), we see that on any fixed connected component I_{2}^{0} of the open set I_{2} the function $l(x)$ is constant. This shows that on the open set $I_{2}, l^{\prime}(x)$ vanishes. This completes the proof of Lemma 2.1.

3. Proof of Theorem 1.4

In this section, with the help of Lemma 2.1 in Section 2, we prove Theorem 1.4 stated in Section 1.

Suppose that a nonconstant positive C^{2} function $f(x)$ defined on an interval I containing $0 \in \mathbb{R}$ satisfies for every nonzero real number $x \in I$,

$$
\begin{equation*}
\frac{\bar{y}_{L}(x)}{\bar{x}_{L}(x)}=2 \frac{\bar{y}_{A}(x)}{\bar{x}_{A}(x)} . \tag{3.1}
\end{equation*}
$$

Then for all $x \in I_{0}=I \backslash\{0\}$, we have

$$
\begin{equation*}
\frac{\int_{0}^{x} f(t) w(t) d t}{\int_{0}^{x} t w(t) d t}=\frac{\int_{0}^{x} f(t)^{2} d t}{\int_{0}^{x} t f(t) d t} \tag{3.2}
\end{equation*}
$$

where we put

$$
\begin{equation*}
w(x)=\sqrt{1+f^{\prime}(x)^{2}} . \tag{3.3}
\end{equation*}
$$

For the ratio $k(x)=f(x) / w(x)$, the function $\phi(x)$ is given by

$$
\begin{equation*}
\phi(x)=\int_{0}^{x} w(t) f(t) d t-l(x) \int_{0}^{x} t w(t) d t, \tag{3.4}
\end{equation*}
$$

where $l(x)=f(x) / x$ for $x \in I_{0}$, we consider the following open set:

$$
\begin{equation*}
I_{2}=\left\{x \in I_{0} \mid k^{\prime}(x) \neq 0, \phi(x) \neq 0\right\} . \tag{3.5}
\end{equation*}
$$

Suppose that the open set I_{2} is nonempty. Then it follows from Lemma 2.1 that on the open set I_{2}, we have $l^{\prime}(x)=0$. Hence, on any fixed connected component I_{2}^{0} of the open set I_{2}, we have for some constant a,

$$
\begin{equation*}
l(x)=a, \quad f(x)=a x, \quad w(x)=\sqrt{1+a^{2}} . \tag{3.6}
\end{equation*}
$$

Furthermore, together with (2.11), this implies that $\eta(x)=0$ and $\delta(x)=a$.
Hence, we get from (2.10) that

$$
\begin{equation*}
\int_{0}^{x} w(t) f(t) d t=a \int_{0}^{x} t w(t) d t . \tag{3.7}
\end{equation*}
$$

This shows that on the connected component $I_{2}^{0}, \phi(x)=0$, which contradicts to the definition of I_{2}. This contradiction shows that the open set I_{2} must be empty. That is, on the open set $J=\left\{x \in I \mid k^{\prime}(x) \neq 0\right\}$, the function $\phi(x)$ vanishes.

We consider two cases as follows:
Case 1. \boldsymbol{J} is empty. Then, on the whole interval I, the ratio $k(x)$ is constant. Hence, for some constant $k \in \mathbb{R}$, we have $f(x)=k w(x)$. Therefore, Proposition 1.1 implies that for some $c \in \mathbb{R}$,

$$
\begin{equation*}
f(x)=k \cosh \left(\frac{x-c}{k}\right) \tag{3.8}
\end{equation*}
$$

Case 2. \boldsymbol{J} is nonempty. Then, it follows from the discussions above, we see that on $J, \phi(x)$ vanishes. Differentiating $\phi(x)$ in (3.4) shows that on the open set $J, I^{\prime}(x)$ vanishes. Hence, on any fixed connected component J^{0} of $J, f^{\prime}(x)=a$ for some nonzero constant a. In particular, on $J, f^{\prime \prime}(x)$ vanishes.

Suppose that the complement J^{c} of the open set J has nonempty interior K. Then, on the nonempty interior $K, k^{\prime}(x)$ vanishes. Hence, on any fixed connected component K^{0} of the nonempty interior K, Proposition 1.1 shows that the function $f(x)$ is a constant or a function given by (3.8) for some constants $k>0$ and c. This yields that on $K, f(x)$ satisfies either $f^{\prime}(x)=0$ or $f^{\prime \prime}(x) \geq 1 / k>0$, which contradicts to the properties of f on J because $f(x)$ is a C^{2} function. This contradiction shows that the complement J^{c} of
the open set J has empty interior. That is, the open set J is an open dense set contained in the domain I.

Since $l^{\prime}(x)$ vanishes on J and J is dense in the domain I, we see that on the whole interval I, the derivative $l^{\prime}(x)$ vanishes. Hence, for some constant $k \in \mathbb{R}$, we have $f(x)=k x$. But, such function cannot be positive on the open interval I containing $0 \in \mathbb{R}$. This contradiction shows that J must be nonempty.

Combining the above two cases completes the proof of $(1) \Rightarrow(2)$.
Conversely, it follows from Proposition 1.2 that (2) \Rightarrow (1). This completes the proof of Theorem 1.4.

References

[1] V. Coll and J. Dodd, A characteristic averaging property of the catenary, Amer. Math. Monthly 123 (2016), 683-688.
[2] V. Coll and M. Harrison, Two generalizations of a property of the catenary, Amer. Math. Monthly 121 (2014), 109-119.
[3] Mark J. Kaiser, The perimeter centroid of a convex polygon, Appl. Math. Lett. 6 (1993), 17-19.
[4] B. Khorshidi, A new method for finding the center of gravity of polygons, J. Geom. 96 (2009), 81-91.
[5] D.-S. Kim, S.-O. Bang and D. W. Yoon, Various centroids and some characterizations of catenary curves, submitted.
[6] D.-S. Kim and D. S. Kim, Centroid of triangles associated with a curve, Bull. Korean Math. Soc. 52 (2015), 571-579.
[7] D.-S. Kim, W. Kim, K. S. Lee and D. W. Yoon, Various centroids of polygons and some characterizations of rhombi, Commun. Korean Math. Soc. 32(1) (2017), 135-145.
[8] D.-S. Kim and Y. H. Kim, On the Archimedean characterization of parabolas, Bull. Korean Math. Soc. 50 (2013), 2103-2114.
[9] D.-S. Kim, Y. H. Kim and S. Park, Center of gravity and a characterization of parabolas, Kyungpook Math. J. 55 (2015), 473-484.
[10] D.-S. Kim, K. S. Lee, K. B. Lee, Y. I. Lee, S. Son, J. K. Yang and D. W. Yoon, Centroids and some characterizations of parallelograms, Commun. Korean Math. Soc. 31(3) (2016), 637-645.
[11] D.-S. Kim, H. T. Moon and D. W. Yoon, Centroids and some characterizations of catenary curves, Commun. Korean Math. Soc. 32(3) (2017), 709-714.
[12] Steven G. Krantz, A matter of gravity, Amer. Math. Monthly 110 (2003), 465-481.
[13] Steven G. Krantz, John E. McCarthy and Harold R. Parks, Geometric characterizations of centroids of simplices, J. Math. Anal. Appl. 316 (2006), 87-109.
[14] E. Parker, A property characterizing the catenary, Math. Mag. 83 (2010), 63-64.
[15] S. Stein, Archimedes: What did he do besides cry Eureka?, Mathematical Association of America, Washington, DC, 1999.

